201
|
Wooderchak WL, Zang T, Zhou ZS, Acuña M, Tahara SM, Hevel JM. Substrate Profiling of PRMT1 Reveals Amino Acid Sequences That Extend Beyond the “RGG” Paradigm. Biochemistry 2008; 47:9456-66. [DOI: 10.1021/bi800984s] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Whitney L. Wooderchak
- Chemistry and Biochemistry Department, Utah State University,
0300 Old Main Hill, Logan, Utah 84322, The Barnett Institute of Chemical
and Biological Analysis and Department of Chemistry and Chemical Biology,
Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115-5000, Molecular Microbiology and Neurology, University of Southern
California School of Medicine, 2011 Zonal Avenue, Los Angeles, California
90033, and Affiliate of the Center for Integrated Biosystems, Utah
State University
| | - Tianzhu Zang
- Chemistry and Biochemistry Department, Utah State University,
0300 Old Main Hill, Logan, Utah 84322, The Barnett Institute of Chemical
and Biological Analysis and Department of Chemistry and Chemical Biology,
Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115-5000, Molecular Microbiology and Neurology, University of Southern
California School of Medicine, 2011 Zonal Avenue, Los Angeles, California
90033, and Affiliate of the Center for Integrated Biosystems, Utah
State University
| | - Zhaohui Sunny Zhou
- Chemistry and Biochemistry Department, Utah State University,
0300 Old Main Hill, Logan, Utah 84322, The Barnett Institute of Chemical
and Biological Analysis and Department of Chemistry and Chemical Biology,
Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115-5000, Molecular Microbiology and Neurology, University of Southern
California School of Medicine, 2011 Zonal Avenue, Los Angeles, California
90033, and Affiliate of the Center for Integrated Biosystems, Utah
State University
| | - Marcela Acuña
- Chemistry and Biochemistry Department, Utah State University,
0300 Old Main Hill, Logan, Utah 84322, The Barnett Institute of Chemical
and Biological Analysis and Department of Chemistry and Chemical Biology,
Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115-5000, Molecular Microbiology and Neurology, University of Southern
California School of Medicine, 2011 Zonal Avenue, Los Angeles, California
90033, and Affiliate of the Center for Integrated Biosystems, Utah
State University
| | - Stanley M. Tahara
- Chemistry and Biochemistry Department, Utah State University,
0300 Old Main Hill, Logan, Utah 84322, The Barnett Institute of Chemical
and Biological Analysis and Department of Chemistry and Chemical Biology,
Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115-5000, Molecular Microbiology and Neurology, University of Southern
California School of Medicine, 2011 Zonal Avenue, Los Angeles, California
90033, and Affiliate of the Center for Integrated Biosystems, Utah
State University
| | - Joan M. Hevel
- Chemistry and Biochemistry Department, Utah State University,
0300 Old Main Hill, Logan, Utah 84322, The Barnett Institute of Chemical
and Biological Analysis and Department of Chemistry and Chemical Biology,
Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115-5000, Molecular Microbiology and Neurology, University of Southern
California School of Medicine, 2011 Zonal Avenue, Los Angeles, California
90033, and Affiliate of the Center for Integrated Biosystems, Utah
State University
| |
Collapse
|
202
|
Zakutskiĭ AN, Chalisova NI, Subbotina TF. [Functional arginine-containing amino acid sequences in peptides and proteins]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:149-59. [PMID: 18522270 DOI: 10.1134/s1068162008020015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a source of nitrogen oxide and plays a great role in a number of other biochemical processes. Functions and prospects for practical application of five groups of arginine-containing amino acid sequences and synthetic polyarginine sequences are considered. The physiological characteristics of well-known arginine-containing peptides, such as RGD peptides, kyotorphin, and tuftsin, are described in detail. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru
Collapse
|
203
|
Ueda S, Yamagishi SI, Kaida Y, Okuda S. Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease. Nephrology (Carlton) 2008; 12:582-90. [PMID: 17995585 DOI: 10.1111/j.1440-1797.2007.00840.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decreased nitric oxide (NO) production and/or impaired NO bioavailability may occur in patients with chronic kidney disease (CKD), and could contribute to the elevation of blood pressure, cardiovascular disease (CVD) and the progression of renal injury in these patients. However, the underlying molecular mechanisms for reduced NO action in patients with CKD remains to be elucidated. Asymmetric dimethylarginine (ADMA) is a naturally occurring L-arginine analogue found in plasma and various types of tissues, acting as an endogenous NO synthase inhibitor in vivo. Further, plasma level of ADMA is elevated in patients with CKD and found to be a strong biomarker or predictor for future cardiovascular events. In addition, plasma level of ADMA could predict the progression of renal injury in these patients as well. These findings suggest that elevation of ADMA may be a missing link between CVD and CKD. In this review, we discuss the molecular mechanisms for the elevation of ADMA and its pathophysiological role for CVD in high-risk patients, especially focusing on patients with CKD.
Collapse
Affiliation(s)
- Seiji Ueda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | |
Collapse
|
204
|
Fronz K, Otto S, Kölbel K, Kühn U, Friedrich H, Schierhorn A, Beck-Sickinger AG, Ostareck-Lederer A, Wahle E. Promiscuous modification of the nuclear poly(A)-binding protein by multiple protein-arginine methyltransferases does not affect the aggregation behavior. J Biol Chem 2008; 283:20408-20. [PMID: 18495660 DOI: 10.1074/jbc.m802329200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian nuclear poly(A)-binding protein, PABPN1, carries 13 asymmetrically dimethylated arginine residues in its C-terminal domain. By fractionation of cell extracts, we found that protein-arginine methyltransferases (PRMTs)-1, -3, and -6 are responsible for the modification of PABPN1. Recombinant PRMT1, -3, and -6 also methylated PABPN1. Our data suggest that these enzymes act on their own, and additional polypeptides are not involved in recognizing PABPN1 as a substrate. PRMT1 is the predominant methyltransferase acting on PABPN1. Nevertheless, PABPN1 was almost fully methylated in a Prmt1(-/-) cell line; thus, PRMT3 and -6 suffice for methylation. In contrast to PABPN1, the heterogeneous nuclear ribonucleoprotein (hnRNP) K is selectively methylated only by PRMT1. Efficient methylation of synthetic peptides derived from PABPN1 or hnRNP K suggested that PRMT1, -3, and -6 recognize their substrates by interacting with local amino acid sequences and not with additional domains of the substrates. However, the use of fusion proteins suggested that the inability of PRMT3 and -6 to modify hnRNP K is because of structural masking of the methyl-accepting amino acid sequences by neighboring domains. Mutations leading to intracellular aggregation of PABPN1 cause the disease oculopharyngeal muscular dystrophy. The C-terminal domain containing the methylated arginine residues is known to promote PAPBN1 self-association, and arginine methylation has been reported to inhibit self-association of an orthologous protein. Thus, arginine methylation might be relevant for oculopharyngeal muscular dystrophy. However, in two different types of assays we have been unable to detect any effect of arginine methylation on the aggregation of bovine PABPN1.
Collapse
Affiliation(s)
- Katharina Fronz
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 2008; 22:640-53. [PMID: 18316480 DOI: 10.1101/gad.1632608] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RUNX1/AML1 is required for the development of definitive hematopoiesis, and its activity is altered by mutations, deletions, and chromosome translocations in human acute leukemia. RUNX1 function can be regulated by post-translational modifications and protein-protein interactions. We show that RUNX1 is arginine-methylated in vivo by the arginine methyltransferase PRMT1, and that PRMT1 serves as a transcriptional coactivator for RUNX1 function. Using mass spectrometry, and a methyl-arginine-specific antibody, we identified two arginine residues (R206 and R210) within the region of RUNX1 that interact with the corepressor SIN3A and are methylated by PRMT1. PRMT1- dependent methylation of RUNX1 at these arginine residues abrogates its association with SIN3A, whereas shRNA against PRMT1 (or use of a methyltransferase inhibitor) enhances this association. We find arginine-methylated RUNX1 on the promoters of two bona fide RUNX1 target genes, CD41 and PU.1 and show that shRNA against PRMT1 or RUNX1 down-regulates their expression. These arginine methylation sites and the dynamic regulation of corepressor binding are lost in the leukemia-associated RUNX1-ETO fusion protein, which likely contributes to its dominant inhibitory activity.
Collapse
Affiliation(s)
- Xinyang Zhao
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Denman RB. Protein Methyltransferase Activities in Commercial In vitro Translation Systems. ACTA ACUST UNITED AC 2008; 144:223-33. [DOI: 10.1093/jb/mvn061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
207
|
Déry U, Coulombe Y, Rodrigue A, Stasiak A, Richard S, Masson JY. A glycine-arginine domain in control of the human MRE11 DNA repair protein. Mol Cell Biol 2008; 28:3058-69. [PMID: 18285453 PMCID: PMC2293076 DOI: 10.1128/mcb.02025-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/13/2007] [Accepted: 02/09/2008] [Indexed: 01/10/2023] Open
Abstract
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.
Collapse
Affiliation(s)
- Ugo Déry
- Genome Stability Laboratory, Laval University Cancer Research Center, Hotel-Dieu de Quebec, 9 McMahon, Quebec City G1R 2J6, Canada.
| | | | | | | | | | | |
Collapse
|
208
|
Manfiolli AO, Maragno ALGC, Baqui MMA, Yokoo S, Teixeira FR, Oliveira EB, Gomes MD. FBXO25-associated nuclear domains: a novel subnuclear structure. Mol Biol Cell 2008; 19:1848-61. [PMID: 18287534 PMCID: PMC2366848 DOI: 10.1091/mbc.e07-08-0815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 01/28/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022] Open
Abstract
Skp1, Cul1, Rbx1, and the FBXO25 protein form a functional ubiquitin ligase complex. Here, we investigate the cellular distribution of FBXO25 and its colocalization with some nuclear proteins by using immunochemical and biochemical approaches. FBXO25 was monitored with affinity-purified antibodies raised against the recombinant fragment spanning residues 2-62 of the FBXO25 sequence. FBXO25 protein was expressed in all mouse tissues tested except striated muscle, as indicated by immunoblot analysis. Confocal analysis revealed that the endogenous FBXO25 was partially concentrated in a novel dot-like nuclear domain that is distinct from clastosomes and other well-characterized structures. These nuclear compartments contain a high concentration of ubiquitin conjugates and at least two other components of the ubiquitin-proteasome system: 20S proteasome and Skp1. We propose to name these compartments FBXO25-associated nuclear domains. Interestingly, inhibition of transcription by actinomycin D or heat-shock treatment drastically affected the nuclear organization of FBXO25-containing structures, indicating that they are dynamic compartments influenced by the transcriptional activity of the cell. Also, we present evidences that an FBXO25-dependent ubiquitin ligase activity prevents aggregation of recombinant polyglutamine-containing huntingtin protein in the nucleus of human embryonic kidney 293 cells, suggesting that this protein can be a target for the nuclear FBXO25 mediated ubiquitination.
Collapse
Affiliation(s)
- Adriana O Manfiolli
- Departments of Biochemistry and Immunology and Cellular and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
209
|
Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 2008; 32:409-39. [PMID: 18221488 PMCID: PMC2442719 DOI: 10.1111/j.1574-6976.2007.00100.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 11/13/2007] [Indexed: 12/19/2022] Open
Abstract
The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level.
Collapse
Affiliation(s)
- Gerald Brosch
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, Innsbruck, Austria
| | | | | |
Collapse
|
210
|
Agarwal R, Burley SK, Swaminathan S. A novel mode of dimerization via formation of a glutamate anhydride crosslink in a protein crystal structure. Proteins 2008; 71:1038-41. [DOI: 10.1002/prot.21962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
211
|
Lakowski TM, Frankel A. A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism. J Biol Chem 2008; 283:10015-25. [PMID: 18263580 DOI: 10.1074/jbc.m710176200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human protein arginine N-methyltransferase 6 (PRMT6) transfers methyl groups from the co-substrate S-adenosyl-L-methionine to arginine residues within proteins, forming S-adenosyl-L-homocysteine as well as omega-N(G)-monomethylarginine (MMA) and asymmetric dimethylarginine (aDMA) residues in the process. We have characterized the kinetic mechanism of recombinant His-tagged PRMT6 using a mass spectrometry method for monitoring the methylation of a series of peptides bearing a single arginine, MMA, or aDMA residue. We find that PRMT6 follows an ordered sequential mechanism in which S-adenosyl-L-methionine binds to the enzyme first and the methylated product is the first to dissociate. Furthermore, we find that the enzyme displays a preference for the monomethylated peptide substrate, exhibiting both lower K(m) and higher V(max) values than what are observed for the unmethylated peptide. This difference in substrate K(m) and V(max), as well as the lack of detectable aDMA-containing product from the unmethylated substrate, suggest a distributive rather than processive mechanism for multiple methylations of a single arginine residue. In addition, we speculate that the increased catalytic efficiency of PRMT6 for methylated substrates combined with lower K(m) values for native protein methyl acceptors may obscure this distributive mechanism to produce an apparently processive mechanism.
Collapse
Affiliation(s)
- Ted M Lakowski
- Division of Biomolecular & Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
212
|
Hung CJ, Chen DH, Shen YT, Li YC, Lin YW, Hsieh M, Li C. Characterization of protein arginine methyltransferases in porcine brain. BMB Rep 2008; 40:617-24. [PMID: 17927892 DOI: 10.5483/bmbrep.2007.40.5.617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein arginine methylation is a posttranslational modification involved in various cellular functions including cell signaling, protein subcellular localization and transcriptional regulation. We analyze the protein arginine methyltransferases (PRMTs) that catalyze the formation of methylarginines in porcine brain. We fractionated the brain extracts and determined the PRMT activities as well as the distribution of different PRMT proteins in subcellular fractions of porcine brain. The majority of the type I methyltransferase activities that catalyze the formation of asymmetric dimethylarginines was in the cytosolic S3 fraction. High specific activity of the methyltransferase was detected in the S4 fraction (high-salt stripping of the ultracentrifugation precipitant P3 fraction), indicating that part of the PRMT was peripherally associated with membrane and ribosomal fractions. The amount and distribution of PRMT1 are consistent with the catalytic activity. The elution patterns from gel filtration and anion exchange chromatography also indicate that the type I activity in S3 and S4 are mostly from PRMT1. Our results suggest that part of the type I arginine methyltransferases in brains, mainly PRMT1, are sequestered in an inactive form as they associated with membranes or large subcellular complexes. Our biochemical analyses confirmed the complex distribution of different PRMTs and implicate their regulation and catalytic activities in brain.
Collapse
Affiliation(s)
- Chien-Jen Hung
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
Protein arginine methylation is a rapidly growing field of biomedical research that holds great promise for extending our understanding of developmental and pathological processes. Less than ten years ago, fewer than two dozen proteins were verified to contain methylarginine. Currently, however, hundreds of methylarginine proteins have been detected and many have been confirmed by mass spectrometry and other proteomic and molecular techniques. Several of these proteins are products of disease genes or are implicated in disease processes by recent experimental or clinical observations. The purpose of this chapter is twofold; (1) to re-examine the role of protein arginine methylation placed within the context of cell growth and differentiation, as well as within the rich variety of cellular metabolic methylation pathways and (2) to review the implications of recent advances in protein methylarginine detection and the analysis of protein methylarginine function for our understanding of human disease.
Collapse
|
214
|
Zinellu A, Sotgia S, Scanu B, Formato M, Deiana L, Carru C. Assessment of protein-incorporated arginine methylation in biological specimens by CZE UV-detection. Electrophoresis 2007; 28:4452-8. [DOI: 10.1002/elps.200700153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
215
|
Yan D, Zhang Y, Niu L, Yuan Y, Cao X. Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana. Biochem J 2007; 408:113-21. [PMID: 17666011 PMCID: PMC2049078 DOI: 10.1042/bj20070786] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arginine methylation of histone H3 and H4 plays important roles in transcriptional regulation in eukaryotes such as yeasts, fruitflies, nematode worms, fish and mammals; however, less is known in plants. In the present paper, we report the identification and characterization of two Arabidopsis thaliana protein arginine N-methyltransferases, AtPRMT1a and AtPRMT1b, which exhibit high homology with human PRMT1. Both AtPRMT1a and AtPRMT1b methylated histone H4, H2A, and myelin basic protein in vitro. Site-directed mutagenesis of the third arginine (R3) on the N-terminus of histone H4 to lysine (H4R3N) completely abolished the methylation of histone H4. When fused to GFP (green fluorescent protein), both methyltransferases localized to the cytoplasm as well as to the nucleus. Consistent with their subcellular distribution, GST (glutathione transferase) pull-down assays revealed an interaction between the two methyltransferases, suggesting that both proteins may act together in a functional unit. In addition, we demonstrated that AtFib2 (Arabidopsis thaliana fibrillarin 2), an RNA methyltransferase, is a potential substrate for AtPRMT1a and AtPRMT1b, and, furthermore, uncovered a direct interaction between the protein methyltransferase and the RNA methyltransferase. Taken together, our findings implicate AtPRMT1a and AtPRMT1b as H4-R3 protein arginine N-methyltransferases in Arabidopsis and may be involved in diverse biological processes inside and outside the nucleus.
Collapse
Affiliation(s)
- Dongsheng Yan
- *National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- †Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Yong Zhang
- *National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- †Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Lifang Niu
- *National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- †Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Yi Yuan
- *National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- †Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xiaofeng Cao
- *National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
216
|
Goulet I, Gauvin G, Boisvenue S, Côté J. Alternative Splicing Yields Protein Arginine Methyltransferase 1 Isoforms with Distinct Activity, Substrate Specificity, and Subcellular Localization. J Biol Chem 2007; 282:33009-21. [PMID: 17848568 DOI: 10.1074/jbc.m704349200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRMT1 is the predominant member of a family of protein arginine methyltransferases (PRMTs) that have been implicated in various cellular processes, including transcription, RNA processing, and signal transduction. It was previously reported that the human PRMT1 pre-mRNA was alternatively spliced to yield three isoforms with distinct N-terminal sequences. Close inspection of the genomic organization in the 5'-end of the PRMT1 gene revealed that it can produce up to seven protein isoforms, all varying in their N-terminal domain. A detailed biochemical characterization of these variants revealed that unique N-terminal sequences can influence catalytic activity as well as substrate specificity. In addition, our results uncovered the presence of a functional nuclear export sequence in PRMT1v2. Finally, we find that the relative balance of PRMT1 isoforms is altered in breast cancer.
Collapse
Affiliation(s)
- Isabelle Goulet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
217
|
Inhibition of methyltransferases results in induction of g2/m checkpoint and programmed cell death in human T-lymphotropic virus type 1-transformed cells. J Virol 2007; 82:49-59. [PMID: 17942556 DOI: 10.1128/jvi.01497-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent for adult T-cell leukemia. The HTLV-1-encoded protein Tax transactivates the viral long terminal repeat and plays a critical role in virus replication and transformation. Previous work from our laboratory demonstrated that coactivator-associated arginine methytransferase 1, a protein arginine methytransferase, was important for Tax-mediated transactivation. To further investigate the role of methyltransferases in viral transcription, we utilized adenosine-2,3-dialdehyde (AdOx), an adenosine analog and S-adenosylmethionine-dependent methyltransferase inhibitor. The addition of AdOx decreased Tax transactivation in C81, Hut102, and MT-2 cells. Unexpectedly, we found that AdOx potently inhibited the growth of HTLV-1-transformed cells. Further investigation revealed that AdOx inhibited the Tax-activated NF-kappaB pathway, resulting in reactivation of p53 and induction of p53 target genes. Analysis of the NF-kappaB pathway demonstrated that AdOx treatment resulted in degradation of the IkappaB kinase complex and inhibition of NF-kappaB through stabilization of the NF-kappaB inhibitor IkappaBalpha. Our data further demonstrated that AdOx induced G(2)/M cell cycle arrest and cell death in HTLV-1-transformed but not control lymphocytes. These studies demonstrate that protein methylation plays an important role in NF-kappaB activation and survival of HTLV-1-transformed cells.
Collapse
|
218
|
Carroll AJ, Heazlewood JL, Ito J, Millar AH. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 2007; 7:347-69. [PMID: 17934214 DOI: 10.1074/mcp.m700052-mcp200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into Arabidopsis cytosolic ribosomal composition and its post-translational modifications. In silico digestion of all 409 ribosomal protein sequences in Arabidopsis defined the proportion of theoretical gene-specific peptides for each gene family and highlighted the need for low m/z cutoffs of MS ion selection for MS/MS to characterize low molecular weight, highly basic ribosomal proteins. We undertook an extensive MS/MS survey of the cytosolic ribosome using trypsin and, when required, chymotrypsin and pepsin. We then used custom software to extract and filter peptide match information from Mascot result files and implement high confidence criteria for calling gene-specific identifications based on the highest quality unambiguous spectra matching exclusively to certain in silico predicted gene- or gene family-specific peptides. This provided an in-depth analysis of the protein composition based on 1446 high quality MS/MS spectra matching to 795 peptide sequences from ribosomal proteins. These identified peptides from five gene families of ribosomal proteins not identified previously, providing experimental data on 79 of the 80 different types of ribosomal subunits. We provide strong evidence for gene-specific identification of 87 different ribosomal proteins from these 79 families. We also provide new information on 30 specific sites of co- and post-translational modification of ribosomal proteins in Arabidopsis by initiator methionine removal, N-terminal acetylation, N-terminal methylation, lysine N-methylation, and phosphorylation. These site-specific modification data provide a wealth of resources for further assessment of the role of ribosome modification in influencing translation in Arabidopsis.
Collapse
Affiliation(s)
- Adam J Carroll
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology and School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M316, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
219
|
Sayegh J, Webb K, Cheng D, Bedford MT, Clarke SG. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 2007; 282:36444-53. [PMID: 17925405 DOI: 10.1074/jbc.m704650200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human protein arginine methyltransferase PRMT8 has been recently described as a type I enzyme in brain that is localized to the plasma membrane by N-terminal myristoylation. The amino acid sequence of human PRMT8 is almost 80% identical to human PRMT1, the major protein arginine methyltransferase activity in mammalian cells. However, the activity of a recombinant PRMT8 GST fusion protein toward methyl-accepting substrates is much lower than that of a GST fusion of PRMT1. We show here that both His-tagged and GST fusion species lacking the initial 60 amino acid residues of PRMT8 have enhanced enzymatic activity, suggesting that the N-terminal domain may regulate PRMT8 activity. This conclusion is supported by limited proteolysis experiments showing an increase in the activity of the digested full-length protein, consistent with the loss of the N-terminal domain. In contrast, the activity of the N-terminal truncated protein was slightly diminished by limited proteolysis. Significantly, we detect automethylation at two sites in the N-terminal domain, as well as binding sites for SH3 domain-containing proteins. We suggest that the N-terminal domain may function as an autoregulator that may be displaced by interaction with one or more physiological inducers.
Collapse
Affiliation(s)
- Joyce Sayegh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
220
|
Meyer R, Wolf SS, Obendorf M. PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 2007; 107:1-14. [PMID: 17587566 DOI: 10.1016/j.jsbmb.2007.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The basal transcriptional activity of nuclear receptors (NRs) is regulated by interactions with additional comodulator proteins (coactivator/corepressor). Here, we describe a new androgen receptor (AR)-associated coactivator, PRMT2, which belongs to the arginine methyltransferase protein family. To search for AR-interacting proteins a fragment of the AR was used in a library screen exploiting the yeast two-hybrid technique and identifying the C-terminal region of PRMT2. We demonstrated that PRMT2 acts as a strong coactivator of the AR, had modest or none influence on transcriptional activation mediated by other NRs. Interestingly, PRMT2 interaction with the estrogen receptor (ER) was strongly dependent on the cellular background, thus, suggesting the involvement of additional, differentially expressed coregulators. We also demonstrated synergistic interaction of PRMT2 with other known nuclear receptor coactivators, such as GRIP1/TIF-2. Potentiation of AR-mediated transactivation by PRMT2 alone and in synergism with GRIP1 was prevented by a competitive inhibitor of methyltransferase activity. The PRMT2 expression profile overlaps with the distribution of AR, with strongest PRMT2 abundance in androgen target tissues. Immunofluorescence experiments showed that the intracellular localization of PRMT2 depends on the presence of the cognate receptor ligand. Under androgen-free conditions, both AR and PRMT2 are confined to the cytoplasm, whereas in the presence of androgens both proteins colocalize and translocate into the nucleus. Treatment with the AR antagonist hydroxyflutamide results in nuclear translocation of the AR, but not the coactivator PRMT2. Thus, it appears that the ligand-dependent AR conformation is essential for the recruitment and nuclear translocation of PMRT2 which acts as AR-coactivator, presumably by arginine methylation.
Collapse
Affiliation(s)
- Rene Meyer
- Gynecology & Andrology, MHCII, Schering AG/Jenapharm, Otto-Schott-Str. 15, D-07745 Jena, Germany
| | | | | |
Collapse
|
221
|
Ulke-Lemée A, Trinkle-Mulcahy L, Chaulk S, Bernstein NK, Morrice N, Glover M, Lamond AI, Moorhead GBG. The nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1339-50. [PMID: 17890166 DOI: 10.1016/j.bbapap.2007.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/13/2007] [Accepted: 07/26/2007] [Indexed: 01/21/2023]
Abstract
The targeting of protein kinases and phosphatases is fundamental to their roles as cellular regulators. The type one serine/threonine protein phosphatase (PP1) is enriched in the nucleus, yet few nuclear PP1 targeting subunits have been described and characterized. Here we show that the human protein, ZAP3 (also known as ZAP), is localized to the nucleus, that it is expressed in all mammalian tissues examined, and docks to PP1 through an RVRW motif located in its highly conserved carboxy-terminus. Proteomic analysis of a ZAP3 complex revealed that in addition to binding PP1, ZAP3 complexes with CIA (or nuclear receptor co-activator 5) and the RNA binding proteins hnRNP-G, SAM68 and NF110/45, but loses affinity for SAM68 and hnRNP-G upon digestion of endogenous nucleic acid. Bioinformatics has revealed that the conserved carboxy-terminus is orthologous to T4- and mammalian polynucleotide kinases with residues necessary for kinase activity maintained throughout evolution. Furthermore, the substrate binding pocket of uridine-cytidine kinase (or uridine kinase) has localized sequence similarity with ZAP3, suggesting uridine or cytidine as possible ZAP3 substrates. Most polynucleotide kinases have a phosphohydrolase domain in conjunction with their kinase domain. In ZAP3, although this domain is present, it now appears degenerate and functions to bind PP1 through an RVRW docking site located within the domain.
Collapse
Affiliation(s)
- Annegret Ulke-Lemée
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Rho J, Choi S, Jung CR, Im DS. Arginine methylation of Sam68 and SLM proteins negatively regulates their poly(U) RNA binding activity. Arch Biochem Biophys 2007; 466:49-57. [PMID: 17764653 DOI: 10.1016/j.abb.2007.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/14/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
Sam68 (Src substrate associated during mitosis) and its homologues, SLM-1 and SLM-2 (Sam68-like mammalian proteins), are RNA binding proteins and contain the arg-gly (RG) repeats, in which arginine residues are methylated by the protein arginine methyltransferase 1 (PRMT1). However, it remains unclear whether the arginine methylation affects an RNA binding. Here, we report that methylation of Sam68 and SLM proteins markedly reduced their poly(U) binding ability in vitro. The RG repeats of Sam68 bound poly(U), but arginine methylation of the RG repeats abrogated its poly(U) binding ability in vitro. Overexpression of PRMT1 increased arginine methylation of Sam68 and SLM proteins in cells, which resulted in a decrease of their poly(U) binding ability. The results suggest that the RG repeats conserved in Sam68 and SLM proteins may function as an auxiliary RNA binding domain and arginine methylation may eliminate or reduce an RNA binding ability of the proteins.
Collapse
Affiliation(s)
- Jaerang Rho
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon 305-806, Republic of Korea
| | | | | | | |
Collapse
|
223
|
Abstract
Methylation is one of the most common protein modifications. Many different prokaryotic and eukaryotic proteins are methylated, including proteins involved in translation, including ribosomal proteins (RPs) and translation factors (TFs). Positions of the methylated residues in six Escherichia coli RPs and two Saccharomyces cerevisiae RPs have been determined. At least two RPs, L3 and L12, are methylated in both organisms. Both prokaryotic and eukaryotic elongation TFs (EF1A) are methylated at lysine residues, while both release factors are methylated at glutamine residues. The enzymes catalysing methylation reactions, protein methyltransferases (MTases), generally use S-adenosylmethionine as the methyl donor to add one to three methyl groups that, in case of arginine, can be asymetrically positioned. The biological significance of RP and TF methylation is poorly understood, and deletions of the MTase genes usually do not cause major phenotypes. Apparently methylation modulates intra- or intermolecular interactions of the target proteins or affects their affinity for RNA, and, thus, influences various cell processes, including transcriptional regulation, RNA processing, ribosome assembly, translation accuracy, protein nuclear trafficking and metabolism, and cellular signalling. Differential methylation of specific RPs and TFs in a number of organisms at different physiological states indicates that this modification may play a regulatory role.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | |
Collapse
|
224
|
Potthast F, Gerrits B, Häkkinen J, Rutishauser D, Ahrens CH, Roschitzki B, Baerenfaller K, Munton RP, Walther P, Gehrig P, Seif P, Seeberger PH, Schlapbach R. The Mass Distance Fingerprint: A statistical framework for de novo detection of predominant modifications using high-accuracy mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 854:173-82. [PMID: 17513179 DOI: 10.1016/j.jchromb.2007.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/03/2007] [Accepted: 04/15/2007] [Indexed: 01/21/2023]
Abstract
We describe a statistical measure, Mass Distance Fingerprint, for automatic de novo detection of predominant peptide mass distances, i.e., putative protein modifications. The method's focus is to globally detect mass differences, not to assign peptide sequences or modifications to individual spectra. The Mass Distance Fingerprint is calculated from high accuracy measured peptide masses. For the data sets used in this study, known mass differences are detected at electron mass accuracy or better. The proposed method is novel because it works independently of protein sequence databases and without any prior knowledge about modifications. Both modified and unmodified peptides have to be present in the sample to be detected. The method can be used for automated detection of chemical/post-translational modifications, quality control of experiments and labeling approaches, and to control the modification settings of protein identification tools. The algorithm is implemented as a web application and is distributed as open source software.
Collapse
Affiliation(s)
- Frank Potthast
- Functional Genomics Center Zürich, Uni/ETH Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Pasternack DA, Sayegh J, Clarke S, Read LK. Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1665-81. [PMID: 17601874 PMCID: PMC2043365 DOI: 10.1128/ec.00133-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein arginine methylation is a posttranslational modification that impacts cellular functions, such as RNA processing, transcription, DNA repair, and signal transduction. The majority of our knowledge regarding arginine methylation derives from studies of yeast and mammals. Here, we describe a protein arginine N-methyltransferase (PRMT), TbPRMT5, from the early-branching eukaryote Trypanosoma brucei. TbPRMT5 shares the greatest sequence similarity with PRMT5 and Skb1 type II enzymes from humans and Schizosaccharomyces pombe, respectively, although it is significantly divergent at the amino acid level from its mammalian and yeast counterparts. Recombinant TbPRMT5 displays broad substrate specificity in vitro, including methylation of a mitochondrial-gene-regulatory protein, RBP16. TbPRMT5 catalyzes the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine and does not require trypanosome cofactors for this activity. These data establish that type II PRMTs evolved early in the eukaryotic lineage. In vivo, TbPRMT5 is constitutively expressed in the bloodstream form and procyclic-form (insect host) life stages of the parasite and localizes to the cytoplasm. Genetic disruption via RNA interference in procyclic-form trypanosomes indicates that TbPRMT5 is not essential for growth in this life cycle stage. TbPRMT5-TAP ectopically expressed in procyclic-form trypanosomes is present in high-molecular-weight complexes and associates with an RG domain-containing DEAD box protein related to yeast Ded1 and two kinetoplastid-specific proteins. Thus, TbPRMT5 is likely to be involved in novel methylation-regulated functions in trypanosomes, some of which may include RNA processing and/or translation.
Collapse
Affiliation(s)
- Deborah A Pasternack
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York School of Medicine, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
226
|
Ueda S, Yamagishi SI, Matsumoto Y, Fukami K, Okuda S. Asymmetric dimethylarginine (ADMA) is a novel emerging risk factor for cardiovascular disease and the development of renal injury in chronic kidney disease. Clin Exp Nephrol 2007; 11:115-121. [PMID: 17593510 DOI: 10.1007/s10157-007-0471-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 03/02/2007] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction due to the reduced bioavailability of nitric oxide (NO) is involved in the course of atherosclerotic cardiovascular disease as well as chronic kidney disease (CKD). NO is synthesized from L-arginine via the action of NO synthase, which is blocked by endogenous L-arginine analogues such as asymmetric dimethylarginine (ADMA). ADMA is a naturally occurring amino acid found in plasma and various types of tissues. The plasma level of ADMA is reported to be associated with cardiovascular risk factors such as hypertension, diabetes, hyperlipidemia, and CKD, and is a strong predictor for cardiovascular disease and the progression of CKD. In this review, we discuss the biology of ADMA, the molecular mechanisms of the elevation of ADMA levels in CKD, and the pathological role of ADMA in patients with CKD.
Collapse
Affiliation(s)
- Seiji Ueda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Sho-Ichi Yamagishi
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuriko Matsumoto
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Seiya Okuda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| |
Collapse
|
227
|
Hsieh CH, Huang SY, Wu YC, Liu LF, Han CC, Liu YC, Tam MF. Expression of proteins with dimethylarginines in Escherichia coli for protein-protein interaction studies. Protein Sci 2007; 16:919-28. [PMID: 17456744 PMCID: PMC2206645 DOI: 10.1110/ps.062667407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Protein arginine methylation often modulates protein-protein interactions. To isolate a sufficient quantity of proteins enriched in methyl arginine(s) from natural sources for biochemical studies is laborious and difficult. We describe here an expression system that produces recombinant proteins that are enriched in omega-N(G),N(G)-asymmetry dimethylarginines. A yeast type I arginine methyltransferase gene (HMT1) is put on a plasmid under the control of the Escherichia coli methionine aminopeptidase promoter for constitutive expression. The protein targeted for post-translational modification is put on the same plasmid behind a T7 promoter for inducible expression of His(6)-tagged proteins. Sbp1p and Stm1p were used as model proteins to examine this expression system. The 13 arginines within the arginine-glycine-rich motif of Sbp1p and the RGG sequence near the C terminus of Stm1p were methylated. Unexpectedly, the arginine residue on the thrombin cleavage site (LVPRGS) of the fusion proteins can also be methylated by Hmt1p. Sbp1p and Sbp1p/hmt1 were covalently attached to solid supports for the isolation of interacting proteins. The results indicate that arginine methylation on Sbp1p exerts both positive and negative effects on protein-protein interaction.
Collapse
Affiliation(s)
- Cheng-Hsilin Hsieh
- Institute of Molecular Biology, Academia Sinica, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Arginine methylation is a widespread posttranslational modification found on both nuclear and cytoplasmic proteins. The methylation of arginine residues is catalyzed by the protein arginine N-methyltransferase (PRMT) family of enzymes, of which there are at least nine members in mammals. PRMTs are evolutionarily conserved and are foundin organisms from yeast to man, but not in bacteria. Proteins that are arginine methylated are involved in a number of different cellular processes, including transcriptional regulation, RNA metabolism, and DNA damage repair. How arginine methylation impacts these cellular actions is unclear, although it is likely through the regulation of protein-protein and protein-DNA/RNA interactions. The different PRMTs display varying degrees of substrate specificity, and a certain amount of redundancy is likely to exist between different PRMT family members. Most PRMTs methylate glycine- and arginine-rich patches within their substrates. These regions have been termed GAR motifs. The complexity of the methylarginine mark is enhanced by the ability of this residue to be methylated in three different fashions on the guanidino group (with different functional consequences for each methylated state): monomethylated, symmetrically dimethylated, and asymmetrically dimethylated. This chapter outlines the biochemistry of arginine methylation, including a detailed description of the enzymes involved, the motifs methylated, and the prospects of inhibiting these enzymes with small molecules.
Collapse
Affiliation(s)
- Mark T Bedford
- The University of Texas M.D. Anderson Cancer Center Science Park, Research Division P.O. Box 389 Smithville, TX 78957, USA
| |
Collapse
|
229
|
Teerlink T. HPLC analysis of ADMA and other methylated l-arginine analogs in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:21-9. [PMID: 16931194 DOI: 10.1016/j.jchromb.2006.07.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 02/07/2023]
Abstract
Post-translational methylation of arginine residues in proteins leads to generation of N(G)-monomethylarginine (MMA) and both symmetric and asymmetric dimethylarginine (SDMA and ADMA), that are released into the cytosol upon proteolysis. Both MMA and ADMA are inhibitors of nitric oxide synthase and especially elevated levels of ADMA are associated with endothelial dysfunction and cardiovascular disease. Plasma concentrations of ADMA and SDMA are very low, typically between 0.3 and 0.8 microM, making their quantification by HPLC an analytical challenge. Sample preparation usually involves a cleanup step by solid-phase extraction on cation-exchange columns followed by derivatization of amino acids into fluorescent adducts. Because ADMA and SDMA concentrations in healthy subjects show a very narrow distribution, with a between-subject variability of 13% for ADMA and 19% for SDMA, very low imprecision is an essential assay feature. Procedures for sample cleanup, derivatization, and chromatographic separation of arginine and its methylated analogs are the main topics of this review. In addition, important aspects of method validation, pre-analytical factors, and reference values are discussed.
Collapse
Affiliation(s)
- Tom Teerlink
- Metabolic Laboratory, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
230
|
Bachand F. Protein arginine methyltransferases: from unicellular eukaryotes to humans. EUKARYOTIC CELL 2007; 6:889-98. [PMID: 17468392 PMCID: PMC1951521 DOI: 10.1128/ec.00099-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- François Bachand
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
231
|
Invernizzi CF, Xie B, Frankel FA, Feldhammer M, Roy BB, Richard S, Wainberg MA. Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function. AIDS 2007; 21:795-805. [PMID: 17415034 DOI: 10.1097/qad.0b013e32803277ae] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The HIV-1 nucleocapsid protein (NC) is involved in transfer RNA3 annealing to the primer binding site of viral genomic RNA by means of two basic regions that are similar to the N-terminal portion of the arginine-rich motif (ARM) of Tat. As Tat is known to be asymmetrically arginine dimethylated by protein arginine methyltransferase 6 (PRMT6) in its ARM, we investigated whether NC could also act as a substrate for this enzyme. METHODS Arginine methylation of NC was demonstrated in vitro and in vivo, and sites of methylation were determined by mutational analysis. The impact of the arginine methylation of NC was measured in RNA annealing and reverse transcription initiation assays. An arginine methyltransferase inhibitor (AMI)3.4 was tested for its effects on viral infectivity and replication in vivo. RESULTS NC is a substrate for PRMT6 both in vitro and in vivo. NC possesses arginine dimethylation sites in each of its two basic regions at positions R10 and R32, and methylated NC was less able than wild-type to promote RNA annealing and participate in the initiation of reverse transcription. Exposure of HIV-1-infected MT2 and primary cord blood mononuclear cells to AMI3.4 led to increased viral replication, whereas viral infectivity was not significantly affected in multinuclear-activation galactosidase indicator assays. CONCLUSION NC is an in-vivo target of PRMT6, and arginine methylation of NC reduces RNA annealing and the initiation of reverse transcription. These findings may lead to ways of driving HIV-infected cells out of latency with drugs that inhibit PRMT6.
Collapse
Affiliation(s)
- Cédric F Invernizzi
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
232
|
Dong CW, Zhang YB, Lu AJ, Zhu R, Zhang FT, Zhang QY, Gui JF. Molecular characterisation and inductive expression of a fish protein arginine methyltransferase 1 gene in response to virus infection. FISH & SHELLFISH IMMUNOLOGY 2007; 22:380-93. [PMID: 17055744 DOI: 10.1016/j.fsi.2006.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/20/2006] [Accepted: 06/22/2006] [Indexed: 05/12/2023]
Abstract
Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a virally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx was also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response.
Collapse
Affiliation(s)
- Cai-Wen Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
233
|
Dolzhanskaya N, Merz G, Aletta JM, Denman RB. Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP. J Cell Sci 2007; 119:1933-46. [PMID: 16636078 DOI: 10.1242/jcs.02882] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with approximately 4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating that methylation of FMRP affects its ability to bind to FXR1P and regulate the translation of FMRP target mRNAs. Additionally, using double-label fluorescence confocal microscopy, we identified a subpopulation of FMRP-containing small cytoplasmic granules that are distinguishable from larger stress granules. Using the oxidative-stress induced accumulation of abortive pre-initiation complexes as a measure of the association of FMRP with translational components, we have demonstrated that FMRP associates with ribosomes during initiation and, more importantly, that methylation regulates this process by influencing the ratio of FMRP-homodimer-containing mRNPs to FMRP-FXR1P-heterodimer-containing mRNPs. These data suggest a vital role for methylation in normal FMRP functioning.
Collapse
Affiliation(s)
- Natalia Dolzhanskaya
- Biochemical Molecular Neurobiology Laboratory, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
234
|
Olsson I, Berrez JM, Leipus A, Ostlund C, Mutvei A. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100. Exp Cell Res 2007; 313:1778-89. [PMID: 17448464 DOI: 10.1016/j.yexcr.2007.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experiments with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2Delta mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation.
Collapse
Affiliation(s)
- Ida Olsson
- School of Life Sciences, Södertörns Högskola, SE-141 89 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
235
|
Duan P, Xu Y, Birkaya B, Myers J, Pelletier M, Read LK, Guarnaccia C, Pongor S, Denman RB, Aletta JM. Generation of polyclonal antiserum for the detection of methylarginine proteins. J Immunol Methods 2007; 320:132-42. [PMID: 17307197 PMCID: PMC1950451 DOI: 10.1016/j.jim.2007.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 11/29/2022]
Abstract
This report describes an approach for the study of the biology of methylarginine proteins based on the generation of immunological reagents capable of recognizing the methylarginine status of cellular proteins. Two forms of an immunizing peptide were prepared based upon an amino acid sequence motif found most prevalently among verified dimethylarginine-containing proteins. One form of the peptide was constructed with 7 arginine residues alternating with 8 glycine residues. None of the arginines used in the synthesis were methylated. The alternative form of the peptide was synthesized with the identical repeating GRG sequence, but with asymmetrical dimethylarginine at each arginine residue. A methylarginine-specific antiserum was generated using the latter peptide. ELISA and western blotting of glycine arginine-rich peptides, each synthesized with or without asymmetric dimethylarginine, demonstrate the methyl specificity of the antiserum. The methylarginine-specific antibody co-localizes with the highly methylated native nucleolin protein conspicuously concentrated in the nucleolus. The methylarginine-specific antiserum recognizes a GRG peptide and bacterially expressed RBP16 only after incubation of the peptide or RBP16 with recombinant protein arginine methyltransferase 1, or cell extracts, respectively. Proteins isolated from cells in different developmental states exhibit different patterns of reactivity observed by western blots. Finally, the methylarginine-specific reagent interacts specifically with the methylarginine of cellular hnRNPA1 and human fragile X mental retardation protein expressed in cultured PC12 cells. An immunological reagent capable of detecting the methylarginine status of cellular methylproteins will facilitate the cellular and molecular analysis of protein arginine methylation in a wide variety of research and biomedical applications.
Collapse
Affiliation(s)
- Peng Duan
- Center for Neuroscience, Department of Pharmacology and Toxicology, University at Buffalo School of Medicine and Biomedical Sciences (102 Farber Hall) 3435 Main Street Buffalo, New York 14214-3000, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Yedavalli VRK, Jeang KT. Methylation: a regulator of HIV-1 replication? Retrovirology 2007; 4:9. [PMID: 17274823 PMCID: PMC1796896 DOI: 10.1186/1742-4690-4-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/02/2007] [Indexed: 12/13/2022] Open
Abstract
Recent characterizations of methyl transferases as regulators of cellular processes have spurred investigations into how methylation events might influence the HIV-1 life cycle. Emerging evidence suggests that protein-methylation can positively and negatively regulate HIV-1 replication. How DNA- and RNA- methylation might impact HIV-1 is also discussed.
Collapse
Affiliation(s)
- Venkat RK Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, 20892 USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, 20892 USA
| |
Collapse
|
237
|
Xie B, Invernizzi CF, Richard S, Wainberg MA. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J Virol 2007; 81:4226-34. [PMID: 17267505 PMCID: PMC1866113 DOI: 10.1128/jvi.01888-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Arginine methylation has been shown to regulate signal transduction, protein subcellular localization, gene transcription, and protein-protein interactions that ultimately alter gene expression. Although the role of cellular protein arginine methyltransferases (PRMT) in viral gene expression is largely unknown, we recently showed that the Tat protein of human immunodeficiency virus type 1 (HIV-1) is a substrate for one such enzyme, termed PRMT6. However, the mechanism by which arginine methylation impairs the transactivation potential of Tat and the sites of arginine methylation within Tat remain obscure. We now show that Tat is a specific in vitro and in vivo substrate of PRMT6 which targets the Tat R52 and R53 residues for arginine methylation. Such Tat methylation led to decreased interaction with the Tat transactivation region (TAR) of viral RNA. Furthermore, arginine methylation of Tat negatively affected Tat-TAR-cyclin T1 ternary complex formation and diminished cyclin T1-dependent Tat transcriptional activation. Overexpression of wild-type PRMT6, but not a methylase-inactive PRMT6 mutant, reduced levels of Tat transactivation of HIV-1 long terminal repeat chloramphenicol acetyltransferase and luciferase reporter plasmids in a dose-dependent manner. In cell-based assays, knockdown of PRMT6 resulted in increased HIV-1 production and faster viral replication. Thus, PRMT6 can compromise Tat transcriptional activation and may represent a form of innate cellular immunity in regard to HIV-1 replication. Finding a way of inhibiting or stimulating PRMT6 activity might help to drive quiescently infected cells out of latency or combat HIV-1 replication, respectively.
Collapse
Affiliation(s)
- Baode Xie
- McGill University AIDS Centre, Department of Medicine, Terry Fox Molecular Oncology Group, Lady Davis Institute, St. Mortimer B. Davis Jewish General Hospital, 3755 Côte-Ste-Catherine Rd., Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
238
|
Déry U, Masson JY. Twists and turns in the function of DNA damage signaling and repair proteins by post-translational modifications. DNA Repair (Amst) 2007; 6:561-77. [PMID: 17258515 DOI: 10.1016/j.dnarep.2006.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
When the human genome was sequenced, it was surprising to find that it contains approximately 30,000 genes and not 100,000 as most textbooks had predicted. Since then, it became clear that evolution has favored the existence of only a limited number of genes with inducible functions over multiple genes each having specific roles. Many genes products can be modified by post-translational modifications therefore fine-tuning the roles of the corresponding proteins. DNA damage signaling and repair proteins are not an exception to this rule, and they are subject to a wide range of post-translational modifications to orchestrate the DNA damage response. In this review, we will give a comprehensive view of the recent sophisticated mechanisms of DNA damage signal modifications at the nexus of double-strand break DNA damage signaling and repair.
Collapse
Affiliation(s)
- Ugo Déry
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Québec City (Qc), Québec G1R 2J6, Canada
| | | |
Collapse
|
239
|
Perreault A, Lemieux C, Bachand F. Regulation of the nuclear poly(A)-binding protein by arginine methylation in fission yeast. J Biol Chem 2007; 282:7552-62. [PMID: 17213188 DOI: 10.1074/jbc.m610512200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Two structurally different poly(A)-binding proteins (PABP) bind the poly(A) tract of mRNAs in most mammalian cells: PABPC in the cytoplasm and PABP2/PABPN1 in the nucleus. Whereas yeast orthologs of the cytoplasmic PABP are characterized, a gene product homologous to mammalian PABP2 has not been identified in yeast. We report here the identification of a homolog of PABP2 as an arginine methyltransferase 1 (RMT1)-associated protein in fission yeast. The product of the Schizosaccharomyces pombe pab2 gene encodes a nonessential nuclear protein and demonstrates specific poly(A) binding in vitro. Consistent with a functional role in poly(A) tail metabolism, mRNAs from pab2-null cells displayed hyperadenylated 3'-ends. We also show that arginine residues within the C-terminal arginine-rich domain of Pab2 are modified by RMT1-dependent methylation. Whereas the arginine methylated and unmethylated forms of Pab2 behaved similarly in terms of subcellular localization, poly(A) binding, and poly(A) tail length control; Pab2 oligomerization levels were markedly increased when Pab2 was not methylated. Significantly, Pab2 overexpression reduced growth rate, and this growth inhibitory effect was exacerbated in rmt1-null cells. Our results indicate that the main cellular function of Pab2 is in poly(A) tail length control and support a biological role for arginine methylation in the regulation of Pab2 oligomerization.
Collapse
Affiliation(s)
- Audrey Perreault
- Department of Biochemistry, Université de Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
240
|
Christen V, Duong F, Bernsmeier C, Sun D, Nassal M, Heim MH. Inhibition of alpha interferon signaling by hepatitis B virus. J Virol 2007; 81:159-65. [PMID: 17065208 PMCID: PMC1797249 DOI: 10.1128/jvi.01292-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 10/13/2006] [Indexed: 12/31/2022] Open
Abstract
Alpha interferon (IFN-alpha) and pegylated IFN-alpha (pegIFN-alpha) are used for the treatment of chronic hepatitis B (CHB). Unfortunately, only a minority of patients can be cured. The mechanisms responsible for hepatitis B virus (HBV) resistance to pegIFN-alpha treatment are not known. pegIFN-alpha is also used to treat patients with chronic hepatitis C (CHC). As with chronic hepatitis B, many patients with chronic hepatitis C cannot be cured. In CHC, IFN-alpha signaling has been found to be inhibited by an upregulation of protein phosphatase 2A (PP2A). PP2A inhibits protein arginine methyltransferase 1 (PRMT1), the enzyme that catalyzes the methylation of the important IFN-alpha signal transducer STAT1. Hypomethylated STAT1 is less active because it is bound by its inhibitor, PIAS1. In the present work, we investigated whether similar molecular mechanisms are also responsible for the IFN-alpha resistance found in many patients with chronic hepatitis B. We analyzed the expression of PP2A, the enzymatic activity of PRMT1 (methylation assays), the phosphorylation and methylation of STAT1, the association of STAT1 with PIAS1 (via coimmunoprecipitation assays), the binding of activated STAT1 to interferon-stimulated response elements (via electrophoretic mobility shift assays), and the induction of interferon target genes (via real-time RT-PCR) in human hepatoma cells expressing HBV proteins as well as in liver biopsies from patients with chronic hepatitis B and from controls. We found an increased expression of PP2A and an inhibition of IFN-alpha signaling in cells expressing HBV proteins and in liver biopsies of patients with CHB. The molecular mechanisms involved are similar to those found in chronic hepatitis C.
Collapse
Affiliation(s)
- Verena Christen
- Department of Research, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
241
|
PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA. Retrovirology 2006; 3:93. [PMID: 17176473 PMCID: PMC1779295 DOI: 10.1186/1742-4690-3-93] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 12/18/2006] [Indexed: 11/10/2022] Open
Abstract
Background The HIV-1 Rev protein mediates nuclear export of unspliced and partially spliced viral RNA through interaction with the Rev response element (RRE) by means of an arginine rich motif that is similar to the one found in Tat. Since Tat is known to be asymmetrically arginine dimethylated by protein arginine methyltransferase 6 (PRMT6) in its arginine rich motif, we investigated whether the Rev protein could act as a substrate for this enzyme. Results Here, we report the methylation of Rev due to a single arginine dimethylation in the N-terminal portion of its arginine rich motif and the association of Rev with PRMT6 in vivo. Further analysis demonstrated that the presence of increasing amounts of wild-type PRMT6, as well as a methylation-inactive mutant PRMT6, dramatically down-regulated Rev protein levels in concentration-dependent fashion, which was not dependent on the methyltransferase activity of PRMT6. Quantification of Rev mRNA revealed that attenuation of Rev protein levels was due to a posttranslational event, carried out by a not yet defined activity of PRMT6. However, no relevant protein attenuation was observed in subsequent chloramphenicol acetyltransferase (CAT) expression experiments that screened for RNA export and interaction with the RRE. Binding of the Rev arginine rich motif to the RRE was reduced in the presence of wild-type PRMT6, whereas mutant PRMT6 did not exert this negative effect. In addition, diminished interactions between viral RNA and mutant Rev proteins were observed, due to the introduction of single arginine to lysine substitutions in the Rev arginine rich motif. More importantly, wild-type PRMT6, but not mutant methyltransferase, significantly decreased Rev-mediated viral RNA export from the nucleus to the cytoplasm in a dose-dependent manner. Conclusion These findings indicate that PRMT6 severely impairs the function of HIV-1 Rev.
Collapse
|
242
|
Willemsen NM, Hitchen EM, Bodetti TJ, Apolloni A, Warrilow D, Piller SC, Harrich D. Protein methylation is required to maintain optimal HIV-1 infectivity. Retrovirology 2006; 3:92. [PMID: 17169163 PMCID: PMC1766367 DOI: 10.1186/1742-4690-3-92] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/15/2006] [Indexed: 11/10/2022] Open
Abstract
Background: Protein methylation is recognized as a major protein modification pathway regulating diverse cellular events such as protein trafficking, transcription, and signal transduction. More recently, protein arginine methyltransferase activity has been shown to regulate HIV-1 transcription via Tat. In this study, adenosine periodate (AdOx) was used to globally inhibit protein methyltransferase activity so that the effect of protein methylation on HIV-1 infectivity could be assessed. Results: Two cell culture models were used: HIV-1-infected CEM T-cells and HEK293T cells transfected with a proviral DNA plasmid. In both models, AdOx treatment of cells increased the levels of virion in culture supernatant. However, these viruses had increased levels of unprocessed or partially processed Gag-Pol, significantly increased diameter, and displayed reduced infectivity in a MAGI X4 assay. AdOx reduced infectivity equally in both dividing and non-dividing cells. However, infectivity was further reduced if Vpr was deleted suggesting virion proteins, other than Vpr, were affected by protein methylation. Endogenous reverse transcription was not inhibited in AdOx-treated HIV-1, and infectivity could be restored by pseudotyping HIV with VSV-G envelope protein. These experiments suggest that AdOx affects an early event between receptor binding and uncoating, but not reverse transcription. Conclusion: Overall, we have shown for the first time that protein methylation contributes towards maximal virus infectivity. Furthermore, our results also indicate that protein methylation regulates HIV-1 infectivity in a complex manner most likely involving the methylation of multiple viral or cellular proteins and/or multiple steps of replication.
Collapse
Affiliation(s)
- Nicole M Willemsen
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Queensland, 4006, Australia
| | - Eleanor M Hitchen
- HIV Protein Functions and Interactions Group, Centre for Virus Research, Westmead Millennium Institute, Westmead NSW 2145, Australia
| | - Tracey J Bodetti
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Queensland, 4006, Australia
| | - Ann Apolloni
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Queensland, 4006, Australia
| | - David Warrilow
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Queensland, 4006, Australia
| | - Sabine C Piller
- HIV Protein Functions and Interactions Group, Centre for Virus Research, Westmead Millennium Institute, Westmead NSW 2145, Australia
| | - David Harrich
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Queensland, 4006, Australia
| |
Collapse
|
243
|
Liu Z, Zhou Z, Chen G, Bao S. A putative transcriptional elongation factor hIws1 is essential for mammalian cell proliferation. Biochem Biophys Res Commun 2006; 353:47-53. [PMID: 17184735 DOI: 10.1016/j.bbrc.2006.11.133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/17/2006] [Indexed: 11/21/2022]
Abstract
Iws1 has been implicated in transcriptional elongation by interaction with RNA polymerase II (RNAP II) and elongation factor Spt6 in budding yeast Saccharomyces cerevisiae, and association with transcription factor TFIIS in mammalian cells, but its role in controlling cell growth and proliferation remains unknown. Here we report that the human homolog of Iws1, hIws1, physically interacts with protein arginine methyltransferases PRMT5 which methylates elongation factor Spt5 and regulates its interaction with RNA polymerase II. Gene-specific silencing of hIws1 by RNA interference reveals that hIws1 is essential for cell viability. GFP fusion protein expression approaches demonstrate that the hIws1 protein is located in the nucleus, subsequently, two regions harbored within the hIws1 protein are demonstrated to contain nuclear localization signals (NLSs). In addition, mouse homolog of hiws1 is found to express ubiquitously in various tissues.
Collapse
Affiliation(s)
- Zhangguo Liu
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | |
Collapse
|
244
|
El-Andaloussi N, Valovka T, Toueille M, Hassa PO, Gehrig P, Covic M, Hübscher U, Hottiger MO. Methylation of DNA polymerase beta by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. FASEB J 2006; 21:26-34. [PMID: 17116746 DOI: 10.1096/fj.06-6194com] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA polymerase beta (pol beta) is a key player in DNA base excision repair (BER). Here, we describe the complex formation of pol beta with the protein arginine methyltransferase 1 (PRMT1). PRMT1 specifically methylated pol beta in vitro and in vivo. Arginine 137 was identified in pol beta as an important target for methylation by PRMT1. Neither the polymerase nor the dRP-lyase activities of pol beta were affected by PRMT1 methylation. However, this modification abolished the interaction of pol beta with proliferating cell nuclear antigen (PCNA). Together, our results provide evidence that PRMT1 methylation of pol beta might play a regulatory role in BER by preventing the involvement of pol beta in PCNA-dependent DNA metabolic events.
Collapse
Affiliation(s)
- Nazim El-Andaloussi
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Jeong SJ, Lu H, Cho WK, Park HU, Pise-Masison C, Brady JN. Coactivator-associated arginine methyltransferase 1 enhances transcriptional activity of the human T-cell lymphotropic virus type 1 long terminal repeat through direct interaction with Tax. J Virol 2006; 80:10036-44. [PMID: 17005681 PMCID: PMC1617284 DOI: 10.1128/jvi.00186-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we demonstrate that the coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3 and other proteins such as p300/CBP, is positively involved in the regulation of Tax transactivation. First, transfection studies demonstrated that overexpression of CARM1 wild-type protein resulted in increased Tax transactivation of the human T-cell lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR). In contrast, transfection of a catalytically inactive CARM1 methyltransferase mutant did not enhance Tax transactivation. CARM1 facilitated Tax transactivation of the CREB-dependent cellular GEM promoter. A direct physical interaction between HTLV-1 Tax and CARM1 was demonstrated using in vitro glutathione S-transferase-Tax binding assays, in vivo coimmunoprecipitation, and confocal microscopy experiments. Finally, chromatin immunoprecipitation analysis of the activated HTLV-1 LTR promoter showed the association of CARM1 and methylated histone H3 with the template DNA. In vitro, Tax facilitates the binding of CARM1 to the transcription complex. Together, our data provide evidence that CARM1 enhances Tax transactivation of the HTLV-1 LTR through a direct interaction between CARM1 and Tax and this binding promotes methylation of histone H3 (R2, R17, and R26).
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Building 41, Room B302, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
246
|
Tan CP, Nakielny S. Control of the DNA methylation system component MBD2 by protein arginine methylation. Mol Cell Biol 2006; 26:7224-35. [PMID: 16980624 PMCID: PMC1592890 DOI: 10.1128/mcb.00473-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA methylation is vital for proper chromatin structure and function in mammalian cells. Genetic removal of the enzymes that catalyze DNA methylation results in defective imprinting, transposon silencing, X chromosome dosage compensation, and genome stability. This epigenetic modification is interpreted by methyl-DNA binding domain (MBD) proteins. MBD proteins respond to methylated DNA by recruiting histone deacetylases (HDAC) and other transcription repression factors to the chromatin. The MBD2 protein is dispensable for animal viability, but it is implicated in the genesis of colon tumors. Here we report that the MBD2 protein is controlled by arginine methylation. We identify the protein arginine methyltransferase enzymes that catalyze this modification and show that arginine methylation inhibits the function of MBD2. Arginine methylation of MBD2 reduces MBD2-methyl-DNA complex formation, reduces MBD2-HDAC repression complex formation, and impairs the transcription repression function of MBD2 in cells. Our report provides a molecular description of a potential regulatory mechanism for an MBD protein family member. It is the first to demonstrate that protein arginine methyltransferases participate in the DNA methylation system of chromatin control.
Collapse
Affiliation(s)
- Choon Ping Tan
- Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
247
|
Gros L, Renodon-Cornière A, de Saint Vincent BR, Feder M, Bujnicki JM, Jacquemin-Sablon A. Characterization of prmt7alpha and beta isozymes from Chinese hamster cells sensitive and resistant to topoisomerase II inhibitors. Biochim Biophys Acta Gen Subj 2006; 1760:1646-56. [PMID: 17049166 DOI: 10.1016/j.bbagen.2006.08.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/10/2006] [Accepted: 08/22/2006] [Indexed: 11/22/2022]
Abstract
By selection of genetic suppressor elements (GSEs) conferring resistance to topoisomerase II inhibitors in Chinese hamster cells (DC-3F), we identified a gene encoding two proteins of 78 and 82 kDa which belong to the protein arginine methyltransferase (PRMT) family. Down-regulation of these enzymes (named PRMT7alpha and beta), either induced by an antisense GSE or as observed in the 9-OH-ellipticine (9-OH-E) resistant mutant DC-3F/9-OH-E, was responsible for cell resistance to various DNA damaging agents. Alternative splicing alterations in the 5'-terminal region and changes of the polyadenylation site of PRMT7 mRNAs were observed in these resistant mutant cells. PRMT7alpha and beta are isoforms of a highly conserved protein containing two copies of a module common to all PRMTs, comprising a Rossmann-fold domain and a beta-barrel domain. The C-terminal repeat appears to be degenerate and catalytically inactive. PRMT7alpha and beta form homo- and hetero-dimers but differ by their sub-cellular localization and in vitro recognize different substrates. PRMT7beta was only observed in Chinese hamster cells while mouse 10T1/2 fibroblasts only contain PRMT7alpha. Surprisingly, in human cells the anti-PRMT7 antibody essentially recognized an approximately 37 kDa peptide, which is not formed during extraction, and a faint band at 78 kDa. Analysis of in vitro and in vivo methylation patterns in cell lines under- or over-expressing PRMT7alpha and beta detected a discrete number of proteins which methylation and/or expression are under the control of these enzymes.
Collapse
Affiliation(s)
- Laurent Gros
- CNRS FRE2618, Laboratoire de Pharmacologie des Agents Anticancéreux, Institut Bergonié, 229 Cours de l'Argonne, 33076 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
248
|
Huang WH, Chen CW, Wu HL, Chen PJ. Post-translational modification of delta antigen of hepatitis D virus. Curr Top Microbiol Immunol 2006; 307:91-112. [PMID: 16903222 DOI: 10.1007/3-540-29802-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) genome has only one open reading frame, which encodes the viral small delta antigen. After RNA editing, the same open reading frame is extended 19 amino acids at the carboxyl terminus and encodes the large delta antigen. These two viral proteins escort the HDV genome through different cellular compartments for the complicated phases of replication, transcription and, eventually, the formation of progeny virions. To orchestrate these events, the delta antigens have to take distinct cues to traffic to the right compartments and make correct molecular contacts. In eukaryotes, post-translational modification (PTM) is a major mechanism of dictating the multiple functions of a single protein. Multiple PTMs, including phosphorylation, isoprenylation, acetylation, and methylation, have been identified on hepatitis delta antigens. In this chapter we review these PTMs and discuss their functions in regulating and coordinating the life cycle of HDV.
Collapse
Affiliation(s)
- W H Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, and Hepatitis Research Center, National Taiwan University Hospital, Taipei
| | | | | | | |
Collapse
|
249
|
Martens-Lobenhoffer J, Bode-Böger SM. Chromatographic-mass spectrometric methods for the quantification of L-arginine and its methylated metabolites in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 851:30-41. [PMID: 16949893 DOI: 10.1016/j.jchromb.2006.07.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 01/22/2023]
Abstract
L-Arginine (Arg) and its methylated metabolites play a major role in the synthesis of the cell signaling molecule nitric oxide (NO). Arg serves as a substrate for the enzyme NO synthase (NOS), which produces NO, whereas monomethylarginine (L-NMMA) and asymmetric dimethylarginine (ADMA) act as competitive inhibitors of NOS. Symmetric dimethylarginine (SDMA) has virtually no inhibitory effect on NOS activity, but shares the pathway for cell entry and transport with Arg and ADMA. Accurate and reliable quantification of these substances in various biological fluids is essential for scientific research in this field. In this review, chromatographic-mass spectrometric methods for Arg and its methylated metabolites ADMA and SDMA are discussed. Mass spectrometric detection provides an intrinsic higher selectivity than detection by means of UV absorbance or fluorescence. Taking advantage of the high selectivity, approaches involving mass spectrometric detection require less laborious sample preparation and produce reliable results. A consensus emerges that the concentration values in plasma of young healthy volunteers are about 65 microM for Arg, 0.4 microM for ADMA and 0.5 microM for SDMA.
Collapse
Affiliation(s)
- Jens Martens-Lobenhoffer
- Institute of Clinical Pharmacology, University Hospital Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|
250
|
Gonsalvez GB, Rajendra TK, Tian L, Matera AG. The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance. Curr Biol 2006; 16:1077-89. [PMID: 16753561 DOI: 10.1016/j.cub.2006.04.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/20/2006] [Accepted: 04/21/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND The C-terminal tails of spliceosomal Sm proteins contain symmetrical dimethylarginine (sDMA) residues in vivo. The precise function of this posttranslational modification in the biogenesis of small nuclear ribonucleoproteins (snRNPs) and pre-mRNA splicing remains largely uncharacterized. Here, we examine the organismal and cellular consequences of loss of symmetric dimethylation of Sm proteins in Drosophila. RESULTS Genetic disruption of dart5, the fly ortholog of human PRMT5, results in the complete loss of sDMA residues on spliceosomal Sm proteins. Similarly, valois, a previously characterized grandchildless gene, is also required for sDMA modification of Sm proteins. In the absence of dart5, snRNP biogenesis is surprisingly unaffected, and homozygous mutant animals are completely viable. Instead, Dart5 protein is required for maturation of spermatocytes in males and for germ-cell specification in females. Embryos laid by dart5 mutants fail to form pole cells, and Tudor localization is disrupted in stage 10 oocytes. Transgenic expression of Dart5 exclusively within the female germline rescues pole-cell formation, whereas ubiquitous expression rescues sDMA modification of Sm proteins and male sterility. CONCLUSIONS We have shown that Dart5-mediated methylation of Sm proteins is not essential for snRNP biogenesis. The results uncover a novel role for dart5 in specification of the germline and in spermatocyte maturation. Because disruption of both dart5 and valois causes the specific loss of sDMA-modified Sm proteins and studies in C. elegans show that Sm proteins are required for germ-granule localization, we propose that Sm protein methylation is a pivotal event in germ-cell development.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA
| | | | | | | |
Collapse
|