201
|
Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005; 69:51-78. [PMID: 15755953 PMCID: PMC1082795 DOI: 10.1128/mmbr.69.1.51-78.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products--those that could be made biosynthetically--remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these "evolved" pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed.
Collapse
Affiliation(s)
- Daisuke Umeno
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Alexander V. Tobias
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
202
|
Kogure K, Yamauchi I, Tokumura A, Kondou K, Tanaka N, Takaishi Y, Fukuzawa K. Novel antioxidants isolated from plants of the genera Ferula, Inula, Prangos and Rheum collected in Uzbekistan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2004; 11:645-51. [PMID: 15636179 DOI: 10.1016/j.phymed.2003.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We examined the effects of 48 compounds isolated from Ferula pallida, F. penninervis, Inula macrophylla, Prangos pabularia, P. tschimganica and Rheum maximowiczii collected in Uzbekistan on ADP/Fe2+-induced lipid peroxidation of egg yolk phosphatidylcholine liposomes. Of those compounds, 23 inhibited ADP/Fe2+-induced lipid peroxidation and nine showed especially strong inhibition of lipid peroxidation. Most compounds that inhibited peroxidation scavenged the 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical, indicating that the inhibition was due to radical scavenging. However, some compounds did not scavenge DPPH but inhibited lipid peroxidation significantly, suggesting that their inhibitory effect was not due to radical scavenging but to some other mechanism, such as prevention of Fe2+ function. Thus, we found various new antioxidants, some of which had a unique mechanism of action, in Ferula, Inula, Prangos and Rheum plants collected in Uzbekistan as seeds used in medicine.
Collapse
Affiliation(s)
- K Kogure
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, 770-8505 Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
203
|
Lai JP, Jiang Y, He XW, Huang JC, Chen F. Separation and determination of astaxanthin from microalgal and yeast samples by molecularly imprinted microspheres. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804:25-30. [PMID: 15093156 DOI: 10.1016/j.jchromb.2003.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, molecularly imprinted microspheres (MIMs) were synthesized by aqueous microsuspension polymerization using astaxanthin (3,3'-dihydroxy-beta,beta'-carotene-4,4'-dione) as imprinting molecule. The MIMs obtained were subsequently packed into the stainless steel column and the chromatographic characterization of the column was investigated. The effects of pH and composition of the mobile phase on the retention factor (k') were investigated in detail. The mixture of methanol and dichloromethane (DCM) (8:2, v/v) was used as mobile phase A while the mixture of methanol and water (5:5, v/v) as mobile phase B. The separation of astaxanthin and zeaxanthin (3,3'-dihydroxyl-beta-carotene) was obtained when the concentration of mobile phase B was higher than 30% (v/v) due to their strong lipophilicity. The method developed was successfully applied to separate astaxanthin in the saponified samples of the microalga Haematococcus pluvialis and the yeast Phaffia rhodozyma. The recovery of adding 40 mg astaxanthin to 1.0 g microalgal sample was 95.5% with an R.S.D. (n =5) of 5.3%. The results of determination of astaxanthin in the microalga and the yeast were 3.7% (R.S.D (n = 1.5%, n = 9) and 0.041% (R.S.D n= 7.3%, n = 9), respectively.
Collapse
Affiliation(s)
- Jia-Ping Lai
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
204
|
Gross GJ, Lockwood SF. Cardioprotection and myocardial salvage by a disodium disuccinate astaxanthin derivative (Cardax™). Life Sci 2004; 75:215-24. [PMID: 15120573 DOI: 10.1016/j.lfs.2003.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
Cardioprotection in humans by carotenoids has been inferred from observational and epidemiologic studies, however, direct studies of cardioprotection and myocardial salvage by carotenoids are lacking. In the current study, intravenous (I.V.) pre-treatment with a novel carotenoid derivative (disodium disuccinate astaxanthin; Cardax) was evaluated as a myocardial salvage agent in a Sprague-Dawley rat infarct model. Animals were dosed once per day I.V. by tail vein injection for 4 days at one of 3 doses (25, 50, and 75 mg/kg) prior to the infarct study carried out on day 5. The results were compared with control animals treated with saline vehicle. Thirty (30) minutes of occlusion of the left anterior descending (LAD) coronary artery was followed by 2 hours of reperfusion prior to sacrifice, a regimen which resulted in a mean infarct size (IS) as a percent (%) of the area at risk (AAR) of 59 +/- 3%. Area at risk was quantified by Patent blue dye injection, and infarct size (IS) was determined by triphenyltetrazolium chloride (TTC) staining. Cardax at 50 and 75 mg/kg for 4 days resulted in a significant mean reduction in IS/AAR to 35 +/- 3% (41% salvage) and 26 +/- 2% (56% salvage), respectively. Infarct size and myocardial salvage were significantly, and linearly, correlated with plasma levels of non-esterified, free astaxanthin at the end of reperfusion. These results suggest that parenteral Cardax may find utility in those clinical applications where pre-treatment of patients at risk for myocardial infarction is performed.
Collapse
Affiliation(s)
- Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
205
|
Takahashi K, Watanabe M, Takimoto T, Akiba Y. Uptake and distribution of astaxanthin in several tissues and plasma lipoproteins in male broiler chickens fed a yeast (Phaffia rhodozyma) with a high concentration of astaxanthin. Br Poult Sci 2004; 45:133-8. [PMID: 15115211 DOI: 10.1080/00071660410001668950a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The experiments were conducted to evaluate astaxanthin (Ax) uptake in several tissues and plasma lipoproteins of male broiler chickens fed on Phaffia rhodozyma containing a high concentration of Ax. 2. Male broiler chicks (5 weeks of age) fasted for 16h were given 0 or 45 mg Ax as Phaffia rhodozyma through the crop and blood was collected over the following 24 h. Ax appeared in the plasma at 2 h after administration into the crop. Most (more than 70%) of the Ax was contained in the high density lipoprotein (HDL) fraction in the plasma irrespective of blood sampling times and administration procedure of Ax. 3. Male broiler chicks (2 weeks of age) were fed on a diet containing 0, 50 or 100 mg/kg of yeast Ax for 2 weeks. Of the tissues examined, Ax concentration in the small intestine was highest, followed by subcutaneous fat, abdominal fat, spleen, liver, heart, kidney and skin. The lowest concentration was in the muscles. Ax concentration in the small intestine, subcutaneous fat, abdominal fat, liver and skin rose as dietary content increased, but this was not the case for the spleen, heart, kidney and muscles except for M. pecloralis superficialis. 4. Over 50% of Ax deposited in liver tissues was detected in the microsomal fraction and 15% was in the mitochondrial fraction. In muscles, both fractions of mitochondria and sarcoplasmic reticulum contained Ax.
Collapse
Affiliation(s)
- K Takahashi
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
206
|
Dreon MS, Schinella G, Heras H, Pollero RJ. Antioxidant defense system in the apple snail eggs, the role of ovorubin. Arch Biochem Biophys 2004; 422:1-8. [PMID: 14725852 DOI: 10.1016/j.abb.2003.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel role of ovorubin as a protection system against oxidative damage in eggs from Pomacea canaliculata was investigated. Carotenoid composition, and their antioxidant capacity, as well as the carotenoid-apoprotein interaction, were studied for this lipoglycocarotenoprotein. Carotenoid extracts from ovorubin were analysed by TLC and spectrophotometry. The major carotenoid was astaxanthin in its free (40%), monoester (24%), and diester (35%) forms, mainly esterified with 16:0 fatty acid. The antioxidant capacity of ovorubin carotenoids was studied by the inhibition of microsomal oxidation in a non-enzymatic system, showing strong protection against oxidative damage (IC50=3.9 nmol/mg protein). The carotenoid-apoprotein interaction was studied by spectrophotometry and electrophoresis using reconstituted ovorubin. Astaxanthin does not seem to affect the structural characteristics of ovorubin, however the carotenoid-protein association significantly protected astaxanthin against oxidation. Ovorubin therefore, besides its role in providing energy and structural precursors during embryogenesis, would be an antioxidant carrier, protecting at the same time this pigment from oxidation in the perivitellin fluid environment of the egg.
Collapse
Affiliation(s)
- Marcos S Dreon
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, La Plata, Argentina.
| | | | | | | |
Collapse
|
207
|
Naito Y, Uchiyama K, Aoi W, Hasegawa G, Nakamura N, Yoshida N, Maoka T, Takahashi J, Yoshikawa T. Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice. Biofactors 2004; 20:49-59. [PMID: 15096660 DOI: 10.1002/biof.5520200105] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Astaxanthin, which is found as a common pigment in algae, fish, and birds, is a carotenoid with significant potential for antioxidative activity. In this study, we examined whether chronic administration of astaxanthin could prevent the progression of diabetic nephropathy induced by oxidative stress in mice. We used female db/db mice, a rodent model of type 2 diabetes, and their non-diabetic db/m littermates. The mice were divided into three groups as follows: non-diabetic db/m, diabetic db/db, and diabetic db/db treated with astaxanthin. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were performed for 12 weeks from the beginning of treatment. After 12 weeks of treatment, the astaxanthin-treated group showed a lower level of blood glucose compared with the non-treated db/db group; however, both groups had a significantly high level compared with the db/m mice. The relative mesangial area calculated by the mesangial area/total glomerular area ratio was significantly ameliorated in the astaxanthin-treated group compared with the non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with astaxanthin. The 8-OHdG immunoreactive cells in glomeruli of non-treated db/db mice were more numerous than in the astaxanthin-treated db/db mice. In this study, treatment with astaxanthin ameliorated the progression and acceleration of diabetic nephropathy in the rodent model of type 2 diabetes. The results suggested that the antioxidative activity of astaxanthin reduced the oxidative stress on the kidneys and prevented renal cell damage. In conclusion, administration of astaxanthin might be a novel approach for the prevention of diabetes nephropathy.
Collapse
Affiliation(s)
- Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
PURPOSE OF REVIEW To review pharmaceutical and pharmacological issues relating to the benefits and risks associated with the use of naturally sourced nutraceuticals when administered singly or in combinations. RECENT FINDINGS The application of vegetable extracts or dietary supplementation with selenium or antioxidant vitamins results in positive benefits on immunity and other phenomena associated with chronic diseases, ageing and cancer. However, there appear to be no cardiovascular benefits from vitamin mixtures, which may in fact cause harm. Therefore, although recent publications have increased our understanding of the metabolic actions of nutraceuticals, learning to use them to the best advantage is going to require products with uniform and consistent quality. Unfortunately, a single purified substance will not always have the same antioxidant activity, nor provide the same clinical benefits as nutraceutical mixtures and combinations occurring in natural extracts. In order to perform first-class clinical studies to determine safety and efficacy, the stability, compatibility and other pharmaceutical variables inherent in many of these combination products will have to be better controlled. SUMMARY Nutraceuticals have potent biological actions. Their use is increasing dramatically, and there is growing evidence of clinical benefits. No medicinal products are completely safe so their risks need to be characterized and controlled. Imposing pharmaceutical levels of control and regulation would increase costs and reduce patient access to new products, but the evidence is compelling that closer monitoring of raw materials, processing and formulation will be required to maximize the benefits and minimize the risks.
Collapse
Affiliation(s)
- Gil Hardy
- Pharmaceutical Nutrition Research Group, Witney, Oxford, UK
| | | | | |
Collapse
|
209
|
Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep 2003; 7:290-3. [PMID: 12688512 DOI: 10.1179/135100002125000811] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress induced by hyperglycemia possibly causes the dysfunction of pancreatic beta-cells and various forms of tissue damage in patients with diabetes mellitus. Astaxanthin, a carotenoid of marine microalgae, is reported as a strong anti-oxidant inhibiting lipid peroxidation and scavenging reactive oxygen species. The aim of the present study was to examine whether astaxanthin can elicit beneficial effects on the progressive destruction of pancreatic beta-cells in db/db mice--a well-known obese model of type 2 diabetes. We used diabetic C57BL/KsJ-db/db mice and db/m for the control. Astaxanthin treatment was started at 6 weeks of age and its effects were evaluated at 10, 14, and 18 weeks of age by non-fasting blood glucose levels, intraperitoneal glucose tolerance test including insulin secretion, and beta-cell histology. The non-fasting blood glucose level in db/db mice was significantly higher than that of db/m mice, and the higher level of blood glucose in db/db mice was significantly decreased after treatment with astaxanthin. The ability of islet cells to secrete insulin, as determined by the intraperitoneal glucose tolerance test, was preserved in the astaxanthin-treated group. Histology of the pancreas revealed no significant differences in the beta-cell mass between astaxanthin-treated and -untreated db/db mice. In conclusion, these results indicate that astaxanthin can exert beneficial effects in diabetes, with preservation of beta-cell function. This finding suggests that anti-oxidants may be potentially useful for reducing glucose toxicity.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- First Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
210
|
Cardounel AJ, Dumitrescu C, Zweier JL, Lockwood SF. Direct superoxide anion scavenging by a disodium disuccinate astaxanthin derivative: Relative efficacy of individual stereoisomers versus the statistical mixture of stereoisomers by electron paramagnetic resonance imaging. Biochem Biophys Res Commun 2003; 307:704-12. [PMID: 12893281 DOI: 10.1016/s0006-291x(03)01248-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carotenoids are a related group of greater than 600 natural compounds, irrespective of geometric- and stereoisomers, with demonstrated antioxidant efficacy. The carotenoids are broadly divided into "carotenes," or non-oxygen substituted hydrocarbon carotenoids, and "xanthophylls," oxygen-substituted carotenoids. The natural compounds are excellent singlet oxygen quenchers as well as lipid peroxidation chain-breakers; this dual antioxidant capacity is generally attributed to the activity of the polyene chain, and increases with the number of conjugated double bonds along the polyene chain length. However, the poor aqueous solubility of most carotenes and the vast majority of xanthophylls limits their use as aqueous-phase singlet oxygen quenchers and direct radical scavengers. A variety of introduction vehicles (e.g., organic solvents, cyclodextrins) have been used to introduce the insoluble carotenoids into aqueous test systems. Hawaii Biotech, Inc. (HBI) successfully synthesized a novel carotenoid derivative, the disodium disuccinate derivative of astaxanthin (3,3(')-dihydroxy-beta,beta-carotene-4,4(')-dione) in all-trans (all-E) form. The novel derivative is a water-dispersible symmetric chiral molecule with two chiral centers, yielding four stereoisomeric forms: 3R,3(')R and 3S,3(')S (enantiomers), and the diastereomeric meso forms (3R,3(')S and 3(')R,3S). The individual stereoisomers were synthesized at high purity (>90% by HPLC) and compared directly for efficacy with the statistical mixture of stereoisomers obtained from the synthesis from the commercial source of astaxanthin (1:2:1 ratio of 3S,3(')S, meso, and 3R,3(')R, respectively). Direct scavenging of superoxide anion was evaluated in a standard in vitro isolated human neutrophil assay by electron paramagnetic resonance (EPR) imaging, employing the spin-trap DEPMPO. Each novel derivative was tested in pure aqueous formulation and in ethanolic formulation shown to completely disaggregate the compounds in solution. In each case, the ethanolic formulation was a more potent scavenging vehicle. No significant differences in scavenging efficiency were noted among the individual stereoisomers and the statistical mixture of stereoisomers, suggesting that the polyene chain alone was responsible for superoxide scavenging. Dose-ranging revealed that the statistical mixture of stereoisomers of the novel derivative, at millimolar (mM) concentrations, could nearly completely eliminate the superoxide anion signal generated in the activated human neutrophil assay. All ethanolic formulations of the novel derivatives exhibited increased scavenging efficiency over equimolar concentrations of non-esterified astaxanthin delivered in a dimethyl sulfoxide (DMSO) vehicle. These novel compounds will likely find utility in applications requiring aqueous delivery of a highly potent direct radical scavenger.
Collapse
Affiliation(s)
- Arturo J Cardounel
- Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210-1252, USA
| | | | | | | |
Collapse
|
211
|
Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 2003; 21:210-6. [PMID: 12727382 DOI: 10.1016/s0167-7799(03)00078-7] [Citation(s) in RCA: 780] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The carotenoid pigment astaxanthin has important applications in the nutraceutical, cosmetics, food and feed industries. Haematococcus pluvialis is the richest source of natural astaxanthin and is now cultivated at industrial scale. Astaxanthin is a strong coloring agent and a potent antioxidant - its strong antioxidant activity points to its potential to target several health conditions. This article covers the antioxidant, UV-light protection, anti-inflammatory and other properties of astaxanthin and its possible role in many human health problems. The research reviewed supports the assumption that protecting body tissues from oxidative damage with daily ingestion of natural astaxanthin might be a practical and beneficial strategy in health management.
Collapse
Affiliation(s)
- Martin Guerin
- Mera Pharmaceuticals Inc., 73-4460 Queen Kaahumanu Hwy, Suite 110, Kailua-Kona, Hawaii 96740, USA
| | | | | |
Collapse
|
212
|
Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M, Yoshikawa T. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal 2003; 5:139-44. [PMID: 12626126 DOI: 10.1089/152308603321223630] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dietary antioxidants may attenuate oxidative damage from strenuous exercise in various tissues. Beneficial effects of the antioxidant astaxanthin have been demonstrated in vitro, but not yet in vivo. We investigated the effect of dietary supplementation with astaxanthin on oxidative damage induced by strenuous exercise in mouse gastrocnemius and heart. C57BL/6 mice (7 weeks old) were divided into groups: rested control, intense exercise, and exercise with astaxanthin supplementation. After 3 weeks of exercise acclimation, both exercise groups ran on a treadmill at 28 m/min until exhaustion. Exercise-increased 4-hydroxy-2-nonenal-modified protein and 8-hydroxy-2'-deoxyguanosine in gastrocnemius and heart were blunted in the astaxanthin group. Increases in plasma creatine kinase activity, and in myeloperoxidase activity in gastrocnemius and heart, also were lessened by astaxanthin. Astaxanthin showed accumulation in gastrocnemius and heart from the 3 week supplementation. Astaxanthin can attenuate exercise-induced damage in mouse skeletal muscle and heart, including an associated neutrophil infiltration that induces further damage.
Collapse
Affiliation(s)
- Wataru Aoi
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
Recently, concerns have been raised about the presumptive increased risk of serious undesirable side effects in children born after IVF and intracytoplasmic sperm injection (ICSI). These treatments must, therefore, be reserved as the ultimate option after evidence-based and cause-directed treatment of the male patient with deficient semen has been exhausted. The present authors found that sperm quality and function improved with the intake of complementary food supplementation using a combination of zinc and folic acid, or the antioxidant astaxanthin (Astacarox), or an energy-providing combination containing (actyl)-carnitine (Proxeed). Also, double blind trials showed that the latter two substances increase spontaneous or intrauterine insemination- (IUI-) assisted conception rates. Extracts of Pinus maritima bark (Pycnogenol), which inhibits the cyclo-oxygenase enzyme, reducing prostaglandin production and inflammatory reaction, and extracts of the Peruvian plant Lepidium meyenii were shown to improve sperm morphology and concentration, respectively, in uncontrolled trials. Linseed (flaxseed) oil contains alfa-linolenic acid and lignans. The former corrects the deficient intake of omega-3 essential fatty acids, which is correlated with impaired sperm motility among subfertile men. Lignans are precursors of enterolacton, which inhibits aromatase and reduces the ratio of 16-OH over 2-OH oestrogen metabolites. The resulting reduction in oestrogen load may favourably influence Sertoli cell function.
Collapse
Affiliation(s)
- Frank H Comhaire
- Centre for Medical and Urological Andrology, Ghent University Hospital, De Pintelaan, 185, B 9000 Gent, Belgium.
| | | |
Collapse
|
214
|
Gilaberte Y, Coscojuela C, Sáenz de Santamaría MC, González S. Fotoprotección. ACTAS DERMO-SIFILIOGRAFICAS 2003. [DOI: 10.1016/s0001-7310(03)76688-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
215
|
RANEVA VG, SHIMASAKI H, UETA N, TAKAHASHI J. Interaction between .ALPHA.-Tocopherol, Tocotrienols and Astaxanthin in Liposomes, Subjected to Lipid Peroxidation. J Oleo Sci 2003. [DOI: 10.5650/jos.52.347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
216
|
Lyons NM, O'Brien NM. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J Dermatol Sci 2002; 30:73-84. [PMID: 12354422 DOI: 10.1016/s0923-1811(02)00063-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UV radiation from sunlight is the most potent environmental risk factor in skin cancer pathogenesis. In the present study the ability of an algal extract to protect against UVA-induced DNA alterations was examined in human skin fibroblasts (1BR-3), human melanocytes (HEMAc) and human intestinal CaCo-2 cells. The protective effects of the proprietary algal extract, which contained a high level of the carotenoid astaxanthin, were compared with synthetic astaxanthin. DNA damage was assessed using the single cell gel electrophoresis or comet assay. In 1BR-3 cells, synthetic astaxanthin prevented UVA-induced DNA damage at all concentrations (10 nM, 100 nM, 10 microM) tested. In addition, the synthetic carotenoid also prevented DNA damage in both the HEMAc and CaCo-2 cells. The algal extract displayed protection against UVA-induced DNA damage when the equivalent of 10 microM astaxanthin was added to all three-cell types, however, at the lower concentrations (10 and 100 nM) no significant protection was evident. There was a 4.6-fold increase in astaxanthin content of CaCo-2 cells exposed to the synthetic compound and a 2.5-fold increase in cells exposed to algal extract. In 1BR-3 cells, exposure to UVA for 2 h resulted in a significant induction of cellular superoxide dismutase (SOD) activity, coupled with a marked decrease in cellular glutathione (GSH) content. However pre-incubation (18 h) with 10 microM of the either the synthetic astaxanthin or the algal extract prevented UVA-induced alterations in SOD activity and GSH content. Similarly, in CaCo-2 cells a significant depletion of GSH was observed following UVA-irradiation which was prevented by simultaneously incubating with 10 microM of either synthetic astaxanthin or the algal extract. SOD activity was unchanged following UVA exposure in the intestinal cell line. This work suggests a role for the algal extract as a potentially beneficial antioxidant.
Collapse
Affiliation(s)
- Nicole M Lyons
- Department of Food Science, Food Technology and Nutrition, University College Cork, Cork, Ireland.
| | | |
Collapse
|
217
|
Barros MP, Pinto E, Colepicolo P, Pedersén M. Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun 2001; 288:225-32. [PMID: 11594777 DOI: 10.1006/bbrc.2001.5765] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astaxanthin and peridinin, two typical carotenoids of marine microalgae, and lycopene were incorporated in phosphatidylcholine multilamellar liposomes and tested as inhibitors of lipid oxidation. Contrarily to peridinin results, astaxanthin strongly reduced lipid damage when the lipoperoxidation promoters-H(2)O(2), tert-butyl hydroperoxide (t-ButOOH) or ascorbate-and Fe(2+):EDTA were added simultaneously to the liposomes. In order to check if the antioxidant activity of carotenoids was also related to their effect on membrane permeability, the peroxidation processes were initiated by adding the promoters to Fe(2+)-loaded liposomes (encapsulated in the inner aqueous solution). Despite that the rigidifying effect of carotenoids in membranes was not directly measured here, peridinin probably has decreased membrane permeability to initiators (t-ButOOH > ascorbate > H(2)O(2)) since its incorporation limited oxidative damage on iron-liposomes. On the other hand, the antioxidant activity of astaxanthin in iron-containing vesicles might be derived from its known rigidifying effect and the inherent scavenging ability.
Collapse
Affiliation(s)
- M P Barros
- Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|