201
|
A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochem Soc Trans 2013; 40:1140-6. [PMID: 22988879 DOI: 10.1042/bst20120138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) represent a significant component of both sporadic and familial PD (Parkinson's disease). Pathogenic mutations cluster in the enzymatic domains of LRRK2, and kinase activity seems to correlate with cytotoxicity, suggesting the possibility of kinase-based therapeutic strategies for LRRK2-associated PD. Apart from cytotoxicity, changes in autophagy have consistently been observed upon overexpression of mutant, or knockdown of endogenous, LRRK2. However, delineating the precise mechanism(s) by which LRRK2 regulates autophagy has been difficult. Recent data suggest a mechanism involving late steps in autophagic-lysosomal clearance in a manner dependent on NAADP (nicotinic acid-adenine dinucleotide phosphate)-sensitive lysosomal Ca2+ channels. In the present paper, we review our current knowledge of the link between LRRK2 and autophagic-lysosomal clearance, including regulation of Ca2+-dependent events involving NAADP.
Collapse
|
202
|
Insights into LRRK2 function and dysfunction from transgenic and knockout rodent models. Biochem Soc Trans 2013; 40:1080-5. [PMID: 22988869 DOI: 10.1042/bst20120151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in the LRRK2 (leucine-rich repeat kinase 2) gene on chromosome 12 cause autosomal dominant PD (Parkinson's disease), which is indistinguishable from sporadic forms of the disease. Numerous attempts have therefore been made to model PD in rodents via the transgenic expression of LRRK2 and its mutant variants and to elucidate the function of LRRK2 by knocking out rodent Lrrk2. Although these models often only partially recapitulate PD pathology, they have helped to elucidate both the normal and pathological function of LRRK2. In particular, LRRK2 has been suggested to play roles in cytoskeletal dynamics, synaptic machinery, dopamine homoeostasis and autophagic processes. Our understanding of how these pathways are affected, their contribution towards PD development and their interaction with one another is still incomplete, however. The present review summarizes the findings from LRRK2 rodent models and draws potential connections between the apparently disparate cellular processes altered, in order to better understand the underlying mechanisms of LRRK2 dysfunction and illuminate future therapeutic interventions.
Collapse
|
203
|
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are a relatively common cause of inherited PD (Parkinson's disease), but the mechanism(s) by which mutations lead to disease are poorly understood. In the present paper, I discuss what is known about LRRK2 in cellular models, focusing specifically on assays that have been used to tease apart the effects of LRRK2 mutations on cellular phenotypes. LRRK2 expression has been suggested to cause loss of neuronal viability, although because it also has a strong effect on the length of neurites on these cells, whether this is true toxicity or not is unclear. Also, LRRK2 mutants can promote the redistribution of LRRK2 from diffuse cytosolic staining to more discrete structures, at least at high expression levels achieved in transfection experiments. The relevance of these phenotypes for PD is not yet clear, and a great deal of work is needed to understand them in more depth.
Collapse
|
204
|
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of PD (Parkinson's disease). To investigate how mutations in LRRK2 cause PD, we generated LRRK2 mutant mice either lacking its expression or expressing the R1441C mutant form. Homozygous R1441C knockin mice exhibit no dopaminergic neurodegeneration or alterations in steady-state levels of striatal dopamine, but they show impaired dopamine neurotransmission, as was evident from reductions in amphetamine-induced locomotor activity and stimulated catecholamine release in cultured chromaffin cells as well as impaired dopamine D2 receptor-mediated functions. Whereas LRRK2-/- brains are normal, LRRK2-/- kidneys at 20 months of age develop striking accumulation and aggregation of α-synuclein and ubiquitinated proteins, impairment of the autophagy-lysosomal pathway, and increases in apoptotic cell death, inflammatory responses and oxidative damage. Our further analysis of LRRK2-/- kidneys at multiple ages revealed unique age-dependent biphasic alterations of the autophagic activity, which is unchanged at 1 month of age, enhanced at 7 months, but reduced at 20 months. Levels of α-synuclein and protein carbonyls, a general oxidative damage marker, are also decreased in LRRK2-/- kidneys at 7 months of age. Interestingly, this biphasic alteration is associated with increased levels of lysosomal proteins and proteases as well as progressive accumulation of autolysosomes and lipofuscin granules. We conclude that pathogenic mutations in LRRK2 impair the nigrostriatal dopaminergic pathway, and LRRK2 plays an essential role in the dynamic regulation of autophagy function in vivo.
Collapse
|
205
|
Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Biochem Soc Trans 2013; 40:1095-101. [PMID: 22988872 DOI: 10.1042/bst20120123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are associated with both familial and sporadic PD (Parkinson's disease). LRRK1 (leucine-rich repeat kinase 1) shares a similar domain structure with LRRK2, but it is not linked to PD. LRRK proteins belong to a gene family known as ROCO, which codes for large proteins with several domains. All ROCO proteins have a ROC (Ras of complex proteins) GTPase domain followed by a domain of unknown function [COR (C-terminal of ROC)]. LRRK2, LRRK1 and other ROCO proteins also possess a kinase domain. To date, the function of LRRK1 and both the physiological and the pathological roles of LRRK2 are only beginning to unfold. The comparative analysis of these two proteins is a strategy to single out the specific properties of LRRKs to understand their cellular physiology. This comparison is the starting point to unravel the pathways that may lead to PD and eventually to develop therapeutic strategies for its treatment. In the present review, we discuss recently published results on LRRK2 and its paralogue LRRK1 concerning their evolutionary significance, biochemical properties and potential functional roles.
Collapse
|
206
|
Abstract
A number of neurodegenerative diseases principally affect humans as they age and are characterized by the loss of specific groups of neurons in different brain regions. Although these disorders are generally sporadic, it is now clear that many of them have a substantial genetic component. As genes are the raw material with which evolution works, we might benefit from understanding these genes in an evolutionary framework. Here, I will discuss how we can understand whether evolution has shaped genes involved in neurodegeneration and the implications for practical issues, such as our choice of model systems for studying these diseases, and more theoretical concerns, such as the level of selection against these phenotypes.
Collapse
Affiliation(s)
- Mark R Cookson
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892-3707, USA.
| |
Collapse
|
207
|
Bravo-San Pedro JM, Niso-Santano M, Gómez-Sánchez R, Pizarro-Estrella E, Aiastui-Pujana A, Gorostidi A, Climent V, López de Maturana R, Sanchez-Pernaute R, López de Munain A, Fuentes JM, González-Polo RA. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci 2013; 70:121-36. [PMID: 22773119 PMCID: PMC11113213 DOI: 10.1007/s00018-012-1061-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/29/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson's disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.
Collapse
Affiliation(s)
- José M. Bravo-San Pedro
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Rubén Gómez-Sánchez
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Elisa Pizarro-Estrella
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Ana Aiastui-Pujana
- Neuroscience Area, Instituto Biodonostia and CIBERNED, 20014 San Sebastián, Spain
| | - Ana Gorostidi
- Neuroscience Area, Instituto Biodonostia and CIBERNED, 20014 San Sebastián, Spain
| | - Vicente Climent
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Rakel López de Maturana
- Laboratorio de Células madre y Neurorreparación, Fundación Inbiomed, 20009 San Sebastián, Spain
| | | | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Biodonostia, Servicio de Neurología, Hospital Donostia, 20014 San Sebastián, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| | - Rosa A. González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, E. Enfermería y T.O., Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda Universidad, s/n, 10003 Cáceres, Spain
| |
Collapse
|
208
|
Cherra SJ, Steer E, Gusdon AM, Kiselyov K, Chu CT. Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:474-84. [PMID: 23231918 DOI: 10.1016/j.ajpath.2012.10.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 09/11/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) have been associated with familial and sporadic cases of Parkinson disease. Mutant LRRK2 causes in vitro and in vivo neurite shortening, mediated in part by autophagy, and a parkinsonian phenotype in transgenic mice; however, the underlying mechanisms remain unclear. Because mitochondrial content/function is essential for dendritic morphogenesis and maintenance, we investigated whether mutant LRRK2 affects mitochondrial homeostasis in neurons. Mouse cortical neurons expressing either LRRK2 G2019S or R1441C mutations exhibited autophagic degradation of mitochondria and dendrite shortening. In addition, mutant LRRK2 altered the ability of the neurons to buffer intracellular calcium levels. Either calcium chelators or inhibitors of voltage-gated L-type calcium channels prevented mitochondrial degradation and dendrite shortening. These data suggest that mutant LRRK2 causes a deficit in calcium homeostasis, leading to enhanced mitophagy and dendrite shortening.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
209
|
Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock PJ, Morais VA, Vilain S, Haddad D, Delbroek L, Swerts J, Chávez-Gutiérrez L, Esposito G, Daneels G, Karran E, Holt M, Gevaert K, Moechars DW, De Strooper B, Verstreken P. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 2012; 75:1008-21. [PMID: 22998870 DOI: 10.1016/j.neuron.2012.08.022] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
LRRK2 is a kinase mutated in Parkinson's disease, but how the protein affects synaptic function remains enigmatic. We identified LRRK2 as a critical regulator of EndophilinA. Using genetic and biochemical studies involving Lrrk loss-of-function mutants and Parkinson-related LRRK2(G2019S) gain-of-kinase function, we show that LRRK2 affects synaptic endocytosis by phosphorylating EndoA at S75, a residue in the BAR domain. We show that LRRK2-mediated EndoA phosphorylation has profound effects on EndoA-dependent membrane tubulation and membrane association in vitro and in vivo and on synaptic vesicle endocytosis at Drosophila neuromuscular junctions in vivo. Our work uncovers a regulatory mechanism that indicates that reduced LRRK2 kinase activity facilitates EndoA membrane association, while increased kinase activity inhibits membrane association. Consequently, both too much and too little LRRK2-dependent EndoA phosphorylation impedes synaptic endocytosis, and we propose a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses.
Collapse
Affiliation(s)
- Samer Matta
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson's Disease. PARKINSONS DISEASE 2012; 2012:324521. [PMID: 23251830 PMCID: PMC3518055 DOI: 10.1155/2012/324521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/01/2012] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative disorder, and its molecular etiopathogenesis remains poorly understood. The discovery of monogenic forms has significantly advanced our understanding of the molecular mechanisms underlying PD, as it allows generation of cellular and animal models carrying the mutant gene to define pathological pathways. Mutations in leucine-rich repeat kinase 2 (LRRK2) cause dominantly inherited PD, and variations increase risk, indicating that LRRK2 is an important player in both genetic and sporadic forms of the disease. G2019S, the most prominent pathogenic mutation, maps to the kinase domain and enhances enzymatic activity of LRRK2, which in turn seems to correlate with cytotoxicity. Since kinases are druggable targets, this has raised great hopes that disease-modifying therapies may be developed around modifying LRRK2 enzymatic activity. Apart from cytotoxicity, changes in autophagy have been consistently reported in the context of G2019S mutant LRRK2. Here, we will discuss current knowledge about mechanism(s) by which mutant LRRK2 may regulate autophagy, which highlights additional putative therapeutic targets.
Collapse
|
211
|
Abstract
Much of Parkinson's research over the last decade has focused on cellular stress as a candidate mechanism. In this issue of Neuron, a new study by Matta et al. (2012) addressing the biological functions of the Parkinson's gene LRRK2 now identifies a presynaptic substrate, homing in on the idea that synapse loss might be a central early aspect of neurodegeneration.
Collapse
Affiliation(s)
- Peter Heutink
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research-CNCR, Neuroscience Campus Amsterdam-NCA, VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
212
|
Di Domenico F, Sultana R, Ferree A, Smith K, Barone E, Perluigi M, Coccia R, Pierce W, Cai J, Mancuso C, Squillace R, Wiengele M, Dalle-Donne I, Wolozin B, Butterfield DA. Redox proteomics analyses of the influence of co-expression of wild-type or mutated LRRK2 and Tau on C. elegans protein expression and oxidative modification: relevance to Parkinson disease. Antioxid Redox Signal 2012; 17:1490-506. [PMID: 22315971 PMCID: PMC3448940 DOI: 10.1089/ars.2011.4312] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 11/13/2022]
Abstract
AIMS The human LRRK2 gene has been identified as the most common causative gene of autosomal-dominantly inherited and idiopathic Parkinson disease (PD). The G2019S substitution is the most common mutation in LRRK2. The R1441C mutation also occurs in cases of familial PD, but is not as prevalent. Some cases of LRRK2-based PD exhibit Tau pathology, which suggests that alterations on LRRK2 activity affect the pathophysiology of Tau. To investigate how LRRK2 might affect Tau and the pathophysiology of PD, we generated lines of C. elegans expressing human LRRK2 [wild-type (WT) or mutated (G2019S or R1441C)] with and without V337M Tau. Expression and redox proteomics were used to identify the effects of LRRK2 (WT and mutant) on protein expression and oxidative modifications. RESULTS Co-expression of WT LRRK2 and Tau led to increased expression of numerous proteins, including several 60S ribosomal proteins, mitochondrial proteins, and the V-type proton ATPase, which is associated with autophagy. C. elegans expressing mutant LRRK2 showed similar changes, but also showed increased protein oxidation and lipid peroxidation, the latter indexed as increased protein-bound 4-hydroxy-2-nonenal (HNE). INNOVATION Our study brings new knowledge about the possible alterations induced by LRRK2 (WT and mutated) and Tau interactions, suggesting the involvement of G2019S and R1441C in Tau-dependent neurodegenerative processes. CONCLUSION These results suggest that changes in LRRK2 expression or activity lead to corresponding changes in mitochondrial function, autophagy, and protein translation. These findings are discussed with reference to the pathophysiology of PD.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Andrew Ferree
- Department of Pharmacology, Boston University, Boston, Massachusetts
| | - Katelyn Smith
- Department of Pharmacology, Boston University, Boston, Massachusetts
| | - Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Institute of Pharmacology, Catholic University of Rome, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - William Pierce
- Department of Pharmacology, University of Louisville, Louisville, Kentucky
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, Kentucky
| | - Cesare Mancuso
- Institute of Pharmacology, Catholic University of Rome, Rome, Italy
| | | | | | | | - Benjamin Wolozin
- Department of Pharmacology, Boston University, Boston, Massachusetts
- Edith Nourse Rogers Memorial Veterans Affairs Medical Center, Bedford, Massachusetts
| | | |
Collapse
|
213
|
Cheon SM, Chan L, Chan DKY, Kim JW. Genetics of Parkinson's disease - a clinical perspective. J Mov Disord 2012; 5:33-41. [PMID: 24868412 PMCID: PMC4027661 DOI: 10.14802/jmd.12009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 12/13/2022] Open
Abstract
Discovering genes following Medelian inheritance, such as autosomal dominant-synuclein and leucine-rich repeat kinase 2 gene, or autosomal recessive Parkin, P-TEN-induced putative kinase 1 gene and Daisuke-Junko 1 gene, has provided great insights into the pathogenesis of Parkinson's disease (PD). Genes found to be associated with PD through investigating genetic polymorphisms or via the whole genome association studies suggest that such genes could also contribute to an increased risk of PD in the general population. Some environmental factors have been found to be associated with genetic factors in at-risk patients, further implicating the role of gene-environment interactions in sporadic PD. There may be confusion for clinicians facing rapid progresses of genetic understanding in PD. After a brief review of PD genetics, we will discuss the insight of new genetic discoveries to clinicians, the implications of ethnic differences in PD genetics and the role of genetic testing for general clinicians managing PD patients.
Collapse
Affiliation(s)
- Sang-Myung Cheon
- Department of Neurology, Dong-A University School of Medicine, Busan, Korea
| | - Lilian Chan
- Department of Aged Care and Rehabilitation, University of New South Wales, Bankstown Hospital, Bankstown, NSW, Australia
| | - Daniel Kam Yin Chan
- Department of Aged Care and Rehabilitation, University of New South Wales, Bankstown Hospital, Bankstown, NSW, Australia
| | - Jae Woo Kim
- Department of Neurology, Dong-A University School of Medicine, Busan, Korea
| |
Collapse
|
214
|
Belluzzi E, Greggio E, Piccoli G. Presynaptic dysfunction in Parkinson's disease: a focus on LRRK2. Biochem Soc Trans 2012; 40:1111-1116. [PMID: 22988874 DOI: 10.1042/bst20120124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PD (Parkinson's disease) is a common neurodegenerative disease clinically characterized by bradykinesia, rigidity and resting tremor. Recent studies have proposed that synaptic dysfunction, implicated in numerous studies of animal models of PD, might be a key factor in PD. The molecular defects that lead to PD progression might be hidden at the presynaptic neuron: in fact accumulating evidence has shown that the majority of the genes linked to PD play a critical role at the presynaptic site. In the present paper, we focus on the presynaptic function of LRRK2 (leucine-rich repeat kinase 2), a protein that mutated represents the main genetic cause of familial PD described to date. Neurotransmission relies on proper presynaptic vesicle trafficking; defects in this process, variation in dopamine flow and alteration of presynaptic plasticity have been reported in several animal models of LRRK2 mutations. Furthermore, impaired dopamine turnover has been described in presymptomatic LRRK2 PD patients. Thus, given the pathological events occurring at the synapses of PD patients, the presynaptic site may represent a promising target for early diagnostic therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Belluzzi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padua, Italy
| | | | | |
Collapse
|
215
|
Sekigawa A, Fujita M, Sekiyama K, Takamatsu Y, Hatano T, Rockenstein E, La Spada AR, Masliah E, Hashimoto M. Distinct mechanisms of axonal globule formation in mice expressing human wild type α-synuclein or dementia with Lewy bodies-linked P123H β-synuclein. Mol Brain 2012; 5:34. [PMID: 23013868 PMCID: PMC3546907 DOI: 10.1186/1756-6606-5-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/21/2012] [Indexed: 11/24/2022] Open
Abstract
Background Axonopathy is critical in the early pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Axonal swellings such as globules and spheroids are a distinct feature of axonopathy and our recent study showed that transgenic (tg) mice expressing DLB-linked P123H β-synuclein (P123H βS) were characterized by P123H βS-immunoreactive axonal swellings (P123H βS-globules). Therefore, the objectives of this study were to evaluate α-synuclein (αS)-immunoreactive axonal swellings (αS-globules) in the brains of tg mice expressing human wild-type αS and to compare them with the globules in P123H βS tg mice. Results In αS tg mice, αS-globules were formed in an age-dependent manner in various brain regions, including the thalamus and basal ganglia. These globules were composed of autophagosome-like membranous structures and were reminiscent of P123H βS-globules in P123H βS tg mice. In the αS-globules, frequent clustering and deformation of mitochondria were observed. These changes were associated with oxidative stress, based on staining of nitrated αS and 4-hydroxy-2-nonenal (4-HNE). In accord with the absence of mitochondria in the P123H βS-globules, staining of nitrated αS and 4-HNE in these globules was weaker than that for αS-globules. Leucine-rich repeat kinase 2 (LRRK2), the PARK8 of familial PD, was detected exclusively in αS-globules, suggesting a specific role of this molecule in these globules. Conclusions Lysosomal pathology was similarly observed for both αS- and P123H βS-globules, while oxidative stress was associated with the αS-globules, and to a lesser extent with the P123H βS-globules. Other pathologies, such as mitochondrial alteration and LRRK2 accumulation, were exclusively detected for αS-globules. Collectively, both αS- and P123H βS-globules were formed through similar but distinct pathogenic mechanisms. Our findings suggest that synuclein family members might contribute to diverse axonal pathologies.
Collapse
Affiliation(s)
- Akio Sekigawa
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
LRRK2 (leucine-rich repeat kinase 2) is an enzyme implicated in human disease, containing kinase and GTPase functions within the same multidomain open reading frame. Dominant mutations in the LRRK2 gene are the most common cause of familial PD (Parkinson's disease). Additionally, in genome-wide association studies, the LRRK2 locus has been linked to risk of PD, Crohn's disease and leprosy, and LRRK2 has also been linked with cancer. Despite its association with human disease, very little is known about its pathophysiology. Recent reports suggest a functional association between LRRK2 and autophagy. Implications of this set of data for our understanding of LRRK2′s role in physiology and disease are discussed in the present paper.
Collapse
|
217
|
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) (also known as PARK8 or dardarin) are responsible for the autosomal-dominant form of PD (Parkinson's disease). LRRK2 mutations were found in approximately 3–5% of familial and 1–3% of sporadic PD cases with the highest prevalence (up to 40%) in North Africans and Ashkenazi Jews. To date, mutations in LRRK2 are a major genetic risk factor for familial and sporadic PD. Despite the fact that 8 years have passed from the establishment of the first link between PD and dardarin in 2004, the pathophysiological role of LRRK2 in PD onset and progression is far from clearly defined. Also the generation of different LRRK2 transgenic or knockout animals has not provided new hints on the function of LRRK2 in the brain. The present paper reviews recent evidence regarding a potential role of LRRK2 in the regulation of membrane trafficking from vesicle generation to the movement along cytoskeleton and finally to vesicle fusion with cell membrane.
Collapse
|
218
|
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of familial Parkinson's disease (PD), whereas common variation at the LRRK2 locus is associated with an increased risk of idiopathic PD. Considerable progress has been made toward understanding the biological functions of LRRK2 and the molecular mechanisms underlying the pathogenic effects of disease-associated mutations. The development of neuronal culture models and transgenic or viral-based rodent models have proved useful for identifying a number of emerging pathways implicated in LRRK2-dependent neuronal damage, including the microtubule network, actin cytoskeleton, autophagy, mitochondria, vesicular trafficking, and protein quality control. However, many important questions remain to be posed and answered. Elucidating the molecular mechanisms and pathways underlying LRRK2-mediated neurodegeneration is critical for the identification of new molecular targets for therapeutic intervention in PD. In this review we discuss recent advances and unanswered questions in understanding the pathophysiology of LRRK2.
Collapse
|
219
|
Parkinson's disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies. PARKINSONS DISEASE 2012; 2012:151039. [PMID: 22970411 PMCID: PMC3437299 DOI: 10.1155/2012/151039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022]
Abstract
Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.
Collapse
|
220
|
Berwick DC, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 2012; 21:4966-79. [PMID: 22899650 PMCID: PMC3709196 DOI: 10.1093/hmg/dds342] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a frequent cause of Parkinson's disease (PD). Nonetheless, the physiological role of LRRK2 remains unclear. Here, we demonstrate that LRRK2 participates in canonical Wnt signaling as a scaffold. LRRK2 interacts with key Wnt signaling proteins of the β-catenin destruction complex and dishevelled proteins in vivo and is recruited to membranes following Wnt stimulation, where it binds to the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) in cellular models. LRRK2, therefore, bridges membrane and cytosolic components of Wnt signaling. Changes in LRRK2 expression affects pathway activity, while pathogenic LRRK2 mutants reduce both signal strength and the LRRK2–LRP6 interaction. Thus, decreased LRRK2-mediated Wnt signaling caused by reduced binding to LRP6 may underlie the neurodegeneration observed in PD. Finally, a newly developed LRRK2 kinase inhibitor disrupted Wnt signaling to a similar extent as pathogenic LRRK2 mutations. The use of LRRK2 kinase inhibition to treat PD may therefore need reconsideration.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, UK
| | | |
Collapse
|
221
|
Mandemakers W, Snellinx A, O'Neill MJ, de Strooper B. LRRK2 expression is enriched in the striosomal compartment of mouse striatum. Neurobiol Dis 2012; 48:582-93. [PMID: 22850484 DOI: 10.1016/j.nbd.2012.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 01/24/2023] Open
Abstract
In spite of a clear genetic link between Parkinson's disease (PD) and mutations in LRRK2, cellular localization and physiological function of LRRK2 remain debated. Here we demonstrate the immunohistochemical localization of LRRK2 in adult mouse and early postnatal mouse brain development. Antibody specificity is verified by absence of specific staining in LRRK2 knockout mouse brain. Although LRRK2 is expressed in various mouse brain regions (i.e. cortex, thalamus, hippocampus, cerebellum), strongest expression is detected in striatum, whereas LRRK2 protein expression in substantia nigra pars compacta in contrast is low. LRRK2 is highly expressed in striatal medium spiny neurons (MSN) and few cholinergic interneurons. LRRK2 expression is undetectable in other interneurons, oligodendrocytes or astrocytes of the striatum. Interestingly, LRRK2 expression is associated with striosome specific markers (i.e. MOR1, RASGRP1). Analysis of LRRK2 expression during early postnatal development and in LRRK2 knockout mice, demonstrates that LRRK2 is not required for generation or maintenance of the striosome compartment. Comparing LRRK2-WT, LRRK2-R1441G transgenic and non-transgenic mice, changes of LRRK2 expression in striosome/matrix compartments can be detected. The findings rule out a specific requirement of LRRK2 in striosome genesis but suggest a functional role for LRRK2 in striosomes.
Collapse
|
222
|
Papkovskaia TD, Chau KY, Inesta-Vaquera F, Papkovsky DB, Healy DG, Nishio K, Staddon J, Duchen MR, Hardy J, Schapira AHV, Cooper JM. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet 2012; 21:4201-13. [PMID: 22736029 PMCID: PMC3441120 DOI: 10.1093/hmg/dds244] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD.
Collapse
Affiliation(s)
- Tatiana D Papkovskaia
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Herzig MC, Bidinosti M, Schweizer T, Hafner T, Stemmelen C, Weiss A, Danner S, Vidotto N, Stauffer D, Barske C, Mayer F, Schmid P, Rovelli G, van der Putten PH, Shimshek DR. High LRRK2 levels fail to induce or exacerbate neuronal alpha-synucleinopathy in mouse brain. PLoS One 2012; 7:e36581. [PMID: 22615783 PMCID: PMC3352901 DOI: 10.1371/journal.pone.0036581] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/10/2012] [Indexed: 12/30/2022] Open
Abstract
The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson’s disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy.
Collapse
Affiliation(s)
- Martin C. Herzig
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Michael Bidinosti
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tatjana Schweizer
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Hafner
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christine Stemmelen
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Weiss
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Simone Danner
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nella Vidotto
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Daniela Stauffer
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carmen Barske
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Franziska Mayer
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Peter Schmid
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Giorgio Rovelli
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - P. Herman van der Putten
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Derya R. Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
- * E-mail:
| |
Collapse
|
224
|
ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J Neurosci 2012; 32:3877-86. [PMID: 22423108 DOI: 10.1523/jneurosci.4566-11.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both sporadic and autosomal dominant forms of Parkinson's disease (PD) have been causally linked to mutations in leucine-rich repeat kinase 2 (LRRK2), a large protein with multiple domains. The kinase domain plays an important role in LRRK2-mediated toxicity. Although a number of investigations have focused on LRRK2 kinase activity, less is known about the GTPase function of LRRK2. The activity of GTPases is regulated by GTPase activating proteins (GAPs) and GTP exchange factors. Here, we identify ArfGAP1 as the first GAP for LRRK2. ArfGAP1 binds LRRK2 predominantly via the WD40 and kinase domain of LRRK2, and it increases LRRK2 GTPase activity and regulates LRRK2 toxicity both in vitro and in vivo in Drosophila melanogaster. Unexpectedly, ArfGAP1 is an LRRK2 kinase substrate whose GAP activity is inhibited by LRRK2, whereas wild-type and G2019S LRRK2 autophosphorylation and kinase activity are significantly reduced in the presence of ArfGAP1. Overexpressed ArfGAP1 exhibits toxicity that is reduced by LRRK2 both in vitro and in vivo. Δ64-ArfGAP1, a dominant-negative ArfGAP1, and shRNA knockdown of ArfGAP1 reduce LRRK2 toxicity. Thus, LRRK2 and ArfGAP1 reciprocally regulate the activity of each other. Our results provide insight into the basic pathobiology of LRRK2 and indicate an important role for the GTPase domain and ArfGAP1 in LRRK2-mediated toxicity. These data suggest that agents targeted toward regulation of LRRK2 GTP hydrolysis might be therapeutic agents for the treatment of PD.
Collapse
|
225
|
Maekawa T, Mori S, Sasaki Y, Miyajima T, Azuma S, Ohta E, Obata F. The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities. Mol Neurodegener 2012; 7:15. [PMID: 22534020 PMCID: PMC3467184 DOI: 10.1186/1750-1326-7-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/16/2012] [Indexed: 11/24/2022] Open
Abstract
Background Leucine-rich repeat kinase 2 (LRRK2) is the gene responsible for autosomal-dominant Parkinson’s disease (PD), PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown. In the present study, we investigated for the first time a transgenic (TG) mouse strain expressing human LRRK2 with an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family. Results The TG mouse expressed I2020T LRRK2 in dopaminergic (DA) neurons of the substantia nigra, ventral tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired locomotive ability in comparison with their non-transgenic (NTG) littermates. Although there was no obvious loss of DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased outgrowth in comparison with those derived from the NTG controls. Conclusions The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by the LRRK2 mutation.
Collapse
Affiliation(s)
- Tatsunori Maekawa
- Division of Clinical Immunology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | | | | | | | | | | | | |
Collapse
|
226
|
Kim B, Yang MS, Choi D, Kim JH, Kim HS, Seol W, Choi S, Jou I, Kim EY, Joe EH. Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One 2012; 7:e34693. [PMID: 22496842 PMCID: PMC3322140 DOI: 10.1371/journal.pone.0034693] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 03/05/2012] [Indexed: 12/18/2022] Open
Abstract
LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1β and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-κB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-κB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-κB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-κB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation.
Collapse
Affiliation(s)
- Beomsue Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Myung-Soon Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Dongjoo Choi
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Jong-Hyeon Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Hye-Sun Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Wonkwang University, Sanbon Hospital, Gunpo, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Young Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Eun-hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
- * E-mail:
| |
Collapse
|
227
|
Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:450-60. [DOI: 10.1016/j.bbapap.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/10/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023]
|
228
|
Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, Moore DJ. GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet 2012; 8:e1002526. [PMID: 22363216 PMCID: PMC3280333 DOI: 10.1371/journal.pgen.1002526] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/11/2011] [Indexed: 11/18/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD–associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD–associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD. Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current therapies for treating PD are symptomatic and rely on restoring dopamine signaling. There is presently no cure for PD. PD is typically a sporadic disease, although 5%–10% of cases are known to have a familial origin. Mutations in at least seven genes are known to cause familial forms of PD, with mutations in the leucine-rich repeat kinase 2 (LRRK2) gene at the PARK8 locus representing the most common cause of familial and sporadic PD. The LRRK2 gene encodes a multi-domain protein with two enzymatic activities, GTPase and kinase, and familial mutations are known to variably influence these activities. Familial mutations in LRRK2 promote toxicity in cultured neurons, which is dependent on both GTPase and kinase activity. The factors regulating the GTPase activity of LRRK2 are poorly understood. Here, we identify the ArfGAP1 protein as a novel regulator of LRRK2 GTPase and kinase activity as well as neuronal toxicity induced by LRRK2. ArfGAP1 also serves as a novel substrate for phosphorylation mediated by LRRK2 kinase activity. ArfGAP1 may therefore represent a promising molecular target for interfering with neurodegeneration due to LRRK2 mutations in familial and sporadic forms of PD.
Collapse
Affiliation(s)
- Klodjan Stafa
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alzbeta Trancikova
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philip J. Webber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Liliane Glauser
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrew B. West
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Darren J. Moore
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
229
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is linked to various diseases, including Parkinson's disease, cancer, and leprosy. Data from LRRK2 knockout mice has highlighted a possible role for LRRK2 in regulating signaling pathways that are linked to the pathogenesis of Crohn's disease. Here, we examine how LRRK2's role as a signaling hub in the cell could lead to diverse pathologies.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
230
|
Synaptic Dysfunction in Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:553-72. [DOI: 10.1007/978-3-7091-0932-8_24] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
231
|
Synaptic Protein Alterations in Parkinson’s Disease. Mol Neurobiol 2011; 45:126-43. [DOI: 10.1007/s12035-011-8226-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
|
232
|
Rice ME, Patel JC, Cragg SJ. Dopamine release in the basal ganglia. Neuroscience 2011; 198:112-37. [PMID: 21939738 PMCID: PMC3357127 DOI: 10.1016/j.neuroscience.2011.08.066] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action potential- and Ca²⁺-dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release by an incompletely understood, but apparently exocytotic, mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson's disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA, and acetylcholine (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors.
Collapse
Affiliation(s)
- M E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
233
|
Esposito G, Ana Clara F, Verstreken P. Synaptic vesicle trafficking and Parkinson's disease. Dev Neurobiol 2011; 72:134-44. [DOI: 10.1002/dneu.20916] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
234
|
Dodson MW, Zhang T, Jiang C, Chen S, Guo M. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet 2011; 21:1350-63. [PMID: 22171073 DOI: 10.1093/hmg/ddr573] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
LRRK2 (PARK8) is the most common genetic determinant of Parkinson's disease (PD), with dominant mutations in LRRK2 causing inherited PD and sequence variation at the LRRK2 locus associated with increased risk for sporadic PD. Although LRRK2 has been implicated in diverse cellular processes encompassing almost all cellular compartments, the precise functions of LRRK2 remain unclear. Here, we show that the Drosophila homolog of LRRK2 (Lrrk) localizes to the membranes of late endosomes and lysosomes, physically interacts with the crucial mediator of late endosomal transport Rab7 and negatively regulates rab7-dependent perinuclear localization of lysosomes. We also show that a mutant form of lrrk analogous to the pathogenic LRRK2(G2019S) allele behaves oppositely to wild-type lrrk in that it promotes rather than inhibits rab7-dependent perinuclear lysosome clustering, with these effects of mutant lrrk on lysosome position requiring both microtubules and dynein. These data suggest that LRRK2 normally functions in Rab7-dependent lysosomal positioning, and that this function is disrupted by the most common PD-causing LRRK2 mutation, linking endolysosomal dysfunction to the pathogenesis of LRRK2-mediated PD.
Collapse
Affiliation(s)
- Mark W Dodson
- Department of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
235
|
Nikonova EV, Xiong Y, Tanis KQ, Dawson VL, Vogel RL, Finney EM, Stone DJ, Reynolds IJ, Kern JT, Dawson TM. Transcriptional responses to loss or gain of function of the leucine-rich repeat kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity. Hum Mol Genet 2011; 21:163-74. [PMID: 21972245 DOI: 10.1093/hmg/ddr451] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD) and cause both autosomal dominant familial and sporadic PD. Currently, the physiological and pathogenic activities of LRRK2 are poorly understood. To decipher the biological functions of LRRK2, including the genes and pathways modulated by LRRK2 kinase activity in vivo, we assayed genome-wide mRNA expression in the brain and peripheral tissues from LRRK2 knockout (KO) and kinase hyperactive G2019S (G2019S) transgenic mice. Subtle but significant differences in mRNA expression were observed relative to wild-type (WT) controls in the cortex, striatum and kidney of KO animals, but only in the striatum in the G2019S model. In contrast, robust, consistent and highly significant differences were identified by the direct comparison of KO and G2019S profiles in the cortex, striatum, kidney and muscle, indicating opposite effects on mRNA expression by the two models relative to WT. Ribosomal and glycolytic biological functions were consistently and significantly up-regulated in LRRK2 G2019S compared with LRRK2 KO tissues. Genes involved in membrane-bound organelles, oxidative phosphorylation, mRNA processing and the endoplasmic reticulum were down-regulated in LRRK2 G2019S mice compared with KO. We confirmed the expression patterns of 35 LRRK2-regulated genes using quantitative reverse transcription polymerase chain reaction. These findings provide the first description of the transcriptional responses to genetically modified LRRK2 activity and provide preclinical target engagement and/or pharmacodynamic biomarker strategies for LRRK2 and may inform future therapeutic strategies for LRRK2-associated PD.
Collapse
Affiliation(s)
- Elena V Nikonova
- Exploratory and Translational Sciences, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, Stemmelen C, Troxler TJ, Schmid P, Danner S, Schnell CR, Mueller M, Kinzel B, Grevot A, Bolognani F, Stirn M, Kuhn RR, Kaupmann K, van der Putten PH, Rovelli G, Shimshek DR. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 2011; 20:4209-23. [PMID: 21828077 PMCID: PMC3188995 DOI: 10.1093/hmg/ddr348] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), but the underlying pathophysiological mechanisms and the normal function of this large multidomain protein remain speculative. To address the role of this protein in vivo, we generated three different LRRK2 mutant mouse lines. Mice completely lacking the LRRK2 protein (knock-out, KO) showed an early-onset (age 6 weeks) marked increase in number and size of secondary lysosomes in kidney proximal tubule cells and lamellar bodies in lung type II cells. Mice expressing a LRRK2 kinase-dead (KD) mutant from the endogenous locus displayed similar early-onset pathophysiological changes in kidney but not lung. KD mutants had dramatically reduced full-length LRRK2 protein levels in the kidney and this genetic effect was mimicked pharmacologically in wild-type mice treated with a LRRK2-selective kinase inhibitor. Knock-in (KI) mice expressing the G2019S PD-associated mutation that increases LRRK2 kinase activity showed none of the LRRK2 protein level and histopathological changes observed in KD and KO mice. The autophagy marker LC3 remained unchanged but kidney mTOR and TCS2 protein levels decreased in KD and increased in KO and KI mice. Unexpectedly, KO and KI mice suffered from diastolic hypertension opposed to normal blood pressure in KD mice. Our findings demonstrate a role for LRRK2 in kidney and lung physiology and further show that LRRK2 kinase function affects LRRK2 protein steady-state levels thereby altering putative scaffold/GTPase activity. These novel aspects of peripheral LRRK2 biology critically impact ongoing attempts to develop LRRK2 selective kinase inhibitors as therapeutics for PD.
Collapse
Affiliation(s)
- Martin C Herzig
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Dihanich S, Manzoni C. LRRK2: a problem lurking in vesicle trafficking? J Neurosci 2011; 31:9787-8. [PMID: 21734269 PMCID: PMC3145097 DOI: 10.1523/jneurosci.1976-11.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sybille Dihanich
- Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG, London, United Kingdom
| | - Claudia Manzoni
- Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG, London, United Kingdom
| |
Collapse
|
238
|
DJ-1 associates with synaptic membranes. Neurobiol Dis 2011; 43:651-62. [PMID: 21645620 DOI: 10.1016/j.nbd.2011.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/30/2011] [Accepted: 05/20/2011] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic neurons. Although many reports have suggested that genetic factors are implicated in the pathogenesis of PD, molecular mechanisms underlying selective dopaminergic neuronal degeneration remain unknown. DJ-1 is a causative gene for autosomal recessive form of PARK7-linked early-onset PD. A number of studies have demonstrated that exogenous DJ-1 localizes within mitochondria and the cytosol, and functions as a molecular chaperone, as a transcriptional regulator, and as a cell protective factor against oxidative stress. However, the precise subcellular localization and function of endogenous DJ-1 are not well known. The mechanisms by which mutations in DJ-1 contributes to neuronal degeneration also remain poorly understood. Here we show by immunocytochemistry that DJ-1 distributes to the cytosol and membranous structures in a punctate appearance in cultured cells and in primary neurons obtained from mouse brain. Interestingly, DJ-1 colocalizes with the Golgi apparatus proteins GM130 and the synaptic vesicle proteins such as synaptophysin and Rab3A. Förster resonance energy transfer analysis revealed that a small portion of DJ-1 interacts with synaptophysin in living cells. Although the wild-type DJ-1 protein directly associates with membranes without an intermediary protein, the pathogenic L166P mutation of DJ-1 exhibits less binding to synaptic vesicles. These results indicate that DJ-1 associates with membranous organelles including synaptic membranes to exhibit its normal function.
Collapse
|
239
|
Kicka S, Shen Z, Annesley SJ, Fisher PR, Lee S, Briggs S, Firtel RA. The LRRK2-related Roco kinase Roco2 is regulated by Rab1A and controls the actin cytoskeleton. Mol Biol Cell 2011; 22:2198-211. [PMID: 21551065 PMCID: PMC3128523 DOI: 10.1091/mbc.e10-12-0937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We identify a new pathway that is required for proper pseudopod formation. We show that Roco2, a leucine-rich repeat kinase 2 (LRRK2)-related Roco kinase, is activated in response to chemoattractant stimulation and helps mediate cell polarization and chemotaxis by regulating cortical F-actin polymerization and pseudopod extension in a pathway that requires Rab1A. We found that Roco2 binds the small GTPase Rab1A as well as the F-actin cross-linking protein filamin (actin-binding protein 120, abp120) in vivo. We show that active Rab1A (Rab1A-GTP) is required for and regulates Roco2 kinase activity in vivo and that filamin lies downstream from Roco2 and controls pseudopod extension during chemotaxis and random cell motility. Therefore our study uncovered a new signaling pathway that involves Rab1A and controls the actin cytoskeleton and pseudopod extension, and thereby, cell polarity and motility. These findings also may have implications in the regulation of other Roco kinases, including possibly LRRK2, in metazoans.
Collapse
Affiliation(s)
- Sebastian Kicka
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Yue Z, Lachenmayer ML. Genetic LRRK2 models of Parkinson's disease: Dissecting the pathogenic pathway and exploring clinical applications. Mov Disord 2011; 26:1386-97. [PMID: 21538530 DOI: 10.1002/mds.23737] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 01/28/2023] Open
Abstract
Dominantly inherited mutations in leucine-rich repeat kinase 2 are the most common cause of familial Parkinson's disease. Understanding leucine-rich repeat kinase 2 biology and pathophysiology is central to the elucidation of Parkinson's disease etiology and development of disease intervention. Recently, a number of genetic mouse models of leucine-rich repeat kinase 2 have been reported utilizing different genetic approaches. Some similarities in Parkinson's disease-related pathology emerge in these genetic models despite lack of substantial neuropathology and clinical syndromes of Parkinson's disease. The systematic characterization of these models has begun to shed light on leucine-rich repeat kinase 2 biology and pathophysiology and is expected to offer the identification and validation of drug targets. In this review, we summarize the progress of genetic leucine-rich repeat kinase 2 mouse models and discuss their utility in understanding much needed knowledge regarding early-stage (presymptomatic) disease progression, identifying drug targets, and exploring the potential to aid compound screening focused on inhibitors of kinase activity of leucine-rich repeat kinase 2.
Collapse
Affiliation(s)
- Zhenyu Yue
- Department of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.
| | | |
Collapse
|
241
|
Li T, Yang D, Sushchky S, Liu Z, Smith WW. Models for LRRK2-Linked Parkinsonism. PARKINSONS DISEASE 2011; 2011:942412. [PMID: 21603132 PMCID: PMC3096154 DOI: 10.4061/2011/942412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/14/2011] [Accepted: 02/08/2011] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. The pathogenesis of PD is not fully understood, but it appears to involve both genetic susceptibility and environmental factors. Treatment for PD that prevents neuronal death progression in the dopaminergic system and abnormal protein deposition in the brain is not yet available. Recently, mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified to cause autosomal-dominant late-onset PD and contribute to sporadic PD. Here, we review the recent models for LRRK2-linked Parkinsonism and their utility in studying LRRK2 neurobiology, pathogenesis, and potential therapeutics.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
242
|
Higashi S, Moore DJ, Minegishi M, Kasanuki K, Fujishiro H, Kabuta T, Togo T, Katsuse O, Uchikado H, Furukawa Y, Hino H, Kosaka K, Sato K, Arai H, Wada K, Iseki E. Localization of MAP1-LC3 in vulnerable neurons and Lewy bodies in brains of patients with dementia with Lewy bodies. J Neuropathol Exp Neurol 2011; 70:264-80. [PMID: 21412173 DOI: 10.1097/nen.0b013e318211c86a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is emerging evidence implicating a role for the autophagy-lysosome pathway in the pathogenesis of Lewy body disease. We investigated potential neuropathologic and biochemical alterations of autophagy-lysosome pathway-related proteins in the brains of patients with dementia with Lewy bodies (DLB), Alzheimer disease (AD), and control subjects using antibodies against Ras-related protein Rab-7B (Rab7B), lysosomal-associated membrane protein 2 (LAMP2), and microtubule-associated protein 1A/1B light chain 3 (LC3). In DLB, but not in control brains, there were large Rab7B-immunoreactive endosomal granules. LC3 immunoreactivity was increased in vulnerable areas of DLB brains relative to that in control brains; computerized cell counting analysis revealed that LC3 levels were greater in the entorhinal cortex and amygdala of DLB brains than in controls. Rab7B levels were increased, and LAMP2 levels were decreased in the entorhinal cortex of DLB brains. In contrast, only a decrease in LAMP2 levels versus controls was found in AD brains. LC3 widely colocalized with several types of Lewy pathology; LAMP2 localized to the periphery or outside of brainstem-type Lewy bodies; Rab7B did not colocalize with Lewy pathology. Immunoblot analysis demonstrated specific accumulation of the autophagosomal LC3-II isoform in detergent-insoluble fractions from DLB brains. These results support apotential role for the autophagy-lysosome pathway in the pathogenesis of DLB.
Collapse
Affiliation(s)
- Shinji Higashi
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Shinsuna, Koto-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 2011; 31:2225-37. [PMID: 21307259 DOI: 10.1523/jneurosci.3730-10.2011] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson's disease. Little is known about its involvement in the pathogenesis of Parkinson's disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons. Paired recording indicated that LRRK2 silencing affects evoked postsynaptic currents. Furthermore, LRRK2 silencing induces at the presynaptic site a redistribution of vesicles within the bouton, altered recycling dynamics, and increased vesicle kinetics. Accordingly, LRRK2 protein is present in the synaptosomal compartment of cortical neurons in which it interacts with several proteins involved in vesicular recycling. Our results suggest that LRRK2 modulates synaptic vesicle trafficking and distribution in neurons and in consequence participates in regulating the dynamics between vesicle pools inside the presynaptic bouton.
Collapse
|
244
|
Chan D, Citro A, Cordy JM, Shen GC, Wolozin B. Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2). J Biol Chem 2011; 286:16140-9. [PMID: 21454543 DOI: 10.1074/jbc.m111.234005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are currently the most common genetic cause of familial late-onset Parkinson disease, which is clinically indistinguishable from idiopathic disease. The most common pathological mutation in LRRK2, G2019S LRRK2, is known to cause neurite retraction. However, molecular mechanisms underlying regulation of neurite length by LRRK2 are unknown. Here, we demonstrate a novel interaction between LRRK2 and the Rho GTPase, Rac1, which plays a critical role in actin cytoskeleton remodeling necessary for the maintenance of neurite morphology. LRRK2 binds strongly to endogenous or expressed Rac1, while showing weak binding to Cdc42 and no binding to RhoA. Co-expression with LRRK2 increases Rac1 activity, as shown by increased binding to the p21-activated kinase, which modulates actin cytoskeletal dynamics. LRRK2 constructs carrying mutations that inactivate the kinase or GTPase activities do not activate Rac1. Interestingly, LRRK2 does not increase levels of membrane-bound Rac1 but dramatically changes the cellular localization of Rac1, causing polarization, which is augmented further when LRRK2 is co-expressed with constitutively active Rac1. Four different disease-related mutations in LRRK2 altered binding to Rac1, with the G2019S and R1441C LRRK2 mutations attenuating Rac1 binding and the Y1699C and I2020T LRRK2 mutations increasing binding. Co-expressing Rac1 in SH-SY5Y cells rescues the G2019S mutant phenotype of neurite retraction. We hypothesize that pathological mutations in LRRK2 attenuates activation of Rac1, causing disassembly of actin filaments, leading to neurite retraction. The interactions between LRRK2 and Rho GTPases provide a novel pathway through which LRRK2 might modulate cellular dynamics and contribute to the pathophysiology of Parkinson disease.
Collapse
Affiliation(s)
- Diane Chan
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118-2526, USA
| | | | | | | | | |
Collapse
|
245
|
LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci 2011; 30:16959-69. [PMID: 21159966 DOI: 10.1523/jneurosci.1807-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are linked to familial as well as sporadic forms of Parkinson's disease (PD), a neurodegenerative disease characterized by dysfunction and degeneration of dopaminergic and other types of neurons. The molecular and cellular mechanisms underlying LRRK2 action remain poorly defined. Here, we show that LRRK2 controls synaptic morphogenesis at the Drosophila neuromuscular junction. Loss of Drosophila LRRK2 results in synaptic overgrowth, whereas overexpression of Drosophila LRRK or human LRRK2 has opposite effects. Alteration of LRRK2 activity also affects neurotransmission. LRRK2 exerts its effects on synaptic morphology by interacting with distinct downstream effectors at the presynaptic and postsynaptic compartments. At the postsynapse, LRRK2 interacts with the previously characterized substrate 4E-BP, an inhibitor of protein synthesis. At the presynapse, LRRK2 phosphorylates and negatively regulates the microtubule (MT)-binding protein Futsch. These results implicate synaptic dysfunction caused by deregulated protein synthesis and aberrant MT dynamics in LRRK2 pathogenesis and offer a new paradigm for understanding and ultimately treating PD.
Collapse
|
246
|
Berwick DC, Harvey K. LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol 2011; 21:257-65. [PMID: 21306901 DOI: 10.1016/j.tcb.2011.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 11/16/2022]
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a major cause of Parkinson's disease. We contrast data suggesting that changes in LRRK2 activity cause alterations in mitogen-activated protein kinase, translational control, tumor necrosis factor α/Fas ligand and Wnt signaling pathways with the cell biological functions of LRRK2 such as vesicle trafficking. Despite scarce in vivo data on cell signaling, involvement in diverse cell biological functions suggests a role for LRRK2 as an upstream regulator in events leading to neurodegeneration. To stimulate discussion and give direction for future research, we further suggest that despite the importance of the catalytic activity for cytotoxicity, the main cellular function of LRRK2 is linked to assembly of signaling complexes.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | |
Collapse
|
247
|
Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson's disease? Mol Neurodegener 2011; 6:6. [PMID: 21244648 PMCID: PMC3035023 DOI: 10.1186/1750-1326-6-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
Although Parkinson's disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons. Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-synuclein (α-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with α-syn being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The fact that α-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not necessarily direct, exists between the two. What are the experimental data supporting a common molecular pathway for dominant PD genes? Do α-syn and LRRK2 target common molecules? Does LRRK2 act upstream of α-syn? In this review we will try to address these of questions based on the recent findings available in the literature.
Collapse
|
248
|
Daniëls V, Baekelandt V, Taymans JM. On the Road to Leucine-Rich Repeat Kinase 2 Signalling: Evidence from Cellular and in vivo Studies. Neurosignals 2011; 19:1-15. [DOI: 10.1159/000324488] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/14/2011] [Indexed: 12/13/2022] Open
|
249
|
Trancikova A, Ramonet D, Moore DJ. Genetic Mouse Models of Neurodegenerative Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:419-82. [DOI: 10.1016/b978-0-12-384878-9.00012-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
250
|
|