201
|
Kitamura N, Motoi Y, Mori A, Tatsumi H, Nemoto S, Miyoshi H, Kitamura F, Miyatake S, Hiroi T, Kaminuma O. Suppressive role of C-terminal binding protein 1 in IL-4 synthesis in human T cells. Biochem Biophys Res Commun 2009; 382:326-30. [DOI: 10.1016/j.bbrc.2009.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
202
|
Qamar I, Park E, Gong EY, Lee HJ, Lee K. ARR19 (androgen receptor corepressor of 19 kDa), an antisteroidogenic factor, is regulated by GATA-1 in testicular Leydig cells. J Biol Chem 2009; 284:18021-32. [PMID: 19398553 DOI: 10.1074/jbc.m900896200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ARR19 (androgen receptor corepressor of 19 kDa), which encodes for a leucine-rich protein, is expressed abundantly in the testis. Further analyses revealed that ARR19 was expressed in Leydig cells, and its expression was differentially regulated during Leydig cell development. Adenovirus-mediated overexpression of ARR19 in Leydig cells inhibited testicular steroidogenesis, down-regulating the expression of steroidogenic enzymes, which suggests that ARR19 is an antisteroidogenic factor. Interestingly, cAMP/luteinizing hormone attenuated ARR19 expression in a fashion similar to that of GATA-1, which was previously reported to be down-regulated by cAMP. Sequence analysis of the Arr19 promoter revealed the presence of two putative GATA-1 binding motifs. Further analyses with 5' deletion and point mutants of putative GATA-1 binding motifs showed that these GATA-1 binding sites were critical for high promoter activity. CREB-binding protein coactivated GATA-1 and markedly increased the activity of the Arr19 promoter. Both GATA-1 and CREB-binding proteins occupied the GATA-1 motifs within the Arr19 promoter, which was repressed by cAMP treatment. Altogether, these findings demonstrate that ARR19 is the target gene of GATA-1 and suggest that ARR19 gene expression in testicular Leydig cells is regulated by luteinizing hormone/cAMP signaling via the control of GATA-1 expression, resulting in the control of testicular steroidogenesis.
Collapse
Affiliation(s)
- Imteyaz Qamar
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
203
|
Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M. Development of macrophages of cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:411-429. [PMID: 19063916 DOI: 10.1016/j.dci.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
The innate immune responses of early vertebrates, such as bony fishes, play a central role in host defence against infectious diseases and one of the most important effector cells of innate immunity are macrophages. In order for macrophages to be effective in host defence they must be present at all times in the tissues of their host and importantly, the host must be capable of rapidly increasing macrophage numbers during times of need. Hematopoiesis is a process of formation and development of mature blood cells, including macrophages. Hematopoiesis is controlled by soluble factors known as cytokines, that influence changes in transcription factors within the target cells, resulting in cell fate changes and the final development of specific effector cells. The processes involved in macrophage development have been largely derived from mammalian model organisms. However, recent advancements have been made in the understanding of macrophage development in bony fish, a group of organisms that rely heavily on their innate immune defences. Our understanding of the growth factors involved in teleost macrophage development, as well as the receptors and regulatory mechanisms in place to control them has increased substantially. Furthermore, model organisms such as the zebrafish have emerged as important instruments in furthering our understanding of the transcriptional control of cell development in fish as well as in mammals. This review highlights the recent advancements in our understanding of teleost macrophage development. We focused on the growth factors identified to be important in the regulation of macrophage development from a progenitor cell into a functional macrophage and discuss the important transcription factors that have been identified to function in teleost hematopoiesis. We also describe the findings of in vivo studies that have reinforced observations made in vitro and have greatly improved the relevance and importance of using teleost fish as model organisms for studying developmental processes.
Collapse
|
204
|
Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 2009; 106:2259-2264. [PMID: 19171905 PMCID: PMC2650142 DOI: 10.1073/pnas.0806420106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
The dynamic packaging of DNA into chromatin is a fundamental step in the control of diverse nuclear processes. Whereas certain transcription factors and chromosomal components promote the formation of higher-order chromatin loops, the co-regulator machinery mediating loop assembly and disassembly is unknown. Using mice bearing a hypomorphic allele of the BRG1 chromatin remodeler, we demonstrate that the Brg1 mutation abrogated a cell type-specific loop between the beta-globin locus control region and the downstream beta major promoter, despite trans-acting factor occupancy at both sites. By contrast, distinct loops were insensitive to the Brg1 mutation. Molecular analysis with a conditional allele of GATA-1, a key regulator of hematopoiesis, in a novel cell-based system provided additional evidence that BRG1 functions early in chromatin domain activation to mediate looping. Although the paradigm in which chromatin remodelers induce nucleosome structural transitions is well established, our results demonstrating an essential role of BRG1 in the genesis of specific chromatin loops expands the repertoire of their functions.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599; and
| | - Christine M. Kiefer
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
205
|
Linking anemia to inflammation and cancer: the crucial role of TNFalpha. Biochem Pharmacol 2009; 77:1572-9. [PMID: 19174153 DOI: 10.1016/j.bcp.2008.12.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/03/2008] [Accepted: 12/16/2008] [Indexed: 12/18/2022]
Abstract
Erythropoiesis is considered as a multistep and tightly regulated process under the control of a series of cytokines including erythropoietin (Epo). Epo activates specific signaling pathways and leads to activation of key transcription factors such as GATA-1, in order to ensure erythroid differentiation. Deregulation leads to a decreased number of red blood cells, a hemoglobin deficiency, thus a limited oxygen-carrying capacity in the blood. Anemia represents a frequent complication in various diseases such as cancer or inflammatory diseases. It reduces both quality of life and prognosis in patients. Tumor necrosis factor alpha (TNFalpha) was described to be involved in the pathogenesis of inflammation and cancer related anemia. Blood transfusions and erythroid stimulating agents (ESAs) including human recombinant Epo (rhuEpo) are currently used as efficient treatments. Moreover, the recently described conflicting effects of ESAs in distinct studies require further investigations on the molecular mechanisms involved in TNFalpha-caused anemia. The present study aims to evaluate the current knowledge and the importance of the effect of the proinflammatory cytokine TNFalpha on erythropoiesis in inflammatory and malignant conditions.
Collapse
|
206
|
Abstract
Primary immune thrombocytopenic purpura (ITP) remains a diagnosis of exclusion both from nonimmune causes of thrombocytopenia and immune thrombocytopenia that develops in the context of other disorders (secondary immune thrombocytopenia). The pathobiology, natural history, and response to therapy of the diverse causes of secondary ITP differ from each other and from primary ITP, so accurate diagnosis is essential. Immune thrombocytopenia can be secondary to medications or to a concurrent disease, such as an autoimmune condition (eg, systemic lupus erythematosus [SLE], antiphospholipid antibody syndrome [APS], immune thyroid disease, or Evans syndrome), a lymphoproliferative disease (eg, chronic lymphocytic leukemia or large granular T-lymphocyte lymphocytic leukemia), or chronic infection, eg, with Helicobacter pylori, human immunodeficiency virus (HIV), or hepatitis C virus (HCV). Response to infection may generate antibodies that cross-react with platelet antigens (HIV, H pylori) or immune complexes that bind to platelet Fcgamma receptors (HCV), and platelet production may be impaired by infection of megakaryocyte (MK) bone marrow-dependent progenitor cells (HCV and HIV), decreased production of thrombopoietin (TPO), and splenic sequestration of platelets secondary to portal hypertension (HCV). Sudden and severe onset of thrombocytopenia has been observed in children after vaccination for measles, mumps, and rubella or natural viral infections, including Epstein-Barr virus, cytomegalovirus, and varicella zoster virus. This thrombocytopenia may be caused by cross-reacting antibodies and closely mimics acute ITP of childhood. Proper diagnosis and treatment of the underlying disorder, where necessary, play an important role in patient management.
Collapse
MESH Headings
- Humans
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Purpura, Thrombocytopenic, Idiopathic/physiopathology
- Purpura, Thrombocytopenic, Idiopathic/therapy
Collapse
Affiliation(s)
- Douglas B Cines
- University of Pennsylvania School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
207
|
|
208
|
Ciovacco WA, Raskind WH, Kacena MA. Human phenotypes associated with GATA-1 mutations. Gene 2008; 427:1-6. [PMID: 18930124 PMCID: PMC2601579 DOI: 10.1016/j.gene.2008.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 01/19/2023]
Abstract
GATA-1 is one of the six members of the GATA gene family, a group of related transcription factors discovered in the 1980s. In the past few decades, the crucial role of GATA-1 in normal human hematopoiesis has been delineated. As would be expected, mutations in GATA-1 have subsequently been found to have important clinical significance, and are directly linked to deregulated formation of certain blood cell lineages. This paper reviews the functional consequences of GATA-1 mutations by linking specific errors in the gene, or its downstream protein products, to documented human diseases. These five human diseases are: X-linked thrombocytopenia (XLT), X-linked thrombocytopenia with thalassemia (XLTT), congenital erythropoietic porphyria (CEP), transient myeloproliferative disorder (TMD) and acute megarakaryoblastic leukemia (AMKL) associated with Trisomy 21, and, lastly, a particular subtype of anemia associated with the production of GATA-1s, a shortened, mutant isoform of the wild-type GATA-1. The different phenotypic expressions associated with GATA-1 mutations illustrate the integral function of the transcription factor in overall body homeostasis. Furthermore, these direct genotype-phenotype correlations reinforce the importance of unraveling the human genome, as such connections may lead to important therapeutic or preventive therapies.
Collapse
Affiliation(s)
- Wendy A Ciovacco
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
209
|
Mori Y, Iwasaki H, Kohno K, Yoshimoto G, Kikushige Y, Okeda A, Uike N, Niiro H, Takenaka K, Nagafuji K, Miyamoto T, Harada M, Takatsu K, Akashi K. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. ACTA ACUST UNITED AC 2008; 206:183-93. [PMID: 19114669 PMCID: PMC2626675 DOI: 10.1084/jem.20081756] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To establish effective therapeutic strategies for eosinophil-related disorders, it is critical to understand the developmental pathway of human eosinophils. In mouse hematopoiesis, eosinophils originate from the eosinophil lineage-committed progenitor (EoP) that has been purified downstream of the granulocyte/macrophage progenitor (GMP). We show that the EoP is also isolatable in human adult bone marrow. The previously defined human common myeloid progenitor (hCMP) population (Manz, M.G., T. Miyamoto, K. Akashi, and I.L. Weissman. 2002. Proc. Natl. Acad. Sci. USA. 99:11872–11877) was composed of the interleukin 5 receptor α chain+ (IL-5Rα+) and IL-5Rα− fractions, and the former was the hEoP. The IL-5Rα+CD34+CD38+IL-3Rα+CD45RA− hEoPs gave rise exclusively to pure eosinophil colonies but never differentiated into basophils or neutrophils. The IL-5Rα− hCMP generated the hEoP together with the hGMP or the human megakaryocyte/erythrocyte progenitor (hMEP), whereas hGMPs or hMEPs never differentiated into eosinophils. Importantly, the number of hEoPs increased up to 20% of the conventional hCMP population in the bone marrow of patients with eosinophilia, suggesting that the hEoP stage is involved in eosinophil differentiation and expansion in vivo. Accordingly, the phenotypic definition of hCMP should be revised to exclude the hEoP; an “IL-5Rα–negative” criterion should be added to define more homogenous hCMP. The newly identified hEoP is a powerful tool in studying pathogenesis of eosinophilia and could be a therapeutic target for a variety of eosinophil-related disorders.
Collapse
Affiliation(s)
- Yasuo Mori
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HKA, Hirschhorn JN, Cantor AB, Orkin SH. Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science 2008; 322:1839-42. [DOI: 10.1126/science.1165409] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the β-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here, we examine BCL11A as a potential regulator of HbF expression. The high-HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the β-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in β-hemoglobin disorders.
Collapse
|
211
|
SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2008; 113:2191-201. [PMID: 19011221 DOI: 10.1182/blood-2008-07-169417] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GATA-1 controls hematopoietic development by activating and repressing gene transcription, yet the in vivo mechanisms that specify these opposite activities are unknown. By examining the composition of GATA-1-associated protein complexes in a conditional erythroid rescue system as well as through the use of tiling arrays we detected the SCL/TAL1, LMO2, Ldb1, E2A complex at all positively acting GATA-1-bound elements examined. Similarly, the SCL complex is present at all activating GATA elements in megakaryocytes and mast cells. In striking contrast, at sites where GATA-1 functions as a repressor, the SCL complex is depleted. A DNA-binding defective form of SCL maintains association with a subset of active GATA elements indicating that GATA-1 is a key determinant for SCL recruitment. Knockdown of LMO2 selectively impairs activation but not repression by GATA-1. ETO-2, an SCL-associated protein with the potential for transcription repression, is also absent from GATA-1-repressed genes but, unlike SCL, fails to accumulate at GATA-1-activated genes. Together, these studies identify the SCL complex as a critical and consistent determinant of positive GATA-1 activity in multiple GATA-1-regulated hematopoietic cell lineages.
Collapse
|
212
|
Wozniak RJ, Keles S, Lugus JJ, Young KH, Boyer ME, Tran TM, Choi K, Bresnick EH. Molecular hallmarks of endogenous chromatin complexes containing master regulators of hematopoiesis. Mol Cell Biol 2008; 28:6681-6694. [PMID: 18779319 PMCID: PMC2573226 DOI: 10.1128/mcb.01061-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/05/2008] [Accepted: 08/28/2008] [Indexed: 01/18/2023] Open
Abstract
Combinatorial interactions among trans-acting factors establish transcriptional circuits that orchestrate cellular differentiation, survival, and development. Unlike circuits instigated by individual factors, efforts to identify gene ensembles controlled by multiple factors simultaneously are in their infancy. A paradigm has emerged in which the important regulators of hematopoiesis GATA-1 and GATA-2 function combinatorially with Scl/TAL1, another key regulator of hematopoiesis. The underlying mechanism appears to involve preferential assembly of a multimeric complex on a composite DNA element containing WGATAR and E-box motifs. Based on this paradigm, one would predict that GATA-2 and Scl/TAL1 would commonly co-occupy such composite elements in cells. However, chromosome-wide analyses indicated that the vast majority of conserved composite elements were occupied by neither GATA-2 nor Scl/TAL1. Intriguingly, the highly restricted set of GATA-2-occupied composite elements had characteristic molecular hallmarks, specifically Scl/TAL1 occupancy, a specific epigenetic signature, specific neighboring cis elements, and preferential enhancer activity in GATA-2-expressing cells. Genes near the GATA-2-Scl/TAL1-occupied composite elements were regulated by GATA-2 or GATA-1, and therefore these fundamental studies on combinatorial transcriptional mechanisms were also leveraged to discover novel GATA factor-mediated cell regulatory pathways.
Collapse
Affiliation(s)
- Ryan J Wozniak
- University of Wisconsin School of Medicine and Public Health, Department of Pharmacology, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood 2008; 112:2738-49. [PMID: 18625887 PMCID: PMC2556610 DOI: 10.1182/blood-2008-03-146605] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 06/09/2008] [Indexed: 12/24/2022] Open
Abstract
The transcription factor GATA1 coordinates timely activation and repression of megakaryocyte gene expression. Loss of GATA1 function results in excessive megakaryocyte proliferation and disordered terminal platelet maturation, leading to thrombocytopenia and leukemia in patients. The mechanisms by which GATA1 does this are unclear. We have used in vivo biotinylated GATA1 to isolate megakaryocyte GATA1-partner proteins. Here, several independent approaches show that GATA1 interacts with several proteins in the megakaryocyte cell line L8057 and in primary megakaryocytes. They include FOG1, the NURD complex, the pentameric complex containing SCL/TAL-1, the zinc-finger regulators GFI1B and ZFP143, and the corepressor ETO2. Knockdown of ETO2 expression promotes megakaryocyte differentiation and enhances expression of select genes expressed in terminal megakaryocyte maturation, eg, platelet factor 4 (Pf4). ETO2-dependent direct repression of the Pf4 proximal promoter is mediated by GATA-binding sites and an E-Box motif. Consistent with this, endogenous ETO2, GATA1, and the SCL pentameric complex all specifically bind the promoter in vivo. Finally, as ETO2 expression is restricted to immature megakaryocytes, these data suggest that ETO2 directly represses inappropriate early expression of a subset of terminally expressed megakaryocyte genes by binding to GATA1 and SCL.
Collapse
Affiliation(s)
- Isla Hamlett
- Medical Research Council (MRC) Molecular Haematology Unit and Department of Haematology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
214
|
Beuling E, Bosse T, aan de Kerk DJ, Piaseckyj CM, Fujiwara Y, Katz SG, Orkin SH, Grand RJ, Krasinski SD. GATA4 mediates gene repression in the mature mouse small intestine through interactions with friend of GATA (FOG) cofactors. Dev Biol 2008; 322:179-89. [PMID: 18692040 PMCID: PMC3031907 DOI: 10.1016/j.ydbio.2008.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/01/2008] [Accepted: 07/17/2008] [Indexed: 12/23/2022]
Abstract
GATA4, a transcription factor expressed in the proximal small intestine but not in the distal ileum, maintains proximal-distal distinctions by multiple processes involving gene repression, gene activation, and cell fate determination. Friend of GATA (FOG) is an evolutionarily conserved family of cofactors whose members physically associate with GATA factors and mediate GATA-regulated repression in multiple tissues. Using a novel, inducible, intestine-specific Gata4 knock-in model in mice, in which wild-type GATA4 is specifically inactivated in the small intestine, but a GATA4 mutant that does not bind FOG cofactors (GATA4ki) continues to be expressed, we found that ileal-specific genes were significantly induced in the proximal small intestine (P<0.01); in contrast, genes restricted to proximal small intestine and cell lineage markers were unaffected, indicating that GATA4-FOG interactions contribute specifically to the repression function of GATA4 within this organ. Fog1 mRNA displayed a proximal-distal pattern that parallels that of Gata4, and FOG1 protein was co-expressed with GATA4 in intestinal epithelial cells, implicating FOG1 as the likely mediator of GATA4 function in the small intestine. Our data are the first to indicate FOG function and expression in the mammalian small intestine.
Collapse
Affiliation(s)
- Eva Beuling
- School of Medicine, Erasmus University Rotterdam, Rotterdam, The Netherlands, 3000DR
| | - Tjalling Bosse
- School of Medicine, Erasmus University Rotterdam, Rotterdam, The Netherlands, 3000DR
- School of Medicine, University of Amsterdam, Amsterdam, The Netherlands 1100DD
| | | | - Christina M. Piaseckyj
- Division of Gastroenterology and Nutrition, Department of Medicine, Children’s Hospital Boston, Boston, Massachusetts, 02115
| | - Yuko Fujiwara
- Division of Hematology-Oncology, Children’s Hospital and Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital, Boston, MA 02115
| | - Samuel G. Katz
- Division of Hematology-Oncology, Children’s Hospital and Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital, Boston, MA 02115
| | - Stuart H. Orkin
- Division of Hematology-Oncology, Children’s Hospital and Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital, Boston, MA 02115
| | - Richard J. Grand
- Division of Gastroenterology and Nutrition, Department of Medicine, Children’s Hospital Boston, Boston, Massachusetts, 02115
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115
| | - Stephen D. Krasinski
- Division of Gastroenterology and Nutrition, Department of Medicine, Children’s Hospital Boston, Boston, Massachusetts, 02115
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, 02111
| |
Collapse
|
215
|
Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I, Pear WS, Aster JC, Gilliland DG. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 2008; 3:314-26. [PMID: 18786418 PMCID: PMC3970322 DOI: 10.1016/j.stem.2008.07.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/14/2008] [Accepted: 07/16/2008] [Indexed: 02/08/2023]
Abstract
In the hematopoietic system, Notch signaling specifies T cell lineage fate, in part through negative regulation of B cell and myeloid lineage development. However, we unexpectedly observed the development of megakaryocytes when using heterotypic cocultures of hematopoietic stem cells with OP9 cells expressing Delta-like1, but not with parental OP9 cells. This effect was abrogated by inhibition of Notch signaling either with gamma-secretase inhibitors or by expression of the dominant-negative Mastermind-like1. The importance of Notch signaling for megakaryopoietic development in vivo was confirmed by using mutant alleles that either activate or inhibit Notch signaling. These findings indicate that Notch is a positive regulator of megakaryopoiesis and plays a more complex role in cell-fate decisions among myeloid progenitors than previously appreciated.
Collapse
Affiliation(s)
| | | | - Christopher Sears
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | - Ivan Maillard
- Department of Medicine, Life Sciences Institute and Division of Hematology-Oncology, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Division of Hematology, Abramson Family Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jon C. Aster
- Department of Medicine, Division of Pathology Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 20115, USA
| | - D. Gary Gilliland
- Department of Medicine, Division of Hematology
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
216
|
Liu S, Bhattacharya S, Han A, Suragani RNVS, Zhao W, Fry RC, Chen JJ. Haem-regulated eIF2alpha kinase is necessary for adaptive gene expression in erythroid precursors under the stress of iron deficiency. Br J Haematol 2008; 143:129-37. [PMID: 18665838 DOI: 10.1111/j.1365-2141.2008.07293.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Haem-regulated eIF2alpha kinase (HRI) is essential for the regulation of globin gene translation and the survival of erythroid precursors in iron/haem deficiency. This study found that that in iron deficiency, fetal definitive erythropoiesis is inhibited at the basophilic erythroblast stage with increased proliferation and elevated apoptosis. This hallmark of ineffective erythropoiesis is more severe in HRI deficiency. Microarray gene profiling analysis showed that HRI was required for adaptive gene expression in erythroid precursors during chronic iron deficiency. The number of genes with expression affected more than twofold increased, from 213 in iron deficiency and 73 in HRI deficiency, to 3135 in combined iron and HRI deficiencies. Many of these genes are regulated by Gata1 and Fog1. We demonstrate for the first time that Gata1 expression in developing erythroid precursors is decreased in iron deficiency, and is decreased further in combined iron and HRI deficiencies. Additionally, Fog1 expression is decreased in combined deficiencies, but not in iron or HRI deficiency alone. Our results indicate that HRI confers adaptive gene expression in developing erythroblasts during iron deficiency through maintaining Gata1/Fog1 expression.
Collapse
Affiliation(s)
- Sijin Liu
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Bates DL, Chen Y, Kim G, Guo L, Chen L. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 2008; 381:1292-306. [PMID: 18621058 DOI: 10.1016/j.jmb.2008.06.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 11/26/2022]
Abstract
The GATA family of transcription factors (GATA1-6) binds selected GATA sites in vertebrate genomes to regulate specific gene expression. Although vertebrate GATA factors have two highly conserved zinc finger motifs, how the two fingers act together to recognize functional DNA elements is not well understood. Here we determined the crystal structures of the C-terminal zinc finger of mouse GATA3 bound to DNA containing two variously arranged GATA binding sites. Our structures and accompanying biochemical analyses reveal two distinct modes of DNA binding by GATA to closely arranged sites. One mode involves cooperative binding by two GATA factors that interact with each other through protein-protein interactions. The other involves simultaneous binding of the N-terminal zinc finger (N-finger) and the C-terminal zinc finger of the same GATA factor. Our studies represent the first crystallographic analysis of GATA zinc fingers bound to DNA and provide new insights into the DNA recognition mechanism by the GATA zinc finger. Our crystal structure also reveals a dimerization interface in GATA that has previously been shown to be important for GATA self-association. These findings significantly advance our understanding of the structure and function of GATA and provide an important framework for further investigating the in vivo mechanisms of GATA-dependent gene regulation.
Collapse
Affiliation(s)
- Darren L Bates
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215, USA
| | | | | | | | | |
Collapse
|
218
|
Takemoto CM, Lee YN, Jegga AG, Zablocki D, Brandal S, Shahlaee A, Huang S, Ye Y, Gowrisankar S, Huynh J, McDevitt MA. Mast cell transcriptional networks. Blood Cells Mol Dis 2008; 41:82-90. [PMID: 18406636 PMCID: PMC2478671 DOI: 10.1016/j.bcmd.2008.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/06/2008] [Indexed: 11/20/2022]
Abstract
Unregulated activation of mast cells can contribute to the pathogenesis of inflammatory and allergic diseases, including asthma, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. Absence of mast cells in animal models can lead to impairment in the innate immune response to parasites and bacterial infections. Aberrant clonal accumulation and proliferation of mast cells can result in a variety of diseases ranging from benign cutaneous mastocytosis to systemic mastocytosis or mast cell leukemia. Understanding mast cell differentiation provides important insights into mechanisms of lineage selection during hematopoiesis and can provide targets for new drug development to treat mast cell disorders. In this review, we discuss controversies related to development, sites of origin, and the transcriptional program of mast cells.
Collapse
Affiliation(s)
- Clifford M Takemoto
- Division of Pediatric Hematology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Smagulova FO, Manuylov NL, Leach LL, Tevosian SG. GATA4/FOG2 transcriptional complex regulates Lhx9 gene expression in murine heart development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:67. [PMID: 18577233 PMCID: PMC2447832 DOI: 10.1186/1471-213x-8-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND GATA4 and FOG2 proteins are required for normal cardiac development in mice. It has been proposed that GATA4/FOG2 transcription complex exercises its function through gene activation as well as repression; however, targets of GATA4/FOG2 action in the heart remain elusive. RESULTS Here we report identification of the Lhx9 gene as a direct target of the GATA4/FOG2 complex. We demonstrate that the developing mouse heart normally expresses truncated isoforms of Lhx9 - Lhx9alpha and Lhx9beta, and not the Lhx9-HD isoform that encodes a protein with an intact homeodomain. At E9.5 Lhx9alpha/beta expression is prominent in the epicardial primordium, septum transversum while Lhx9-HD is absent from this tissue; in the E11.5 heart LHX9alpha/beta-positive cells are restricted to the epicardial mesothelium. Thereafter in the control hearts Lhx9alpha/beta epicardial expression is promptly down-regulated; in contrast, mouse mutants with Fog2 gene loss fail to repress Lhx9alpha/beta expression. Chromatin immunoprecipitation from the E11.5 hearts demonstrated that Lhx9 is a direct target for GATA4 and FOG2. In transient transfection studies the expression driven by the cis-regulatory regions of Lhx9 was repressed by FOG2 in the presence of intact GATA4, but not the GATA4ki mutant that is impaired in its ability to bind FOG2. CONCLUSION In summary, the Lhx9 gene represents the first direct target of the GATA4/FOG2 repressor complex in cardiac development.
Collapse
Affiliation(s)
- Fatima O Smagulova
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay L Manuylov
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Lyndsay L Leach
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Sergei G Tevosian
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
220
|
Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 2008; 112:1068-77. [PMID: 18523151 DOI: 10.1182/blood-2008-01-133504] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage-specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins.
Collapse
|
221
|
Vonderfecht TR, Schroyer DL, Schenck BL, McDonough VM, Pikaart MJ. Substitution of DNA-contacting amino acids with functional variants in the Gata-1 zinc finger: a structurally and phylogenetically guided mutagenesis. Biochem Biophys Res Commun 2008; 369:1052-6. [PMID: 18328814 PMCID: PMC2443638 DOI: 10.1016/j.bbrc.2008.02.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
DNA-binding functionality among transcription factor proteins is afforded by a number of structural motifs, such as the helix-turn-helix, helix-loop-helix, and zinc finger domains. The common thread among these diverse structures is their sequence-specific binding to essential promoter or other genetic regulatory sequences with high selectivity and affinity. One such motif, present in a wide range of organisms from bacteria to vertebrates, is the Gata-type zinc finger. This family of DNA-binding proteins is characterized by the presence of one or two (Cys)(4) metal binding sites which recognize the protein's eponymous binding site, GATA. Unlike other conserved DNA-binding domains, Gata proteins appear to be restricted to binding consensus GATA sequences, or near variations, in DNA. Since the architecture of the Gata finger seems built around recognizing this particular sequence, we set out to define the allowable range of amino acid substitutions along the DNA-binding surface of a Gata finger that could continue to support sequence-specific DNA-binding activity. Accordingly, we set up a one-hybrid screen in yeast based on the chicken Gata-1 C-terminal zinc finger. Mutant libraries were generated at five amino acids identified in the Gata-DNA structure as likely to mediate sequence-specific contacts between the Gata finger and DNA. These libraries were designed to give as exhaustive amino acid coverage as possible such that almost all alternative amino acids were screened at each of the five probed positions. Screening and characterization of these libraries revealed several functional amino acid substitutions at two leucines which contact the DNA at the 3' and 5' flanks of the GATA binding site, but no functional substituents for amino acids near the core of the binding site. This pattern is consistent with amino acid sequences of known DNA-binding Gata fingers.
Collapse
|
222
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 PMCID: PMC2276466 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 12/21/2007] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
223
|
Abstract
The study of thrombopoiesis has evolved greatly since an era when platelets were termed "the dust of the blood," only about 100 years ago. During this time megakaryocytes were identified as the origin of blood platelets; marrow-derived megakaryocytic progenitor cells were functionally defined and then purified; and the primary regulator of the process, thrombopoietin, was cloned and characterized and therapeutic thrombopoietic agents developed. During this journey we continue to learn that the physiologic mechanisms that drive proplatelet formation can be recapitulated in cell-free systems and their biochemistry evaluated; the molecular underpinnings of endomitosis are being increasingly understood; the intracellular signals sent by engagement of a large number of megakaryocyte surface receptors have been defined; and many of the transcription factors that drive megakaryocytic fate determination have been identified and experimentally manipulated. While some of these biologic processes mimic those seen in other cell types, megakaryocytes and platelets possess enough unique developmental features that we are virtually assured that continued study of thrombopoiesis will yield innumerable clinical and scientific insights for many decades to come.
Collapse
|
224
|
Pina C, May G, Soneji S, Hong D, Enver T. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem Cell 2008; 2:264-73. [PMID: 18371451 DOI: 10.1016/j.stem.2008.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 12/14/2007] [Accepted: 01/22/2008] [Indexed: 11/23/2022]
Abstract
Regulatory mechanisms of human hematopoiesis remain largely uncharacterized. Through expression profiling of prospectively isolated stem and primitive progenitor cells as well as committed progenitors from cord blood (CB), we identified MLLT3 as a candidate regulator of erythroid/megakaryocytic (E/Meg) lineage decisions. Through the analysis of the hematopoietic potential of primitive cord blood cells in which MLLT3 expression has been knocked down, we identify a requirement for MLLT3 in the elaboration of the erythroid and megakaryocytic lineages. Conversely, forced expression of MLLT3 promotes the output of erythroid and megakaryocytic progenitors, and analysis of MLLT3 mutants suggests that this capacity of MLLT3 depends on its transcriptional regulatory activity. Gene expression and cis-regulatory element analyses reveal crossregulatory interactions between MLLT3 and E/Meg-affiliated transcription factor GATA-1. Taken together, the data identify MLLT3 as a regulator of early erythroid and megakaryocytic cell fate in the human system.
Collapse
Affiliation(s)
- Cristina Pina
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
225
|
A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 2008; 105:3333-8. [PMID: 18303114 DOI: 10.1073/pnas.0712312105] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) control tissue development, but their mechanism of regulation is not well understood. We used a gene complementation strategy combined with microarray screening to identify miRNAs involved in the formation of erythroid (red blood) cells. Two conserved miRNAs, miR 144 and miR 451, emerged as direct targets of the critical hematopoietic transcription factor GATA-1. In vivo, GATA-1 binds a distal upstream regulatory element to activate RNA polymerase II-mediated transcription of a single common precursor RNA (pri-miRNA) encoding both mature miRNAs. Zebrafish embryos depleted of miR 451 by using antisense morpholinos form erythroid precursors, but their development into mature circulating red blood cells is strongly and specifically impaired. These results reveal a miRNA locus that is required for erythropoiesis and uncover a new regulatory axis through which GATA-1 controls this process.
Collapse
|
226
|
Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, Akashi K, Orkin SH. Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. ACTA ACUST UNITED AC 2008; 205:611-24. [PMID: 18299398 PMCID: PMC2275384 DOI: 10.1084/jem.20070544] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor GATA-1 requires direct physical interaction with the cofactor friend of GATA-1 (FOG-1) for its essential role in erythroid and megakaryocytic development. We show that in the mast cell lineage, GATA-1 functions completely independent of FOG proteins. Moreover, we demonstrate that FOG-1 antagonizes the fate choice of multipotential progenitor cells for the mast cell lineage, and that its down-regulation is a prerequisite for mast cell development. Remarkably, ectopic expression of FOG-1 in committed mast cell progenitors redirects them into the erythroid, megakaryocytic, and granulocytic lineages. These lineage switches correlate with transcriptional down-regulation of GATA-2, an essential mast cell GATA factor, via switching of GATA-1 for GATA-2 at a key enhancer element upstream of the GATA-2 gene. These findings illustrate combinatorial control of cell fate identity by a transcription factor and its cofactor, and highlight the role of transcriptional networks in lineage determination. They also provide evidence for lineage instability during early stages of hematopoietic lineage commitment.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
228
|
Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development. Mol Cell Biol 2008; 28:2675-89. [PMID: 18250154 DOI: 10.1128/mcb.01945-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A complete understanding of the transcriptional regulation of developmental lineages requires that all relevant factors be identified. Here, we have taken a proteomic approach to identify novel proteins associated with GATA-1, a lineage-restricted zinc finger transcription factor required for terminal erythroid and megakaryocytic maturation. We identify the Krüppel-type zinc finger transcription factor ZBP-89 as being a component of multiprotein complexes involving GATA-1 and its essential cofactor Friend of GATA-1 (FOG-1). Using chromatin immunoprecipitation assays, we show that GATA-1 and ZBP-89 cooccupy cis-regulatory elements of certain erythroid and megakaryocyte-specific genes, including an enhancer of the GATA-1 gene itself. Loss-of-function studies in zebrafish and mice demonstrate an in vivo requirement for ZBP-89 in megakaryopoiesis and definitive erythropoiesis but not primitive erythropoiesis, phenocopying aspects of FOG-1- and GATA-1-deficient animals. These findings identify ZBP-89 as being a novel transcription factor involved in erythroid and megakaryocytic development and suggest that it serves a cooperative function with GATA-1 and/or FOG-1 in a developmental stage-specific manner.
Collapse
|
229
|
Abstract
Abstract
Ikaros—a factor that positively or negatively controls gene transcription—is active in murine adult erythroid cells, and involved in fetal to adult globin switching. Mice with Ikaros mutations have defects in erythropoiesis and anemia. In this paper, we have studied the role of Ikaros in human erythroid development for the first time. Using a gene-transfer strategy, we expressed Ikaros 6 (Ik6)—a known dominant-negative protein that interferes with normal Ikaros activity—in cord blood or apheresis CD34+ cells that were induced to differentiate along the erythroid pathway. Lentivirally induced Ik6-forced expression resulted in increased cell death, decreased cell proliferation, and decreased expression of erythroid-specific genes, including GATA1 and fetal and adult globins. In contrast, we observed the maintenance of a residual myeloid population that can be detected in this culture system, with a relative increase of myeloid gene expression, including PU1. In secondary cultures, expression of Ik6 favored reversion of sorted and phenotypically defined erythroid cells into myeloid cells, and prevented reversion of myeloid cells into erythroid cells. We conclude that Ikaros is involved in human adult or fetal erythroid differentiation as well as in the commitment between erythroid and myeloid cells.
Collapse
|
230
|
Jing H, Vakoc CR, Ying L, Mandat S, Wang H, Zheng X, Blobel GA. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol Cell 2008; 29:232-42. [PMID: 18243117 PMCID: PMC2254447 DOI: 10.1016/j.molcel.2007.11.020] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/21/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022]
Abstract
Enhancers can regulate designate promoters over long distances by forming chromatin loops. Whether chromatin loops are lost or reconfigured during gene repression is largely unexplored. We examined the chromosome conformation of the Kit gene that is expressed during early erythropoiesis but is downregulated upon cell maturation. Kit expression is controlled by sequential occupancy of two GATA family transcription factors. In immature cells, a distal enhancer bound by GATA-2 is in physical proximity with the active Kit promoter. Upon cell maturation, GATA-1 displaces GATA-2 and triggers a loss of the enhancer/promoter interaction. Moreover, GATA-1 reciprocally increases the proximity in nuclear space among distinct downstream GATA elements. GATA-1-induced transitions in chromatin conformation are not simply the consequence of transcription inhibition and require the cofactor FOG-1. This work shows that a GATA factor exchange reconfigures higher-order chromatin organization, and suggests that de novo chromatin loop formation is employed by nuclear factors to specify repressive outcomes.
Collapse
Affiliation(s)
- Huie Jing
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Roche AE, Bassett BJ, Samant SA, Hong W, Blobel GA, Svensson EC. The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. J Mol Cell Cardiol 2008; 44:352-60. [PMID: 18067919 PMCID: PMC2277079 DOI: 10.1016/j.yjmcc.2007.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/27/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.
Collapse
Affiliation(s)
- Andrea E. Roche
- Committee on Developmental Biology, University of Chicago, Chicago, IL
| | | | | | - Wei Hong
- Division of Hematology, Children’s Hospital of Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, PA
- University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Eric C. Svensson
- Committee on Developmental Biology, University of Chicago, Chicago, IL
- Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
232
|
Wozniak RJ, Bresnick EH. Chapter 3 Epigenetic Control of Complex Loci During Erythropoiesis. Curr Top Dev Biol 2008; 82:55-83. [DOI: 10.1016/s0070-2153(07)00003-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
233
|
Abstract
PURPOSE OF REVIEW The aim of this review is to explore the state of the art knowledge on the cell biological and molecular pathways that regulate megakaryopoiesis and lead to platelet production. RECENT FINDINGS In the last 2 years there has been considerable progress in the elucidation of molecular mechanisms of megakaryocyte development and platelet biogenesis, driven by the application of modern molecular biology approaches to these specialized and unique cells. Studies have for the first time visualized endomitotic spindle dynamics, characterized the maturation of the demarcation membrane system, and delineated the mechanics of organelle transport and microtubule assembly in living megakaryocytes. The role of specific molecules in platelet production has been elucidated in greater detail by combining molecular studies with genetically engineered mice as well as embryonic cell culture systems. SUMMARY This review integrates the latest studies of megakaryocyte development into the molecular pathways that regulate megakaryopoiesis and thrombopoiesis. Decoding the pathways of megakaryopoiesis and platelet production should help revolutionize the management of thrombocytopenia and other platelet disorders.
Collapse
|
234
|
Abstract
Hemopoietic lineage switch (Hls) 5 and 7 were originally isolated as genes up-regulated during an erythroid-to-myeloid lineage switch. We have shown previously that Hls7/Mlf1 imposes a monoblastoid phenotype on erythroleukemic cells. Here we show that Hls5 impedes erythroid maturation by restricting proliferation and inhibiting hemoglobin synthesis; however, Hls5 does not influence the morphology of erythroid cells. Under the influence of GATA-1, Hls5 relocates from cytoplasmic granules to the nucleus where it associates with both FOG-1 and GATA-1. In the nucleus, Hls5 is able to suppress GATA-1-mediated transactivation and reduce GATA-1 binding to DNA. We conclude that Hls5 and Hls7/Mlf1 act cooperatively to induce biochemical and phenotypic changes associated with erythroid/myeloid lineage switching.
Collapse
|
235
|
Differential context-dependent effects of friend of GATA-1 (FOG-1) on mast-cell development and differentiation. Blood 2007; 111:1924-32. [PMID: 18063754 DOI: 10.1182/blood-2007-08-104489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Friend of GATA-1 (FOG-1) is a binding partner of GATA-1, a zinc finger transcription factor with crucial roles in erythroid, megakaryocytic, and mast-cell differentiation. FOG-1 is indispensable for the function of GATA-1 during erythro/megakaryopoiesis, but FOG-1 is not expressed in mast cells. Here, we analyzed the role of FOG-1 in mast-cell differentiation using a combined experimental system with conditional gene expression and in vitro hematopoietic induction of mouse embryonic stem cells. Expression of FOG-1 during the progenitor period inhibited the differentiation of mast cells and enhanced the differentiation of neutrophils. Analysis using a mutant of PU.1, a transcription factor that positively or negatively cooperates with GATA-1, revealed that this lineage skewing was caused by disrupted binding between GATA-1 and PU.1, which is a prerequisite for mast-cell differentiation. However, FOG-1 expression in mature mast cells brought approximately a reversible loss of the mast-cell phenotype. In contrast to the lineage skewing, the loss of the mast-cell phenotype was caused by down-regulation of MITF, a basic helix-loop-helix transcription factor required for mast-cell differentiation and maturation. These results indicate that FOG-1 inhibits mast-cell differentiation in a differentiation stage-dependent manner, and its effects are produced via different molecular mechanisms.
Collapse
|
236
|
Muratoglu S, Hough B, Mon ST, Fossett N. The GATA factor Serpent cross-regulates lozenge and u-shaped expression during Drosophila blood cell development. Dev Biol 2007; 311:636-49. [PMID: 17869239 PMCID: PMC2132443 DOI: 10.1016/j.ydbio.2007.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
The Drosophila GATA factor Serpent interacts with the RUNX factor Lozenge to activate the crystal cell program, whereas SerpentNC binds the Friend of GATA protein U-shaped to limit crystal cell production. Here, we identified a lozenge minimal hematopoietic cis-regulatory module and showed that lozenge-lacZ reporter-gene expression was autoregulated by Serpent and Lozenge. We also showed that upregulation of u-shaped was delayed until after lozenge activation, consistent with our previous results that showed u-shaped expression in the crystal cell lineage is dependent on both Serpent and Lozenge. Together, these observations describe a feed forward regulatory motif, which controls the temporal expression of u-shaped. Finally, we showed that lozenge reporter-gene activity increased in a u-shaped mutant background and that forced expression of SerpentNC with U-shaped blocked lozenge- and u-shaped-lacZ reporter-gene activity. This is the first demonstration of GATA:FOG regulation of Runx and Fog gene expression. Moreover, these results identify components of a Serpent cross-regulatory sub-circuit that can modulate lozenge expression. Based on the sub-circuit design and the combinatorial control of crystal cell production, we present a model for the specification of a dynamic bi-potential regulatory state that contributes to the selection between a Lozenge-positive and Lozenge-negative state.
Collapse
Affiliation(s)
- Selen Muratoglu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Barry Hough
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Soe T. Mon
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
237
|
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 2007; 26:6777-6794. [PMID: 17934485 DOI: 10.1038/sj.onc.1210761] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.
Collapse
Affiliation(s)
- S-I Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI 53706, USA
| | | |
Collapse
|
238
|
Frontelo P, Manwani D, Galdass M, Karsunky H, Lohmann F, Gallagher PG, Bieker JJ. Novel role for EKLF in megakaryocyte lineage commitment. Blood 2007; 110:3871-80. [PMID: 17715392 PMCID: PMC2190608 DOI: 10.1182/blood-2007-03-082065] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Megakaryocytes and erythroid cells are thought to derive from a common progenitor during hematopoietic differentiation. Although a number of transcriptional regulators are important for this process, they do not explain the bipotential result. We now show by gain- and loss-of-function studies that erythroid Krüppel-like factor (EKLF), a transcription factor whose role in erythroid gene regulation is well established, plays an unexpected directive role in the megakaryocyte lineage. EKLF inhibits the formation of megakaryocytes while at the same time stimulating erythroid differentiation. Quantitative examination of expression during hematopoiesis shows that, unlike genes whose presence is required for establishment of both lineages, EKLF is uniquely down-regulated in megakaryocytes after formation of the megakaryocyte-erythroid progenitor. Expression profiling and molecular analyses support these observations and suggest that megakaryocytic inhibition is achieved, at least in part, by EKLF repression of Fli-1 message levels.
Collapse
|
239
|
Wood W, Jacinto A. Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat Rev Mol Cell Biol 2007; 8:542-51. [PMID: 17565363 DOI: 10.1038/nrm2202] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster haemocytes constitute the cellular arm of a robust innate immune system in flies. In the adult and larva, these cells operate as the first line of defence against invading microorganisms: they phagocytose pathogens and produce antimicrobial peptides. However, in the sterile environment of the embryo, these important immune functions are largely redundant. Instead, throughout development, embryonic haemocytes are occupied with other tasks: they undergo complex migrations and carry out several non-immune functions that are crucial for successful embryogenesis.
Collapse
Affiliation(s)
- Will Wood
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, UK.
| | | |
Collapse
|
240
|
Henning K, Schroeder T, Schwanbeck R, Rieber N, Bresnick EH, Just U. mNotch1 signaling and erythropoietin cooperate in erythroid differentiation of multipotent progenitor cells and upregulate beta-globin. Exp Hematol 2007; 35:1321-32. [PMID: 17637499 DOI: 10.1016/j.exphem.2007.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. MATERIALS AND METHODS Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. RESULTS Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. CONCLUSIONS Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.
Collapse
Affiliation(s)
- Konstanze Henning
- Department of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
241
|
Abstract
Megakaryocytopoiesis is the process that leads to the production of platelets. This process involves the commitment of multipotent hematopoietic stem cells toward megakaryocyte (MK) progenitors, the proliferation and differentiation of MK progenitors, the polyploidization of MK precursors and the maturation of MK. Mature MK produce platelets by cytoplasmic fragmentation occurring through a dynamic and regulated process, called proplatelet formation, and consisting of long pseudopodial elongations that break in the blood flow. Recent insights have demonstrated that the MK and erythroid lineages are tightly associated at both the cellular and molecular levels, especially in the transcription factors that regulate their differentiation programs. Megakaryocytopoiesis is regulated by two types of transcription factors, those regulating the differentiation process, such as GATA-1, and those regulating proplatelet formation, such as NF-E2. The humoral factor thrombopoietin (TPO) is the primary regulator of MK differentiation and platelet production through the stimulation of its receptor MPL. Numerous acquired or congenital pathologies of the MK lineage are now explained by molecular abnormalities in the activity of the transcription factors involved in megakaryocytopoiesis, in the Tpo or c-mpl genes, as well as in signaling molecules associated with MPL. The recent development of MPL agonists may provide efficient agents for the treatment of some thrombocytopenias.
Collapse
Affiliation(s)
- Y Chang
- INSERM, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | | | | | | |
Collapse
|
242
|
Fang J, Menon M, Kapelle W, Bogacheva O, Bogachev O, Houde E, Browne S, Sathyanarayana P, Wojchowski DM. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts. Blood 2007; 110:2361-70. [PMID: 17548578 PMCID: PMC1988929 DOI: 10.1182/blood-2006-12-063503] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Erythropoietin (EPO's) actions on erythroblasts are ascribed largely to survival effects. Certain studies, however, point to EPO-regulated proliferation. To investigate this problem in a primary system, Kit(pos)CD71(high) erythroblasts were prepared from murine bone marrow, and were first used in the array-based discovery of EPO-modulated cell-cycle regulators. Five cell-cycle progression factors were rapidly up-modulated: nuclear protein 1 (Nupr1), G1 to S phase transition 1 (Gspt1), early growth response 1 (Egr1), Ngfi-A binding protein 2 (Nab2), and cyclin D2. In contrast, inhibitory cyclin G2, p27/Cdkn1b, and B-cell leukemia/lymphoma 6 (Bcl6) were sharply down-modulated. For CYCLIN G2, ectopic expression also proved to selectively attenuate EPO-dependent UT7epo cell-cycle progression at S-phase. As analyzed in primary erythroblasts expressing minimal EPO receptor alleles, EPO repression of cyclin G2 and Bcl6, and induction of cyclin D2, were determined to depend on PY343 (and Stat5) signals. Furthermore, erythroblasts expressing a on PY-null EPOR-HM allele were abnormally distributed in G0/G1. During differentiation divisions, EPOR-HM Ter119(pos) erythroblasts conversely accumulated in S-phase and faltered in an apparent EPO-directed transition to G0/G1. EPO/EPOR signals therefore control the expression of select cell-cycle regulatory genes that are proposed to modulate stage-specific decisions for erythroblast cell-cycle progression.
Collapse
Affiliation(s)
- Jing Fang
- Program in Stem and Progenitor Cell Biology, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Kim SI, Bultman SJ, Jing H, Blobel GA, Bresnick EH. Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol Cell Biol 2007; 27:4551-4565. [PMID: 17438135 PMCID: PMC1900038 DOI: 10.1128/mcb.00235-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/21/2007] [Accepted: 04/03/2007] [Indexed: 12/24/2022] Open
Abstract
GATA factors orchestrate hematopoiesis via multistep transcriptional mechanisms, but the interrelationships and importance of individual steps are poorly understood. Using complementation analysis with GATA-1-null cells and mice containing a hypomorphic allele of the chromatin remodeler BRG1, we dissected the pathway from GATA-1 binding to cofactor recruitment, chromatin loop formation, and transcriptional activation. Analysis of GATA-1-mediated activation of the beta-globin locus, in which GATA-1 assembles dispersed complexes at the promoters and the distal locus control region (LCR), revealed molecular intermediates, including GATA-1-independent and GATA-1-containing LCR subcomplexes, both defective in promoting loop formation. An additional intermediate consisted of an apparently normal LCR complex and a promoter complex with reduced levels of total RNA polymerase II (Pol II) and Pol II phosphorylated at serine 5 of the carboxy-terminal domain. Reduced BRG1 activity solely compromised Pol II and serine 5-phosphorylated Pol II occupancy at the promoter, phenocopying the LCR-deleted mouse. These studies defined a hierarchical order of GATA-1-triggered events at a complex locus and establish a novel mechanism of long-range gene regulation.
Collapse
Affiliation(s)
- Shin-Il Kim
- University of Wisconsin School of Medicine, Department of Pharmacology, 383 Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
244
|
Tokusumi T, Russell M, Gajewski K, Fossett N, Schulz RA. U-shaped protein domains required for repression of cardiac gene expression in Drosophila. Differentiation 2007; 75:166-74. [PMID: 17316386 DOI: 10.1111/j.1432-0436.2006.00120.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U-shaped is a zinc finger protein that functions predominantly as a negative transcriptional regulator of cell fate determination during Drosophila development. In the early stages of dorsal vessel formation, the protein acts to control cardioblast specification, working as a negative attenuator of the cardiogenic GATA factor Pannier. Pannier and the homeodomain protein Tinman normally work together to specify heart cells and activate cardioblast gene expression. One target of this positive regulation is a heart enhancer of the D-mef2 gene and U-shaped has been shown to antagonize enhancer activation by Pannier and Tinman. We have mapped protein domains of U-shaped required for its repression of cardioblast gene expression. Such studies showed GATA factor interacting zinc fingers of U-shaped are required for enhancer repression, as well as three small motifs that are likely needed for co-factor binding and/or protein modification. These analyses have also allowed for the definition of a 253 amino acid interval of U-shaped that is essential for its nuclear localization. Together, these findings provide molecular insights into the function of U-shaped as a negative regulator of heart development in Drosophila.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biochemistry and Molecular Biology, Program in Genes & Development, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
245
|
Escher R, Wilson P, Carmichael C, Suppiah R, Liu M, Kavallaris M, Cannon P, Michaud J, Scott HS. A pedigree with autosomal dominant thrombocytopenia, red cell macrocytosis, and an occurrence of t(12:21) positive pre-B acute lymphoblastic leukemia. Blood Cells Mol Dis 2007; 39:107-14. [PMID: 17434765 DOI: 10.1016/j.bcmd.2007.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/28/2007] [Indexed: 11/25/2022]
Abstract
Sampling and analyzing new families with inherited blood disorders are major steps contributing to the identification of gene(s) responsible for normal and pathologic hematopoiesis. Familial occurrences of hematological disorders alone, or as part of a syndromic disease, have been reported, and for some the underlying genetic mutation has been identified. Here we describe a new autosomal dominant inherited phenotype of thrombocytopenia and red cell macrocytosis in a four-generation pedigree. Interestingly, in the youngest generation, a 2-year-old boy presenting with these familial features has developed acute lymphoblastic leukemia characterized by a t(12;21) translocation. Tri-lineage involvement of platelets, red cells and white cells may suggest a genetic defect in an early multiliear progenitor or a stem cell. Functional assays in EBV-transformed cell lines revealed a defect in cell proliferation and tubulin dynamics. Two candidate genes, RUNX1 and FOG1, were sequenced but no pathogenic mutation was found. Identification of the underlying genetic defect(s) in this family may help in understanding the complex process of hematopoiesis.
Collapse
Affiliation(s)
- Robert Escher
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Dale RM, Remo BF, Svensson EC. An alternative transcript of the FOG-2 gene encodes a FOG-2 isoform lacking the FOG repression motif. Biochem Biophys Res Commun 2007; 357:683-7. [PMID: 17445768 PMCID: PMC1971242 DOI: 10.1016/j.bbrc.2007.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
The FOG family of transcriptional co-factors is composed of two members in mammals: FOG-1 and FOG-2. Both have been shown to bind to GATA factors and function as transcriptional co-repressors in specific cell and promoter contexts. We have previously defined a novel repression domain localized to the N-terminus of each FOG family member, the FOG repression motif, which is necessary for FOG-mediated transcriptional repression. In this report, we describe the identification and characterization of a novel isoform of FOG-2 lacking the FOG repression motif. In contrast to full-length FOG-2, this isoform is expressed predominately in the embryonic and adult heart. It can bind GATA4 avidly, but is unable to repress GATA4-mediated activation of cardiac-restricted gene promoters. Together, these results suggest that FOG-2 repressive activity may be modulated by the generation of isoforms of FOG-2 lacking the FOG repression motif.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6088, Chicago, IL 60637, USA
| | | | | |
Collapse
|
247
|
Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev 2007; 15:755-78. [PMID: 17253940 DOI: 10.1089/scd.2006.15.755] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess a distinct ability to perpetuate through self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. A better understanding of the molecular mechanisms by which HSCs replicate and differentiate from the perspective of developing new approaches for HSC transplantation is necessary for further advances. The interaction of the receptor tyrosine kinase--c-KIT--with its ligand stem cell factor plays a key role in HSC survival, mitogenesis, proliferation, differentiation, adhesion, homing, migration, and functional activation. Evidence that activating site-directed point mutations in the c-KIT gene contributes to its ligand-independent constitutive activation, which induces enhanced proliferation of HSCs, is accumulating. Similarly, and equally important, self-renewal is a process by which HSCs generate daughter cells via division. Self-renewal is necessary for retaining the HSC pool. Therefore, elucidating the molecular machinery that governs self-renewal is of key importance. The transcription factor, HOXB4 is a key molecule that has been reported to induce the in vitro expansion of HSCs via self-renewal. However, critical downstream effector molecules of HOXB4 remain to be determined. This concisely reviewed information on c-KIT and HOXB4 helps us to update our understanding of their function and mechanism of action in self-renewal, proliferation, and differentiation of HSCs, particularly modulation by c-KIT mutant interactions, and HOXB4 overexpression showing certain therapeutic implications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi, India-110054
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Shimizu R, Trainor CD, Nishikawa K, Kobayashi M, Ohneda K, Yamamoto M. GATA-1 self-association controls erythroid development in vivo. J Biol Chem 2007; 282:15862-71. [PMID: 17374603 DOI: 10.1074/jbc.m701936200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 is the key transcription factor for the development of the erythroid, megakaryocytic, eosinophilic, and mast cell lineages. GATA-1 possesses the ability to self-associate, and this characteristic has been suggested to be important for GATA-1 function. To elucidate the roles self-associated GATA-1 plays during hematopoietic cell development in vivo, in this study we prepared GATA-1 mutants in which three lysine residues potentially contributing to the self-association (Lys-245, Lys-246, and Lys-312) are substituted in combination with alanines. Of the mutants, 3KA harboring alanine substitutions in all three lysines showed reduced self-association activity without considerable interference in the modification of GATA-1 by acetylation. We generated transgenic mouse lines that express these GATA-1 mutants utilizing the Gata1 hematopoietic regulatory domain, and crossed the mice to Gata1 knockdown (GATA-1.05) mutant mice. Although NKA (K245A and K246A) and CKA (K312A) mutants almost fully rescued the GATA-1.05 mice from anemia and embryonic lethality, the 3KA mutant only partially rescued the GATA-1.05 mutant mice. Even with the higher than endogenous level expression, GATA-1.05/Y::3KA embryos were prone to die at various stages in mid-to-late gestation. Live birth and an anemic phenotype were restored in some embryos depending on the expression level of the 3KA transgene. The expression of the transferrin receptor and heme biosynthesis enzymes was impaired in the yolk sac and liver of the 3KA-rescued embryos. Immature erythroid cells with insufficient expression of the transferrin receptor accumulated in the livers of 3KA-rescued embryos. These results provide the first convincing line of evidence that the self-association of GATA-1 is important for proper mammalian erythroid development in vivo.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
249
|
Johnson KD, Boyer ME, Kang JA, Wickrema A, Cantor AB, Bresnick EH. Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 2007; 109:5230-3. [PMID: 17339418 PMCID: PMC1890840 DOI: 10.1182/blood-2007-02-072983] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GATA-1-interacting protein Friend Of GATA-1 (FOG-1) is essential for the proper transcriptional activation and repression of numerous GATA-1 target genes. Although FOG-1-independent activation by GATA-1 has been described, all known examples of GATA-1-mediated repression are FOG-1 dependent. In the GATA-1-null G1E cell line, estrogen receptor ligand binding domain (ER) chimeras of either wild-type GATA-1 or a FOG-1-binding defective mutant of GATA-1 repressed several genes similarly upon activation with beta-estradiol. Repression also occurred in a FOG-1-null cell line expressing ER-GATA-1 and during ex vivo erythropoiesis. At the Lyl1 and Rgs18 loci, we found highly restricted occupancy by GATA-1 and GATA-2, indicating that these genes are direct targets of GATA factor regulation. The identification of genes repressed by GATA-1 independent of FOG-1 defines a novel mode of GATA-1-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Kirby D Johnson
- Department of Pharmacology, University of Wisconsin School of Medicine, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
250
|
Colvin GA, Dooner MS, Dooner GJ, Sanchez-Guijo FM, Demers DA, Abedi M, Ramanathan M, Chung S, Pascual S, Quesenberry PJ. Stem cell continuum: directed differentiation hotspots. Exp Hematol 2007; 35:96-107. [PMID: 17198878 DOI: 10.1016/j.exphem.2006.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the technique of stem cell-directed differentiation in the context of cell-cycle position. The hypothesis was that stem cells would have different sensitivities to an identical inductive signal through cell-cycle transit and that this would affect the outcome of its progeny. MATERIALS AND METHODS Differentiation of murine marrow lineage(negative)rhodamine-123(low-)Hoechst-33342(low) (LRH) stem cells was determined at different points in cell cycle under stimulation by thrombopoietin, flt3 ligand, and steel factor. LRH stem cells were subcultured in granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and steel factor at different points in cell cycle and differentiation determined 14 days later. RESULTS There was a significant, reproducible, and pronounced reversible increase in differentiation to megakaryocytes in early S-phase and to nonproliferative granulocytes in mid S-phase. Megakaryocyte hotspots also were seen on a clonal basis. Elevations of the transcription factor FOG-1 were seen at the hotspot along with increases in Nfe2 and Fli1. CONCLUSIONS We show that the potential of marrow stem cells to differentiate changes reversibly with cytokine-induced cell-cycle transit, suggesting that stem cell regulation is not based on the classic hierarchical model, but instead on a functional continuum. We propose that there is a tight linkage of commitment to a lineage and a particular phase of cell cycle. Thus, windows of vulnerability for commitment can open and close depending on the phase of cell cycle. These data indicate that stem cell differentiation occurs on a cell-cycle-related continuum with fluctuating windows of transcriptional opportunity.
Collapse
Affiliation(s)
- Gerald A Colvin
- Department of Research, Roger Williams Medical Center, Providence, RI 02908-4735, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|