201
|
Ji Q, Zhang L, Jones MB, Sun F, Deng X, Liang H, Cho H, Brugarolas P, Gao YN, Peterson SN, Lan L, Bae T, He C. Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proc Natl Acad Sci U S A 2013; 110:5010-5. [PMID: 23479646 PMCID: PMC3612684 DOI: 10.1073/pnas.1219446110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Quinone molecules are intracellular electron-transport carriers, as well as critical intra- and extracellular signals. However, transcriptional regulation of quinone signaling and its molecular basis are poorly understood. Here, we identify a thiol-stress-sensing regulator YodB family transcriptional regulator as a central component of quinone stress response of Staphylococcus aureus, which we have termed the quinone-sensing and response repressor (QsrR). We also identify and confirm an unprecedented quinone-sensing mechanism based on the S-quinonization of the essential residue Cys-5. Structural characterizations of the QsrR-DNA and QsrR-menadione complexes further reveal that the covalent association of menadione directly leads to the release of QsrR from operator DNA following a 10° rigid-body rotation as well as a 9-Å elongation between the dimeric subunits. The molecular level characterization of this quinone-sensing transcriptional regulator provides critical insights into quinone-mediated gene regulation in human pathogens.
Collapse
Affiliation(s)
- Quanjiang Ji
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Liang Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Marcus B. Jones
- Infectious Disease Group, Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850
| | - Fei Sun
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Xin Deng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Haihua Liang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Hoonsik Cho
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Pedro Brugarolas
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Yihe N. Gao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Scott N. Peterson
- Infectious Disease Group, Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850
| | - Lefu Lan
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
202
|
Bilan DS, Pase L, Joosen L, Gorokhovatsky AY, Ermakova YG, Gadella TWJ, Grabher C, Schultz C, Lukyanov S, Belousov VV. HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem Biol 2013; 8:535-42. [PMID: 23256573 DOI: 10.1021/cb300625g] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-performance sensors for reactive oxygen species are instrumental to monitor dynamic events in cells and organisms. Here, we present HyPer-3, a genetically encoded fluorescent indicator for intracellular H2O2 exhibiting improved performance with respect to response time and speed. HyPer-3 has an expanded dynamic range compared to HyPer and significantly faster oxidation/reduction dynamics compared to HyPer-2. We demonstrate this performance by in vivo imaging of tissue-scale H2O2 gradients in zebrafish larvae. Moreover, HyPer-3 was successfully employed for single-wavelength fluorescent lifetime imaging of H2O2 levels both in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitry S. Bilan
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Luke Pase
- Karlsruhe Institute of Technology, Forschungszentrum
Karlsruhe GmbH, Institute of Toxicology and Genetics, 76344 Eggenstein-Leopoldshafen, Germany
| | - Linda Joosen
- Swammerdam Institute for Life Sciences & Netherlands Institute for Systems Biology, University of Amsterdam, NL-1098 XH Amsterdam, The Netherlands
| | - Andrey Yu. Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Pushchino, Russia
| | - Yulia G. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Theodorus W. J. Gadella
- Swammerdam Institute for Life Sciences & Netherlands Institute for Systems Biology, University of Amsterdam, NL-1098 XH Amsterdam, The Netherlands
| | - Clemens Grabher
- Karlsruhe Institute of Technology, Forschungszentrum
Karlsruhe GmbH, Institute of Toxicology and Genetics, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sergey Lukyanov
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
203
|
Kim MS, Jeong J, Jeong J, Shin DH, Lee KJ. Structure of Nm23-H1 under oxidative conditions. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:669-80. [PMID: 23519676 DOI: 10.1107/s0907444913001194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/11/2013] [Indexed: 01/06/2023]
Abstract
Nm23-H1/NDPK-A, a tumour metastasis suppressor, is a multifunctional housekeeping enzyme with nucleoside diphosphate kinase activity. Hexameric Nm23-H1 is required for suppression of tumour metastasis and it is dissociated into dimers under oxidative conditions. Here, the crystal structure of oxidized Nm23-H1 is presented. It reveals the formation of an intramolecular disulfide bond between Cys4 and Cys145 that triggers a large conformational change that destabilizes the hexameric state. The dependence of the dissociation dynamics on the H2O2 concentration was determined using hydrogen/deuterium-exchange experiments. The quaternary conformational change provides a suitable environment for the oxidation of Cys109 to sulfonic acid, as demonstrated by peptide sequencing using nanoUPLC-ESI-q-TOF tandem MS. From these and other data, it is proposed that the molecular and cellular functions of Nm23-H1 are regulated by a series of oxidative modifications coupled to its oligomeric states and that the modified cysteines are resolvable by NADPH-dependent reduction systems. These findings broaden the understanding of the complicated enzyme-regulatory mechanisms that operate under oxidative conditions.
Collapse
Affiliation(s)
- Mi-Sun Kim
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
204
|
Henry KM, Loynes CA, Whyte MKB, Renshaw SA. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol 2013; 94:633-42. [PMID: 23463724 DOI: 10.1189/jlb.1112594] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To understand inflammation and immunity, we need to understand the biology of the neutrophil. Whereas these cells can readily be extracted from peripheral blood, their short lifespan makes genetic manipulations impractical. Murine knockout models have been highly informative, and new imaging techniques are allowing neutrophils to be seen during inflammation in vivo for the first time. However, there is a place for a new model of neutrophil biology, which readily permits imaging of individual neutrophils during inflammation in vivo, combined with the ease of genetic and chemical manipulation. The zebrafish has long been the model of choice for the developmental biology community, and the availability of genomic resources and tools for gene manipulation makes this an attractive model. Zebrafish innate immunity shares many features with mammalian systems, including neutrophils with morphological, biochemical, and functional features, also shared with mammalian neutrophils. Transgenic zebrafish with neutrophils specifically labeled with fluorescent proteins have been generated, and this advance has led to the adoption of zebrafish, alongside existing models, by a number of groups around the world. The use of these models has underpinned a number of key advances in the field, including the identification of a tissue gradient of hydrogen peroxide for neutrophil recruitment following tissue injury and direct evidence for reverse migration as a regulatable mechanism of inflammation resolution. In this review, we discuss the importance of zebrafish models in neutrophil biology and describe how the understanding of neutrophil biology has been advanced by the use of these models.
Collapse
|
205
|
Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. J Bacteriol 2013; 195:1970-8. [PMID: 23435977 DOI: 10.1128/jb.00059-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.
Collapse
|
206
|
Liu X, Sun X, Wu Y, Xie C, Zhang W, Wang D, Chen X, Qu D, Gan J, Chen H, Jiang H, Lan L, Yang CG. Oxidation-sensing regulator AbfR regulates oxidative stress responses, bacterial aggregation, and biofilm formation in Staphylococcus epidermidis. J Biol Chem 2013; 288:3739-52. [PMID: 23271738 PMCID: PMC3567629 DOI: 10.1074/jbc.m112.426205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus epidermidis is a notorious human pathogen that is the major cause of infections related to implanted medical devices. Although redox regulation involving reactive oxygen species is now recognized as a critical component of bacterial signaling and regulation, the mechanism by which S. epidermidis senses and responds to oxidative stress remains largely unknown. Here, we report a new oxidation-sensing regulator, AbfR (aggregation and biofilm formation regulator) in S. epidermidis. An environment of oxidative stress mediated by H(2)O(2) or cumene hydroperoxide markedly up-regulates the expression of abfR gene. Similar to Pseudomonas aeruginosa OspR, AbfR is negatively autoregulated and dissociates from promoter DNA in the presence of oxidants. In vivo and in vitro analyses indicate that Cys-13 and Cys-116 are the key functional residues to form an intersubunit disulfide bond upon oxidation in AbfR. We further show that deletion of abfR leads to a significant induction in H(2)O(2) or cumene hydroperoxide resistance, enhanced bacterial aggregation, and reduced biofilm formation. These effects are mediated by derepression of SERP2195 and gpxA-2 that lie immediately downstream of the abfR gene in the same operon. Thus, oxidative stress likely acts as a signal to modulate S. epidermidis key virulence properties through AbfR.
Collapse
Affiliation(s)
- Xing Liu
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoxu Sun
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youcong Wu
- the Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institute of Biomedical Sciences, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Cen Xie
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenru Zhang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Wang
- the Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and
| | - Xiaoyan Chen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Qu
- the Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institute of Biomedical Sciences, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Jianhua Gan
- the School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Chen
- the Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and
| | - Hualiang Jiang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lefu Lan
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, , To whom correspondence may be addressed. Tel.: 86-21-50803109; Fax: 86-21-50807088; E-mail:
| | - Cai-Guang Yang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, , To whom correspondence may be addressed. Tel.: 86-21-50806029; Fax: 86-21-50807088; E-mail:
| |
Collapse
|
207
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
208
|
Exposito-Rodriguez M, Laissue PP, Littlejohn GR, Smirnoff N, Mullineaux PM. The Use of HyPer to Examine Spatial and Temporal Changes in H2O2 in High Light-Exposed Plants. Methods Enzymol 2013; 527:185-201. [DOI: 10.1016/b978-0-12-405882-8.00010-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
209
|
Pearson RJ, Morf L, Singh U. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem 2012; 288:4462-74. [PMID: 23250742 DOI: 10.1074/jbc.m112.423467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H(2)O(2) exposure. We functionally characterized an H(2)O(2)-regulatory motif (HRM) ((1)AAACCTCAATGAAGA(15)), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H(2)O(2)-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H(2)O(2)-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease.
Collapse
Affiliation(s)
- Richard J Pearson
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
210
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
211
|
Abstract
SIGNIFICANCE The reactivity of the thiol in the side chain of cysteines is exploited by bacterial regulatory proteins that sense and respond to reactive oxygen and nitrogen species. RECENT ADVANCES Charged residues and helix dipoles diminish the pKa of redox active cysteines, resulting in a thiolate that is stabilized by neighboring polar amino acids. The reaction of peroxides with thiolates generates a sulfenic acid (-SOH) intermediate that often gives rise to a reversible disulfide bond. Peroxide-induced intramolecular and intermolecular disulfides and intermolecular mixed disulfides modulate the signaling activity of members of the LysR/OxyR, MarR/OhrR, and RsrA family of transcriptional regulators. Thiol-dependent regulators also help bacteria resist the nitrosative and nitroxidative stress. -SOHs, mixed disulfides, and S-nitrosothiols are some of the post-translational modifications induced by nitrogen oxides in the thiol groups of OxyR and SsrB bacterial regulatory proteins. Sulfenylation, disulfide bond formation, S-thiolation, and S-nitrosylation are reversible modifications amenable to feedback regulation by antioxidant and antinitrosative repair systems. The structural and functional changes engaged in the thiol-dependent sensing of reactive species have been adopted by several regulators to foster bacterial virulence during exposure to products of NADPH phagocyte oxidase and inducible nitric oxide synthase. CRITICAL ISSUES Investigations with LysR/OxyR, MarR/OhrR, and RsrA family members have helped in an understanding of the mechanisms by which thiols in regulatory proteins react with reactive species, thereby activating antioxidant and antinitrosative gene expression. FUTURE DIRECTIONS To define the determinants that provide selectivity of redox active thiolates for some reactive species but not others is an important challenge for future investigations.
Collapse
Affiliation(s)
- Andrés Vázquez-Torres
- Department of Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
212
|
Gong W, Xiong G, Maser E. Oligomerization and negative autoregulation of the LysR-type transcriptional regulator HsdR from Comamonas testosteroni. J Steroid Biochem Mol Biol 2012; 132:203-11. [PMID: 22684002 DOI: 10.1016/j.jsbmb.2012.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/08/2012] [Accepted: 05/29/2012] [Indexed: 11/25/2022]
Abstract
"3α-Hydroxysteroid dehydrogenase/carbonyl reductase regulator" (HsdR) from Comamonas testosteroni (C. testosteroni) was identified as a member of the LysR-type transcriptional regulator (LTTR) family. We have shown previously that HsdR activates the expression of the hsdA gene, encoding 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR), which is an important enzyme involved in the degradation of steroid compounds. Phylogenetic analysis indicated that HsdR is related to the contact-regulated gene A (CrgA) from Neisseria meningitidis, which exists as a homooctamer. Therefore, to further elucidate the regulatory mechanism of HsdR, we investigated the oligomeric state and autoregulation of this transcriptional factor in the present study. To identify the active domains of HsdR, three truncated forms, HsdRΔN (N-terminus deleted), HsdRΔC (C-terminus deleted), and HsdRΔNC (both N- and C-terminus deleted), were constructed and purified. 3α-HSD/CR expression was measured by ELISA to detect the function of HsdR. Functional and biochemical analyses of wild type HsdR and its truncated forms indicated that HsdR may exist as an oligomer where the central domain is crucial for its oligomerization. Gel filtration chromatography revealed that there are two dominant oligomer forms which may be octamers and hexamers. According to electrophoretic mobility shift assays, HsdR specifically binds to its own promoter, where it negatively regulates its own expression. Therefore, the expression of non-functional HsdR variants (an hsdR-gfp fusion mutant and a hsdR gene disrupted mutant) increased compared to the wild type strain, because autorepression of HsdR was prevented. As a consequence, 3α-HSD/CR expression in these hsdR mutant strains was impaired. Combined, in our study we provide evidence that the transcription factor HsdR is a component of the steroid degradation machinery in C. testosteroni, which is active as an oligomer and negatively regulates its own expression.
Collapse
Affiliation(s)
- Wenjie Gong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, D-24105 Kiel, Germany
| | | | | |
Collapse
|
213
|
Crump KE, Juneau DG, Poole LB, Haas KM, Grayson JM. The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation. Eur J Immunol 2012; 42:2152-64. [PMID: 22674013 DOI: 10.1002/eji.201142289] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B-cell receptor (BCR) ligation generates reactive oxygen intermediates (ROIs) that play a role in cellular responses. Although ROIs can oxidize all macromolecules, it was unclear which modifications control B-cell responses. In this study, we demonstrate the importance of the first oxidation product of cysteine, sulfenic acid, and its reversible formation in B-cell activation. Upon BCR crosslinking, B cells increase ROI levels with maximal production occurring within 15 min. Increased ROIs preceded elevated cysteine sulfenic acid, which localized to the cytoplasm and nucleus. Analysis of individual proteins revealed that the protein tyrosine phosphatases (PTPs) SHP-1, SHP-2, and PTEN, as well as actin, were modified to sulfenic acid following BCR ligation. Additionally, we used 5,5-dimethyl-1,3-cyclohexanedione (dimedone), a compound that covalently reacts with sulfenic acid to prevent its further oxidation or reduction, to determine the role of reversible cysteine sulfenic acid formation in regulating B-cell responses. Dimedone incubation resulted in a concentration-dependent block in anti-IgM-induced cell division, accompanied by a failure to induce capacitative calcium entry (CCE), and maintain tyrosine phosphorylation. These studies illustrate that reversible cysteine sulfenic acid formation is a mechanism by which B cells modulate pathways critical for activation and proliferation.
Collapse
Affiliation(s)
- Katie E Crump
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
214
|
Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 2012; 53:1625-41. [PMID: 22921590 DOI: 10.1016/j.freeradbiomed.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Tuberculosis epidemics have defied constraint despite the availability of effective treatment for the past half-century. Mycobacterium tuberculosis, the causative agent of TB, is continually exposed to a number of redox stressors during its pathogenic cycle. The mechanisms used by Mtb to sense redox stress and to maintain redox homeostasis are central to the success of Mtb as a pathogen. Careful analysis of the Mtb genome has revealed that Mtb lacks classical redox sensors such as FNR, FixL, and OxyR. Recent studies, however, have established that Mtb is equipped with various sophisticated redox sensors that can detect diverse types of redox stress, including hypoxia, nitric oxide, carbon monoxide, and the intracellular redox environment. Some of these sensors, such as heme-based DosS and DosT, are unique to mycobacteria, whereas others, such as the WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria. This article provides a comprehensive review of the literature on these redox-sensory modules in the context of TB pathogenesis.
Collapse
Affiliation(s)
- Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
215
|
Abstract
The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.
Collapse
|
216
|
Kalwa H, Sartoretto JL, Sartoretto SM, Michel T. Angiotensin-II and MARCKS: a hydrogen peroxide- and RAC1-dependent signaling pathway in vascular endothelium. J Biol Chem 2012; 287:29147-58. [PMID: 22773836 DOI: 10.1074/jbc.m112.381517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARCKS is an actin-binding protein that modulates vascular endothelial cell migration and cytoskeleton signaling (Kalwa, H., and Michel, T. (2011) J. Biol. Chem. 286, 2320-2330). Angiotensin-II is a vasoactive peptide implicated in vascular physiology as well as pathophysiology; the pathways connecting angiotensin-II and cytoskeletal remodeling are incompletely understood. Here we show that MARCKS is expressed in intact arterial preparations, with prominent staining of the endothelium. In endothelial cells, angiotensin-II-promoted MARCKS phosphorylation is abrogated by PEG-catalase, implicating endogenous H(2)O(2) in the angiotensin-II response. Studies using the H(2)O(2) biosensor HyPer2 reveal that angiotensin-II promotes increases in intracellular H(2)O(2). We used a Rac1 FRET biosensor to show that angiotensin-II promotes Rac1 activation that is attenuated by PEG-catalase. siRNA-mediated Rac1 knockdown blocks angiotensin-II-stimulated MARCKS phosphorylation. Cell imaging studies using a phosphoinositide 4,5-bisphosphate (PIP(2)) biosensor revealed that angiotensin-II PIP(2) regulation depends on MARCKS and H(2)O(2). siRNA-mediated knockdown of MARCKS or Rac1 attenuates receptor-mediated activation of the tyrosine kinase c-Abl and disrupts actin fiber formation. These studies establish a critical role for H(2)O(2) in angiotensin-II signaling to the endothelial cytoskeleton in a novel pathway that is critically dependent on MARCKS, Rac1, and c-Abl.
Collapse
Affiliation(s)
- Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
217
|
Sainsbury S, Ren J, Saunders NJ, Stuart DI, Owens RJ. Structure of the regulatory domain of the LysR family regulator NMB2055 (MetR-like protein) from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:730-7. [PMID: 22750853 PMCID: PMC3388910 DOI: 10.1107/s1744309112010603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/10/2012] [Indexed: 06/01/2023]
Abstract
The crystal structure of the regulatory domain of NMB2055, a putative MetR regulator from Neisseria meningitidis, is reported at 2.5 Å resolution. The structure revealed that there is a disulfide bond inside the predicted effector-binding pocket of the regulatory domain. Mutation of the cysteines (Cys103 and Cys106) that form the disulfide bond to serines resulted in significant changes to the structure of the effector pocket. Taken together with the high degree of conservation of these cysteine residues within MetR-related transcription factors, it is suggested that the Cys103 and Cys106 residues play an important role in the function of MetR regulators.
Collapse
Affiliation(s)
- Sarah Sainsbury
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England.
| | | | | | | | | |
Collapse
|
218
|
Abstract
Most bacteria generate nitric oxide (NO) either aerobically by NO synthases or anaerobically from nitrite. Far from being a mere by-product of nitrate respiration, bacterial NO has diverse physiological roles. Many proteins undergo NO-mediated posttranslational modification (S-nitrosylation) in anaerobically grown Escherichia coli. The regulation of one such protein, OxyR, represents a redox signaling paradigm in which the same transcription factor controls different protective genes depending on its S-nitrosylation versus S-oxidation status. We discuss a structural model that may explain the remarkable stability and specificity of OxyR S-nitrosylation.
Collapse
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
219
|
Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci U S A 2012; 109:9095-100. [PMID: 22586129 DOI: 10.1073/pnas.1200603109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oxidation sensing and quorum sensing significantly affect bacterial physiology and host-pathogen interactions. However, little attention has been paid to the cross-talk between these two seemingly orthogonal signaling pathways. Here we show that the quorum-sensing agr system has a built-in oxidation-sensing mechanism through an intramolecular disulfide switch possessed by the DNA-binding domain of the response regulator AgrA. Biochemical and mass spectrometric analysis revealed that oxidation induces the intracellular disulfide bond formation between Cys-199 and Cys-228, thus leading to dissociation of AgrA from DNA. Molecular dynamics (MD) simulations suggest that the disulfide bond formation generates a steric clash responsible for the abolished DNA binding of the oxidized AgrA. Mutagenesis studies further established that Cys-199 is crucial for oxidation sensing. The oxidation-sensing role of Cys-199 is further supported by the observation that the mutant Staphylococcus aureus strain expressing AgrAC199S is more susceptible to H(2)O(2) owing to repression of the antioxidant bsaA gene under oxidative stress. Together, our results show that oxidation sensing is a component of the quorum-sensing agr signaling system, which serves as an intrinsic checkpoint to ameliorate the oxidation burden caused by intense metabolic activity and potential host immune response.
Collapse
|
220
|
Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 2012; 11:56. [PMID: 22569138 PMCID: PMC3526497 DOI: 10.1186/1475-2859-11-56] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. RESULTS We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. CONCLUSIONS This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains.
Collapse
|
221
|
Abstract
The oxidation of cysteine sulphydryl in proteins produces sulphenic acid that can form a reversible disulphide bond with another cysteine. The disulphide bond formation often triggers switches in protein structure and activity, especially when the distance between the two cysteine sulphur atoms is longer than the resulting disulphide bond distance. As an early example for the reversible disulphide bond-mediated functional switches, the reduced and oxidized forms of the bacterial transcription factor OxyR were characterized by X-ray crystallography. Recently, the Drosophila vision signalling protein, the association of inactivation-no-afterpotential D (INAD) was analysed by structural and functional methods. The two conserved cysteines of INAD were found to cycle between reduced and oxidized states during the light signal processing in Drosophila eyes, which was achieved by conformation dependent modulation of the disulphide bond redox potential. The production of the hypertension control peptide angiotensins was also shown to be controlled by the reversible disulphide bond in the precursor protein angiotensinogen. The crystal structure of the complex of angiotensiongen with its processing enzyme renin elucidated the role of the disulphide bond in stabilizing the precursor-enzyme complex facilitating the production of angiotensins. The increasing importance of the disulphide bond-mediated redox switches in normal and diseased states has implications in the development of novel antioxidant-based therapeutic approaches.
Collapse
Affiliation(s)
- Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
222
|
Ji Q, Zhang L, Sun F, Deng X, Liang H, Bae T, He C. Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response. J Biol Chem 2012; 287:21102-9. [PMID: 22553203 DOI: 10.1074/jbc.m112.359737] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H(2)O(2). Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.
Collapse
Affiliation(s)
- Quanjiang Ji
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 2012; 194:3502-11. [PMID: 22544265 DOI: 10.1128/jb.06632-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MexT is a global LysR transcriptional regulator known to modulate antibiotic resistance and virulence in Pseudomonas aeruginosa. In this study, a novel role for MexT in mediating intrinsic disulfide stress resistance was demonstrated, representing the first identified phenotype associated with inactivation of this regulator in wild-type cells. Disruption of mexT resulted in increased susceptibility to the disulfide stress elicitor diamide [diazenedicarboxylic acid bis(N,N,-di-methylamide)]. This compound is known to elicit a specific stress response via depletion of reduced glutathione and alteration of the cellular redox environment, implicating MexT in redox control. In support of this, MexT-regulated targets, including the MexEF-OprN multidrug efflux system, were induced by subinhibitory concentrations of diamide. A mexF insertion mutant also exhibited increased diamide susceptibility, implicating the MexEF-OprN efflux system in MexT-associated disulfide stress resistance. Purified MexT protein was observed to form an oligomeric complex in the presence of oxidized glutathione, with a calculated redox potential of -189 mV. This value far exceeds the thiol-disulfide redox potential of the bacterial cytoplasm, ensuring that MexT remains reduced under normal physiological conditions. MexT is activated by mutational disruption of the predicted quinone oxidoreductase encoded by mexS. Alterations in the cellular redox state were observed in a mexS mutant (PA14nfxC), supporting a model whereby the perception of MexS-associated redox signals by MexT leads to the induction of the MexEF-OprN efflux system, which, in turn, may mediate disulfide stress resistance via efflux of electrophilic compounds.
Collapse
|
224
|
Choi WG, Swanson SJ, Gilroy S. High-resolution imaging of Ca2+ , redox status, ROS and pH using GFP biosensors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:118-28. [PMID: 22449047 DOI: 10.1111/j.1365-313x.2012.04917.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many plant response systems are linked to complex dynamics in signaling molecules such as Ca(2+) and reactive oxygen species (ROS) and to pH. Regulatory changes in these molecules can occur in the timeframe of seconds and are often limited to specific subcellular locales. Thus, to understand how Ca(2+) , ROS and pH form part of plants' regulatory networks, it is essential to capture their rapid dynamics with resolutions that span the whole plant to subcellular dimensions. Defining the spatio-temporal signaling 'signatures' of these regulators at high resolution has now been greatly facilitated by the generation of plants expressing a range of GFP-based bioprobes. For Ca(2+) and pH, probes such as the yellow cameleon Ca(2+) sensors (principally YC2.1 and 3.6) or the pHluorin and H148D pH sensors provide a robust suite of tools to image changes in these ions. For ROS, the tools are much more limited, with the GFP-based H(2) O(2) sensor Hyper representing a significant advance for the field. However, with this probe, its marked pH sensitivity provides a key challenge to interpretation without using appropriate controls to test for potentially coupled pH-dependent changes. Most of these Ca(2+) -, ROS- and pH-imaging biosensors are compatible with the standard configurations of confocal microscopes available to many researchers. These probes therefore represent a readily accessible toolkit to monitor cellular signaling. Their use does require appreciation of a minimal set of controls but these are largely related to ensuring that neither the probe itself nor the imaging conditions used perturb the biology of the plant under study.
Collapse
Affiliation(s)
- Won-Gyu Choi
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
225
|
Miller D, Xu H, White RH. A New Subfamily of Agmatinases Present in Methanogenic Archaea Is Fe(II) Dependent. Biochemistry 2012; 51:3067-78. [DOI: 10.1021/bi300039f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Danielle Miller
- Department
of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061, United States
| | - Huimin Xu
- Department
of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061, United States
| | - Robert H. White
- Department
of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061, United States
| |
Collapse
|
226
|
Anjem A, Imlay JA. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J Biol Chem 2012; 287:15544-56. [PMID: 22411989 DOI: 10.1074/jbc.m111.330365] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study tested whether nonredox metalloenzymes are commonly charged with iron in vivo and are primary targets of oxidative stress because of it. Indeed, three sample mononuclear enzymes, peptide deformylase, threonine dehydrogenase, and cytosine deaminase, were rapidly damaged by micromolar hydrogen peroxide in vitro and in live Escherichia coli. The first two enzymes use a cysteine residue to coordinate the catalytic metal atom; it was quantitatively oxidized by the radical generated by the Fenton reaction. Because oxidized cysteine can be repaired by cellular reductants, the effect was to avoid irreversible damage to other active-site residues. Nevertheless, protracted H(2)O(2) exposure gradually inactivated these enzymes, consistent with the overoxidation of the cysteine residue to sulfinic or sulfonic forms. During H(2)O(2) stress, E. coli defended all three proteins by inducing MntH, a manganese importer, and Dps, an iron-sequestration protein. These proteins appeared to collaborate in replacing the iron atom with nonoxidizable manganese. The implication is that mononuclear metalloproteins are common targets of H(2)O(2) and that both structural and metabolic arrangements exist to protect them.
Collapse
Affiliation(s)
- Adil Anjem
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
227
|
Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525:161-9. [PMID: 22381957 DOI: 10.1016/j.abb.2012.02.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/31/2012] [Accepted: 02/12/2012] [Indexed: 01/24/2023]
Abstract
Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.
Collapse
Affiliation(s)
- Sarah M Chiang
- Department of Biology, McMaster University, 1280 Main St. West, Life Sciences Building, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
228
|
Shen S, Fang FC. Integrated stress responses in Salmonella. Int J Food Microbiol 2012; 152:75-81. [PMID: 21570144 PMCID: PMC3164900 DOI: 10.1016/j.ijfoodmicro.2011.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 12/23/2022]
Abstract
The foodborne gram-negative pathogen Salmonella must adapt to varied environmental conditions encountered within foods, the host gastrointestinal tract and the phagosomes of host macrophages. Adaptation is achieved through the coordinate regulation of gene expression in response to environmental signals such as temperature, pH, osmolarity, redox state, antimicrobial peptides, and nutrient deprivation. This review will examine mechanisms by which the integration of regulatory responses to a broad array of environmental signals can be achieved. First, in the most straightforward case, tandem promoters allow gene expression to respond to multiple signals. Second, versatile sensor proteins may respond to more than one environmental signal. Third, transcriptional silencing and counter-silencing as demonstrated by the H-NS paradigm provides a general mechanism for the convergence of multiple regulatory inputs. Fourth, signaling cascades allow gene activation by independent sensory elements. These mechanisms allow Salmonella to utilize common adaptive stress pathways in response to a diverse range of environmental conditions.
Collapse
Affiliation(s)
- Shu Shen
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, 98195-7242 USA
| | | |
Collapse
|
229
|
Palm GJ, Khanh Chi B, Waack P, Gronau K, Becher D, Albrecht D, Hinrichs W, Read RJ, Antelmann H. Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res 2012; 40:4178-92. [PMID: 22238377 PMCID: PMC3351151 DOI: 10.1093/nar/gkr1316] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacillus subtilis encodes redox-sensing MarR-type regulators of the OhrR and DUF24-families that sense organic hydroperoxides, diamide, quinones or aldehydes via thiol-based redox-switches. In this article, we characterize the novel redox-sensing MarR/DUF24-family regulator HypR (YybR) that is activated by disulphide stress caused by diamide and NaOCl in B. subtilis. HypR controls positively a flavin oxidoreductase HypO that confers protection against NaOCl stress. The conserved N-terminal Cys14 residue of HypR has a lower pK(a) of 6.36 and is essential for activation of hypO transcription by disulphide stress. HypR resembles a 2-Cys-type regulator that is activated by Cys14-Cys49' intersubunit disulphide formation. The crystal structures of reduced and oxidized HypR proteins were resolved revealing structural changes of HypR upon oxidation. In reduced HypR a hydrogen-bonding network stabilizes the reactive Cys14 thiolate that is 8-9 Å apart from Cys49'. HypR oxidation breaks these H-bonds, reorients the monomers and moves the major groove recognition α4 and α4' helices ∼4 Å towards each other. This is the first crystal structure of a redox-sensing MarR/DUF24 family protein in bacteria that is activated by NaOCl stress. Since hypochloric acid is released by activated macrophages, related HypR-like regulators could function to protect pathogens against the host immune defense.
Collapse
Affiliation(s)
- Gottfried J Palm
- Institute for Biochemistry, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Gebendorfer KM, Drazic A, Le Y, Gundlach J, Bepperling A, Kastenmüller A, Ganzinger KA, Braun N, Franzmann TM, Winter J. Identification of a hypochlorite-specific transcription factor from Escherichia coli. J Biol Chem 2012; 287:6892-903. [PMID: 22223481 DOI: 10.1074/jbc.m111.287219] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypochlorite is a powerful oxidant produced by neutrophils to kill invading microorganisms. Despite this important physiological role of HOCl in fighting bacterial infections, no hypochlorite-specific stress response has been identified yet. Here, we identified a hypochlorite-responsive transcription factor, YjiE, which is conserved in proteobacteria and eukaryotes. YjiE forms unusual dodecameric ring-like structures in vitro that undergo large DNA-induced conformational changes to form dimers and tetramers as shown by transmission electron microscopy and analytical ultracentrifugation. Such smaller oligomers are predominant in hypochlorite-stressed cells and are the active species as shown by fluorescence anisotropy and analytical ultracentrifugation. YjiE regulates a large number of genes upon hypochlorite stress. Among them are genes involved in cysteine, methionine biosynthesis, and sulfur metabolism (up-regulated) and genes involved in iron acquisition and homeostasis (down-regulated), thus supposedly replenishing oxidized metabolites and decreasing the hypochlorite-mediated amplification of intracellular reactive oxygen species. As a result, YjiE specifically confers hypochlorite resistance to E. coli cells. Thus, to our knowledge, YjiE is the first described hypochlorite-specific transcription factor.
Collapse
Affiliation(s)
- Katharina M Gebendorfer
- Section of Biotechnology, Department of Chemistry, Center for Integrated Protein Science Munich, Technische Universität München, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Bae HW, Cho YH. Mutational analysis of Pseudomonas aeruginosa OxyR to define the regions required for peroxide resistance and acute virulence. Res Microbiol 2011; 163:55-63. [PMID: 22029971 DOI: 10.1016/j.resmic.2011.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
OxyR is known as the primary hydrogen peroxide (H(2)O(2))-sensing transcriptional activator responsible for H(2)O(2) resistance in Pseudomonas aeruginosa. The oxyR deletion mutant is defective in survival on aerobic serial dilution, hypersensitive to peroxides, and impaired in acute virulence in mouse and Drosophila melanogaster infections. To identify the functional regions important for these phenotypes, we carried out site-directed mutagenesis of 14 amino acid residues of P. aeruginosa OxyR, based on the amino acid residues implicated in DNA binding, oligomerization, H(2)O(2) sensing, and transcriptional activation of Escherichia coli OxyR, and examined their ability to restore the oxyR mutant phenotypes. Four mutants (C25S, D142A, T129A, and S241A) were able to complement all the oxyR mutant phenotypes, whereas S33N, R50A, G96D, G102R, E126K, E228K, and R277H mutants could not fully complement those phenotypes, indicating the critical involvement of DNA binding, oligomerization and transactivation in OxyR function in vivo. Interestingly, the three cysteine (Cys) mutants (C199S, C208S, and C296S) displayed hypersensitivity to peroxides, whereas only the C199S mutant was attenuated in virulence. This dismantling of the functional residues of OxyR which are required for peroxide resistance and virulence in P. aeruginosa may reveal a complex redox cycle involving three Cys residues in sensing oxidative stresses.
Collapse
Affiliation(s)
- Hee-Won Bae
- Department of Pharmacy, College of Pharmacy, CHA University, Seoul 135-081, Republic of Korea
| | | |
Collapse
|
232
|
García-Santamarina S, Boronat S, Espadas G, Ayté J, Molina H, Hidalgo E. The oxidized thiol proteome in fission yeast—Optimization of an ICAT-based method to identify H2O2-oxidized proteins. J Proteomics 2011; 74:2476-86. [DOI: 10.1016/j.jprot.2011.05.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/19/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|
233
|
Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol 2011; 52:48-61. [PMID: 21964191 DOI: 10.1016/j.yjmcc.2011.08.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/30/2011] [Accepted: 08/09/2011] [Indexed: 12/01/2022]
Abstract
Mitochondria are involved in cellular functions that go beyond the traditional role of these organelles as the power plants of the cell. Mitochondria have been implicated in several human diseases, including cardiac dysfunction, and play a role in the aging process. Many aspects of our knowledge of mitochondria stem from studies performed on the isolated organelle. Their relative inaccessibility imposes experimental difficulties to study mitochondria in their natural environment-the cytosol of intact cells-and has hampered a comprehensive understanding of the plethora of mitochondrial functions. Here we review currently available methods to study mitochondrial function in intact cardiomyocytes. These methods primarily use different flavors of fluorescent dyes and genetically encoded fluorescent proteins in conjunction with high-resolution imaging techniques. We review methods to study mitochondrial morphology, mitochondrial membrane potential, Ca(2+) and Na(+) signaling, mitochondrial pH regulation, redox state and ROS production, NO signaling, oxygen consumption, ATP generation and the activity of the mitochondrial permeability transition pore. Where appropriate we complement this review on intact myocytes with seminal studies that were performed on isolated mitochondria, permeabilized cells, and in whole hearts.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
234
|
Widespread disulfide bonding in proteins from thermophilic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:409156. [PMID: 21941460 PMCID: PMC3177088 DOI: 10.1155/2011/409156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/16/2011] [Indexed: 11/17/2022]
Abstract
Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.
Collapse
|
235
|
Lönneborg R, Brzezinski P. Factors that influence the response of the LysR type transcriptional regulators to aromatic compounds. BMC BIOCHEMISTRY 2011; 12:49. [PMID: 21884597 PMCID: PMC3180648 DOI: 10.1186/1471-2091-12-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Background The transcriptional regulators DntR, NagR and NtdR have a high sequence identity and belong to the large family of LysR type transcriptional regulators (LTTRs). These three regulators are all involved in regulation of genes identified in pathways for degradation of aromatic compounds. They activate the transcription of these genes in the presence of an inducer, but the inducer specificity profiles are different. Results The results from this study show that NtdR has the broadest inducer specificity, responding to several nitro-aromatic compounds. Mutational studies of residues that differ between DntR, NagR and NtdR suggest that a number of specific residues are involved in the broader inducer specificity of NtdR when compared to DntR and NagR. The inducer response was also investigated as a function of the experimental conditions and a number of parameters such as the growth media, plasmid arrangement of the LTTR-encoding genes, promoter and gfp reporter gene, and the presence of a His6-tag were shown to affect the inducer response in E.coli DH5α. Furthermore, the response upon addition of both salicylate and 4-nitrobenzoate to the growth media was larger than the sum of responses upon addition of each of the compounds, which suggests the presence of a secondary binding site, as previously reported for other LTTRs. Conclusions Optimization of the growth conditions and gene arrangement resulted in improved responses to nitro-aromatic inducers. The data also suggests the presence of a previously unknown secondary binding site in DntR, analogous to that of BenM.
Collapse
Affiliation(s)
- Rosa Lönneborg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
236
|
Kim KJ, Pearl PL, Jensen K, Snead OC, Malaspina P, Jakobs C, Gibson KM. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 2011; 15:691-718. [PMID: 20973619 PMCID: PMC3125545 DOI: 10.1089/ars.2010.3470] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary excretion of the GABA analog gamma-hydroxybutyric acid (GHB), numerous patients have been identified worldwide and the autosomal-recessive disorder has been modeled in mice. The phenotype is one of nonprogressive neurological dysfunction in which seizures may be prominently displayed. The murine model is a reasonable phenocopy of the human disorder, yet the severity of the seizure disorder in the mouse exceeds that observed in SSADH-deficient patients. Abnormalities in GABAergic and GHBergic neurotransmission, documented in patients and mice, form a component of disease pathophysiology, although numerous other disturbances (metabolite accumulations, myelin abnormalities, oxidant stress, neurosteroid depletion, altered bioenergetics, etc.) are also likely to be involved in developing the disease phenotype. Most recently, the demonstration of a redox control system in the SSADH protein active site has provided new insights into the regulation of SSADH by the cellular oxidation/reduction potential. The current review summarizes some 30 years of research on this protein and disease, addressing pathological mechanisms in human and mouse at the protein, metabolic, molecular, and whole-animal level.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Phillip L. Pearl
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Aarhus, Denmark
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - O. Carter Snead
- Department of Neurology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | | | - Cornelis Jakobs
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
237
|
Chen P, Stone J, Sullivan G, Drisko JA, Chen Q. Anti-cancer effect of pharmacologic ascorbate and its interaction with supplementary parenteral glutathione in preclinical cancer models. Free Radic Biol Med 2011; 51:681-7. [PMID: 21672627 DOI: 10.1016/j.freeradbiomed.2011.05.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/22/2022]
Abstract
Two popular complementary, alternative, and integrative medicine therapies, high-dose intravenous ascorbic acid (AA) and intravenous glutathione (GSH), are often coadministered to cancer patients with unclear efficacy and drug-drug interaction. In this study we provide the first survey evidence for clinical use of iv GSH with iv AA. To address questions of efficacy and drug-drug interaction, we tested 10 cancer cell lines with AA, GSH, and their combination. The results showed that pharmacologic AA induced cytotoxicity in all tested cancer cells, with IC(50) less than 4 mM, a concentration easily achievable in humans. GSH reduced cytotoxicity by 10-95% by attenuating AA-induced H(2)O(2) production. Treatment in mouse pancreatic cancer xenografts showed that intraperitoneal AA at 4 g/kg daily reduced tumor volume by 42%. Addition of intraperitoneal GSH inhibited the AA-induced tumor volume reduction. Although all treatments (AA, GSH, and AA+GSH) improved survival rate, AA+GSH inhibited the cytotoxic effect of AA alone and failed to provide further survival benefit. These data confirm the pro-oxidative anti-cancer mechanism of pharmacologic AA and suggest that AA and GSH administered together provide no additional benefit compared with AA alone. There is an antagonism between ascorbate and glutathione in treating cancer, and therefore iv AA and iv GSH should not be coadministered to cancer patients on the same day.
Collapse
Affiliation(s)
- Ping Chen
- Program in Integrative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
238
|
Most mutant OccR proteins that are defective in positive control hold operator DNA in a locked high-angle bend. J Bacteriol 2011; 193:5442-9. [PMID: 21804007 DOI: 10.1128/jb.05352-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OccR is a LysR-type transcriptional regulator of Agrobacterium tumefaciens that positively regulates the octopine catabolism operon of the Ti plasmid. Positive control of the occ genes occurs in response to octopine, a nutrient released from crown gall tumors. OccR also functions as an autorepressor in the presence or absence of octopine. OccR binds to a site between occQ and occR in the presence or absence of octopine, although octopine triggers a conformational change that shortens the DNA footprint and relaxes a DNA bend. In order to determine the roles of this conformational change in transcriptional activation, we isolated 11 OccR mutants that were defective in activation of the occQ promoter but were still capable of autorepression. The mutations in these mutants spanned most of the length of the protein. Two additional positive-control mutants were isolated using site-directed mutagenesis. Twelve mutant proteins displayed a high-angle DNA bend in the presence or absence of octopine. One mutant, the L26A mutant, showed ligand-responsive DNA binding similar to that of wild-type OccR and therefore must be impaired in a subsequent step in activation.
Collapse
|
239
|
Chi BK, Gronau K, Mäder U, Hessling B, Becher D, Antelmann H. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 2011; 10:M111.009506. [PMID: 21749987 DOI: 10.1074/mcp.m111.009506] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypochloric acid in B. subtilis. The expression profile of NaOCl stress is indicative of disulfide stress as shown by the induction of the thiol- and oxidative stress-specific Spx, CtsR, and PerR regulons. Thiol redox proteomics identified only few cytoplasmic proteins with reversible thiol-oxidations in response to NaOCl stress that include GapA and MetE. Shotgun-liquid chromatography-tandem MS analyses revealed that GapA, Spx, and PerR are oxidized to intramolecular disulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated proteins in NaOCl-treated cells, including the OhrR repressor, two methionine synthases MetE and YxjG, the inorganic pyrophosphatase PpaC, the 3-D-phosphoglycerate dehydrogenase SerA, and the putative bacilliredoxin YphP. S-bacillithiolation of the OhrR repressor leads to up-regulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. The mechanism of S-glutathionylation of MetE has been described in Escherichia coli also leading to enzyme inactivation and methionine auxotrophy. In summary, our studies discover an important role of the bacillithiol redox buffer in protection against hypochloric acid by S-bacillithiolation of the redox-sensing regulator OhrR and of four enzymes of the methionine biosynthesis pathway.
Collapse
Affiliation(s)
- Bui Khanh Chi
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
240
|
Devesse L, Smirnova I, Lönneborg R, Kapp U, Brzezinski P, Leonard GA, Dian C. Crystal structures of DntR inducer binding domains in complex with salicylate offer insights into the activation of LysR-type transcriptional regulators. Mol Microbiol 2011; 81:354-67. [DOI: 10.1111/j.1365-2958.2011.07673.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
241
|
Guimarães BG, Barbosa RL, Soprano AS, Campos BM, de Souza TA, Tonoli CCC, Leme AFP, Murakami MT, Benedetti CE. Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem 2011; 286:26148-57. [PMID: 21632538 DOI: 10.1074/jbc.m111.234039] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Winged-helix transcriptional factors play important roles in the control of gene expression in many organisms. In the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens, the winged-helix protein BigR, a member of the ArsR/SmtB family of metal sensors, regulates transcription of the bigR operon involved in bacterial biofilm growth. Previous studies showed that BigR represses transcription of its own operon through the occupation of the RNA polymerase-binding site; however, the signals that modulate its activity and the biological function of its operon are still poorly understood. Here we show that although BigR is a homodimer similar to metal sensors, it functions as a novel redox switch that derepresses transcription upon oxidation. Crystal structures of reduced and oxidized BigR reveal that formation of a disulfide bridge involving two critical cysteines induces conformational changes in the dimer that remarkably alter the topography of the winged-helix DNA-binding interface, precluding DNA binding. This structural mechanism of DNA association-dissociation is novel among winged-helix factors. Moreover, we demonstrate that the bigR operon is required for hydrogen sulfide detoxification through the action of a sulfur dioxygenase (Blh) and sulfite exporter. As hydrogen sulfide strongly inhibits cytochrome c oxidase, it must be eliminated to allow aerobic growth under low oxygen tension, an environmental condition found in bacterial biofilms, xylem vessels, and root tissues. Accordingly, we show that the bigR operon is critical to sustain bacterial growth under hypoxia. These results suggest that BigR integrates the transcriptional regulation of a sulfur oxidation pathway to an oxidative signal through a thiol-based redox switch.
Collapse
Affiliation(s)
- Beatriz G Guimarães
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo CP6192, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Cornelis P, Wei Q, Andrews SC, Vinckx T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011; 3:540-9. [PMID: 21566833 DOI: 10.1039/c1mt00022e] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Iron is both an essential nutrient for the growth of microorganisms, as well as a dangerous metal due to its capacity to generate reactive oxygen species (ROS) via the Fenton reaction. For these reasons, bacteria must tightly control the uptake and storage of iron in a manner that restricts the build-up of ROS. Therefore, it is not surprising to find that the control of iron homeostasis and responses to oxidative stress are coordinated. The mechanisms concerned with these processes, and the interactions involved, are the subject of this review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Microbial Interactions, Department of Molecular and Cellular Interactions, VIB and Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
243
|
An BC, Lee SS, Lee EM, Lee JT, Wi SG, Jung HS, Park W, Lee SY, Chung BY. Functional switching of a novel prokaryotic 2-Cys peroxiredoxin (PpPrx) under oxidative stress. Cell Stress Chaperones 2011; 16:317-28. [PMID: 21104173 PMCID: PMC3077232 DOI: 10.1007/s12192-010-0243-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/21/2010] [Accepted: 11/04/2010] [Indexed: 11/25/2022] Open
Abstract
Many proteins have been isolated from eukaryotes as redox-sensitive proteins, but whether these proteins are present in prokaryotes is not clear. Redox-sensitive proteins contain disulfide bonds, and their enzymatic activity is modulated by redox in vivo. In the present study, we used thiol affinity purification and mass spectrometry to isolate and identify 19 disulfide-bond-containing proteins in Pseudomonas putida exposed to potential oxidative damages. Among these proteins, we found that a typical 2-Cys Prx-like protein (designated PpPrx) displays diversity in structure and apparent molecular weight (MW) and can act as both a peroxidase and a molecular chaperone. We also identified a regulatory factor involved in this structural and functional switching. Exposure of pseudomonads to hydrogen peroxide (H(2)O(2)) caused the protein structures of PpPrx to convert from high MW complexes to low MW forms, triggering a chaperone-to-peroxidase functional switch. This structural switching was primarily guided by the thioredoxin system. Thus, the peroxidase efficiency of PpPrx is clearly associated with its ability to form distinct protein structures in response to stress.
Collapse
Affiliation(s)
- Byung Chull An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Eun Mi Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Jae Taek Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Seung Gon Wi
- Bio-Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 500-757 South Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research, Korea Basic Science Institute, Eoeun-dong, Daejeon, 305-333 South Korea
| | - Woojun Park
- Division of Environmental Sciences and Ecological Engineering, Korea University, Anam dong, Seongbuk-Gu, Seoul, 136-701 South Korea
| | - Sang Yeol Lee
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701 South Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| |
Collapse
|
244
|
Wouters MA, Iismaa S, Fan SW, Haworth NL. Thiol-based redox signalling: rust never sleeps. Int J Biochem Cell Biol 2011; 43:1079-85. [PMID: 21513814 DOI: 10.1016/j.biocel.2011.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
Abstract
Cysteine residues in proteins are covalently modified under conditions of oxidative and nitrosative stress by oxidation, nitrosation, glutathionylation and disulfide formation. Modifications induce conformational changes in substrate proteins, effecting signal cascades that evoke a biological response. A growing number of structures with modified cysteines are allowing a piecemeal understanding of the mechanistic aspects of these signalling pathways to emerge. Conformational changes upon conjugation of nitric oxide and glutathione are generally small and often accompanied by a local increase in protein disorder. Burial of nitric oxide is also apparent, which may increase the timeframe of signalling. Conformational changes upon disulfide formation/reduction range from the small to the spectacular. They include order/disorder transitions; oxidation of disulfides following expulsion of metals such as Zn; major reorganisation or "morphing" of portions of the polypeptide backbone; and changes in quaternary structure including domain swapping.
Collapse
|
245
|
Sobota JM, Imlay JA. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci U S A 2011; 108:5402-7. [PMID: 21402925 PMCID: PMC3069151 DOI: 10.1073/pnas.1100410108] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
H(2)O(2) is commonly generated in biological habitats by environmental chemistry and by cellular immune responses. H(2)O(2) penetrates cells, disrupts metabolism, and blocks growth; it therefore is of interest to identify the major cellular molecules that H(2)O(2) damages and the strategies by which cells protect themselves from it. We used a strain of Escherichia coli that lacks catalases and peroxidases to impose protracted low-grade H(2)O(2) stress. Physiological analysis indicated that the pentose-phosphate pathway, in particular, was poisoned by submicromolar intracellular H(2)O(2). Assays determined that ribulose-5-phosphate 3-epimerase (Rpe) was specifically inactivated. In vitro studies demonstrated that Rpe employs a ferrous iron atom as a solvent-exposed cofactor and that H(2)O(2) rapidly oxidizes this metal in a Fenton reaction. The oxidized iron is released immediately, causing a loss of activity. Most Rpe proteins could be reactivated by remetallation; however, a small fraction of proteins were irreversibly damaged by each oxidation cycle, and so repeated cycles of oxidation and remetallation progressively led to permanent inactivation of the entire Rpe pool. Manganese import and iron sequestration are key elements of the H(2)O(2) stress response, and we found that manganese can activate Rpe in vitro in place of iron, converting the enzyme to a form that is unaffected by H(2)O(2). Indeed, the provision of manganese to H(2)O(2)-stressed cells protected Rpe and enabled the pentose-phosphate pathway to retain function. These data indicate that mononuclear iron enzymes can be primary targets of H(2)O(2) stress and that cells adapt by shifting from iron- to manganese-centered metabolism.
Collapse
Affiliation(s)
- Jason M Sobota
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
246
|
Abstract
In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction.
Collapse
Affiliation(s)
- Peng R Chen
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | | | | |
Collapse
|
247
|
Abstract
Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression.
Collapse
Affiliation(s)
- Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
| | | |
Collapse
|
248
|
Abstract
Protein sulfenic acids are generated as reversibly oxidized cysteinyl residues formed upon reaction of thiols with peroxides, nitric oxide, peroxynitrite, and other reactive oxygen or nitrogen species. They can be stabilized within the protein environment, irreversibly oxidized to sulfinic and sulfonic acids by additional oxidant, condensed with protein or exogenous thiol groups to form disulfide bonds, or directly reduced back to thiols. Sulfenic acids in proteins can act as intermediates in redox catalysis or as critical components in cysteine-dependent redox regulation.
Collapse
Affiliation(s)
- Leslie B Poole
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
249
|
Toledo M, Schneider D, Azzoni A, Favaro M, Pelloso A, Santos C, Saraiva A, Souza A. Characterization of an oxidative stress response regulator, homologous to Escherichia coli OxyR, from the phytopathogen Xylella fastidiosa. Protein Expr Purif 2011; 75:204-10. [DOI: 10.1016/j.pep.2010.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
250
|
Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N, Daldal F, Zhong Z, Kan B, Zhu J. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci U S A 2011; 108:810-5. [PMID: 21187377 PMCID: PMC3021084 DOI: 10.1073/pnas.1014640108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacterial pathogens have evolved sophisticated signal transduction systems to coordinately control the expression of virulence determinants. For example, the human pathogen Vibrio cholerae is able to respond to host environmental signals by activating transcriptional regulatory cascades. The host signals that stimulate V. cholerae virulence gene expression, however, are still poorly understood. Previous proteomic studies indicated that the ambient oxygen concentration plays a role in V. cholerae virulence gene expression. In this study, we found that under oxygen-limiting conditions, an environment similar to the intestines, V. cholerae virulence genes are highly expressed. We show that anaerobiosis enhances dimerization and activity of AphB, a transcriptional activator that is required for the expression of the key virulence regulator TcpP, which leads to the activation of virulence factor production. We further show that one of the three cysteine residues in AphB, C(235), is critical for oxygen responsiveness, as the AphB(C235S) mutant can activate virulence genes under aerobic conditions in vivo and can bind to tcpP promoters in the absence of reducing agents in vitro. Mass spectrometry analysis suggests that under aerobic conditions, AphB is modified at the C(235) residue. This modification is reversible between oxygen-rich aquatic environments and oxygen-limited human hosts, suggesting that V. cholerae may use a thiol-based switch mechanism to sense intestinal signals and activate virulence.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Microbiology, School of Medicine, and
| | - Menghua Yang
- Department of Microbiology, School of Medicine, and
| | | | - Amy M. Tsou
- Department of Microbiology, School of Medicine, and
| | - Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Zengtao Zhong
- Department of Microbiology, Nanjing, Agricultural University, Nanjing 210095, China; and
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
| | - Jun Zhu
- Department of Microbiology, School of Medicine, and
| |
Collapse
|