201
|
Orlova EV, Saibil HR. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 2011; 111:7710-48. [PMID: 21919528 PMCID: PMC3239172 DOI: 10.1021/cr100353t] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 12/11/2022]
Affiliation(s)
- E. V. Orlova
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - H. R. Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
202
|
Wang L, Altman RB, Blanchard SC. Insights into the molecular determinants of EF-G catalyzed translocation. RNA (NEW YORK, N.Y.) 2011; 17:2189-2200. [PMID: 22033333 PMCID: PMC3222131 DOI: 10.1261/rna.029033.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/16/2011] [Indexed: 05/31/2023]
Abstract
Translocation, the directional movement of transfer RNA (tRNA) and messenger RNA (mRNA) substrates on the ribosome during protein synthesis, is regulated by dynamic processes intrinsic to the translating particle. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging, in combination with site-directed mutagenesis of the ribosome and tRNA substrates, we show that peptidyl-tRNA within the aminoacyl site of the bacterial pretranslocation complex can adopt distinct hybrid tRNA configurations resulting from uncoupled motions of the 3'-CCA terminus and the tRNA body. As expected for an on-path translocation intermediate, the hybrid configuration where both the 3'-CCA end and body of peptidyl-tRNA have moved in the direction of translocation exhibits dramatically enhanced puromycin reactivity, an increase in the rate at which EF-G engages the ribosome, and accelerated rates of translocation. These findings provide compelling evidence that the substrate for EF-G catalyzed translocation is an intermediate wherein the bodies of both tRNA substrates adopt hybrid positions within the translating ribosome.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA
| | - Roger B. Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA
| | - Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA
| |
Collapse
|
203
|
Ahmed A, Whitford PC, Sanbonmatsu KY, Tama F. Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. J Struct Biol 2011; 177:561-70. [PMID: 22019767 DOI: 10.1016/j.jsb.2011.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/31/2022]
Abstract
Cryo-elecron microscopy (cryo-EM) can provide important structural information of large macromolecular assemblies in different conformational states. Recent years have seen an increase in structures deposited in the Protein Data Bank (PDB) by fitting a high-resolution structure into its low-resolution cryo-EM map. A commonly used protocol for accommodating the conformational changes between the X-ray structure and the cryo-EM map is rigid body fitting of individual domains. With the emergence of different flexible fitting approaches, there is a need to compare and revise these different protocols for the fitting. We have applied three diverse automated flexible fitting approaches on a protein dataset for which rigid domain fitting (RDF) models have been deposited in the PDB. In general, a consensus is observed in the conformations, which indicates a convergence from these theoretically different approaches to the most probable solution corresponding to the cryo-EM map. However, the result shows that the convergence might not be observed for proteins with complex conformational changes or with missing densities in cryo-EM map. In contrast, RDF structures deposited in the PDB can represent conformations that not only differ from the consensus obtained by flexible fitting but also from X-ray crystallography. Thus, this study emphasizes that a "consensus" achieved by the use of several automated flexible fitting approaches can provide a higher level of confidence in the modeled configurations. Following this protocol not only increases the confidence level of fitting, but also highlights protein regions with uncertain fitting. Hence, this protocol can lead to better interpretation of cryo-EM data.
Collapse
Affiliation(s)
- Aqeel Ahmed
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
204
|
Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc Natl Acad Sci U S A 2011; 108:16980-5. [PMID: 21969541 DOI: 10.1073/pnas.1106999108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, deacylated transfer RNAs leave the ribosome via an exit (E) site after mRNA translocation. How the ribosome regulates tRNA dissociation and whether functional linkages between the aminoacyl (A) and E sites modulate the dynamics of protein synthesis have long been debated. Using single molecule fluorescence resonance energy transfer experiments, we find that, during early cycles of protein elongation, tRNAs are often held in the E site until being allosterically released when the next aminoacyl tRNA binds to the A site. This process is regulated by the length and sequence of the nascent peptide and by the conformational state, detected by tRNA proximity, prior to translocation. In later cycles, E-site tRNA dissociates spontaneously. Our results suggest that the distribution of pretranslocation tRNA states and posttranslocation pathways are correlated within each elongation cycle via communication between distant subdomains in the ribosome, but that this correlation between elongation cycle intermediates does not persist into succeeding cycles.
Collapse
|
205
|
Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc Natl Acad Sci U S A 2011; 108:15798-803. [PMID: 21903932 DOI: 10.1073/pnas.1112185108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein release factor 3 (RF3), a guanosine triphosphatase, binds to ribosome after release of the nascent peptide and promotes dissociation of the class I release factors during the termination of protein synthesis. Here we present the crystal structure of the 70S ribosome with RF3 in the presence of a nonhydrolyzable GTP analogue, guanosine 5'-β,γ-methylenetriphosphate (GDPCP), refined to 3.8 Å resolution. The structure shows that the subunits of the ribosome are rotated relative to each other compared to the canonical state, resulting in a P/E hybrid state for the transfer RNA. The substantial conformational rearrangements in the complex are described and suggest how RF3, by stabilizing the hybrid state of the ribosome, facilitates the dissociation of class I release factors.
Collapse
|
206
|
Długosz M, Huber GA, McCammon JA, Trylska J. Brownian dynamics study of the association between the 70S ribosome and elongation factor G. Biopolymers 2011; 95:616-27. [PMID: 21394717 PMCID: PMC3125448 DOI: 10.1002/bip.21619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 02/01/2023]
Abstract
Protein synthesis on the ribosome involves a number of external protein factors that bind at its functional sites. One key factor is the elongation factor G (EF-G) that facilitates the translocation of transfer RNAs between their binding sites, as well as advancement of the messenger RNA by one codon. The details of the EF-G/ribosome diffusional encounter and EF-G association pathway still remain unanswered. Here, we applied Brownian dynamics methodology to study bimolecular association in the bacterial EF-G/70S ribosome system. We estimated the EF-G association rate constants at 150 and 300 mM monovalent ionic strengths and obtained reasonable agreement with kinetic experiments. We have also elucidated the details of EF-G/ribosome association paths and found that positioning of the L11 protein of the large ribosomal subunit is likely crucial for EF-G entry to its binding site.
Collapse
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
207
|
Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis. Nat Struct Mol Biol 2011; 18:1043-51. [PMID: 21857664 PMCID: PMC3167956 DOI: 10.1038/nsmb.2098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/14/2011] [Indexed: 01/27/2023]
Abstract
Translocation of transfer RNAs (tRNAs) through the ribosome during protein synthesis involves large-scale structural rearrangements of the ribosome and the ribosome-bound tRNAs that are accompanied by extensive and dynamic remodeling of tRNA-ribosome interactions. The contributions that rearranging individual tRNA-ribosome interactions make to directing tRNA movements during translocation, however, remain largely unknown. To address this question, we have used single-molecule fluorescence resonance energy transfer to characterize the dynamics of ribosomal pre-translocation (PRE) complex analogs carrying either wild-type or systematically mutagenized tRNAs. Our data reveal how specific tRNA-ribosome interactions regulate the rate with which the PRE complex rearranges into a critical, on-pathway translocation intermediate and how these interactions control the stability of the resulting configuration. More interestingly, our results suggest that the conformational flexibility of the tRNA molecule itself plays a crucial role in directing the structural dynamics of the PRE complex during translocation.
Collapse
|
208
|
Liu CY, Qureshi MT, Lee TH. Interaction strengths between the ribosome and tRNA at various steps of translocation. Biophys J 2011; 100:2201-8. [PMID: 21539788 DOI: 10.1016/j.bpj.2011.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/28/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Transfer RNA (tRNA) translocates inside the ribosome during translation. We studied the interaction strengths between the ribosome and tRNA at various stages of translocation. We utilized an optical trap to measure the mechanical force to rupture tRNA from the ribosome. We measured the rupture forces of aminoacyl tRNA or peptidyl tRNA mimic from the ribosome in a prepeptidyl transfer state, the pretranslocational state, and the posttranslocational state. In addition, we measured the interaction strength between the ribosome and aminoacyl-tRNA in presence of viomycin. Based on the interaction strengths between the ribosome and tRNA under these conditions, 1), we concluded that tRNA interaction with the 30S subunit is far more important than the interaction with the 50S subunit in the mechanism of translocation; and 2), we propose a mechanism of translocation where the ribosomal ratchet motion, with the aid of EF-G, drives tRNA translocation.
Collapse
Affiliation(s)
- Chen-Yu Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
209
|
Abstract
About 170 million persons are infected with hepatitis C virus (HCV) around the world, and nearly 80% of infected patients develop chronic liver disease that may eventually lead to liver cirrhosis or hepatocellular carcinoma. The mechanisms underlying the life cycle of HCV in the host are still largely unknown and the efforts made by researchers have been hampered by the absence of a robust system reproducing HCV infection. Moreover, there are no effective vaccines or drugs available to defend or exclude viruses because of frequent viral mutation. In 2005, several research groups have successfully established cell culture systems for HCV, pushing the basic research on HCV to a new stage. This paper will focus on HCV genome diversity, progress in culture models, HCV life cycle, and protein function to highlight the mechanism of HCV infection.
Collapse
|
210
|
Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 2011; 475:118-21. [PMID: 21734708 PMCID: PMC4170678 DOI: 10.1038/nature10126] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/15/2011] [Indexed: 12/18/2022]
Abstract
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that slows the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to enable translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting1,2, protein expression levels3,4, ribosome localization5, and cotranslational protein folding6. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases7, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding center is greatly influenced by the G•C content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favor its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: (i) it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations toward the open state, increasing the probability for the ribosome to translocate unhindered; and (ii) it also mechanically pulls apart the mRNA single-strands of the closed junction during the conformational changes that accompany ribosome translocation. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.
Collapse
Affiliation(s)
- Xiaohui Qu
- Jason L. Choy Laboratory of Single Molecule Biophysics and QB3 Institute, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
211
|
Julián P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina MV, Valle M. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 2011; 9:e1001095. [PMID: 21750663 PMCID: PMC3130014 DOI: 10.1371/journal.pbio.1001095] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/04/2022] Open
Abstract
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation. Translation is the process by which a ribosome converts the sequence of a messenger RNA (mRNA)—produced from a gene—into the sequence of amino acids that comprise a protein. Bacterial ribosomes each have one large and one small subunit: the 50S and 30S subunits. Initiation of translation entails selection of an mRNA, identification of the correct starting point from which to read its code, and engagement of the initial amino acid carrier (tRNA). These events take place in the 30S subunit and require the presence of three initiation factors (IF1, IF2, IF3). Formation of this 30S initiation complex precedes joining with the 50S subunit to assemble the functional ribosome. By using a cryo-electron microscopy approach to visualize the structures without fixation or staining, we have determined the structure of a complete 30S initiation complex and identified the positions and orientations of the tRNA and all three initiation factors. We found that the presence of the initiation factors and tRNA induces rotation of the head relative to the body of the 30S subunit, which may be essential for rapid binding to the 50S subunit and for regulating selection of the mRNA. IF3 had not been seen previously in the context of the 30S structure and its visualization gives insight into a potential role in preventing association of the two ribosomal subunits. These findings are important for understanding how the interplay of elements during the early stages of translation selects the mRNA and regulates formation of functional ribosomes.
Collapse
Affiliation(s)
- Patricia Julián
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Pohl Milon
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xabier Agirrezabala
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gorka Lasso
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Marina V. Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
- * E-mail:
| |
Collapse
|
212
|
The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation. Biochem Soc Trans 2011; 39:658-62. [PMID: 21428957 DOI: 10.1042/bst0390658] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.
Collapse
|
213
|
Liljas A. The ribosome story: An overview of structural studies of protein synthesis on the ribosome. CRYSTALLOGR REV 2011. [DOI: 10.1080/0889311x.2011.587812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
214
|
Fu J, Hashem Y, Wower J, Frank J. tmRNA on its way through the ribosome: two steps of resume, and what next? RNA Biol 2011; 8:586-90. [PMID: 21593606 DOI: 10.4161/rna.8.4.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Trans-translation is a universal quality-control process eubacteria use to degrade incompletely synthesized proteins and rescue ribosome stalled on defective mRNAs. This process is facilitated by a ribonucleoprotein complex composed of transfer-messenger RNA (tmRNA)-a chimera made of a tRNA-like molecule and a short open reading frame (ORF) -and small protein B (SmpB). Determination of the structure of tmRNA and SmpB in complex with the ribosome, at the stage when translation has resumed on tmRNA, has provided an increased understanding of the structure of tmRNA as it transits the ribosome, and unique insights into the complex mechanism of template switching on the ribosome and SmpB-driven selection of the correct reading frame on tmRNA's ORF.
Collapse
Affiliation(s)
- Jie Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
215
|
Jones JD, O'Connor CD. Protein acetylation in prokaryotes. Proteomics 2011; 11:3012-22. [PMID: 21674803 DOI: 10.1002/pmic.201000812] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/14/2011] [Accepted: 03/28/2011] [Indexed: 11/11/2022]
Abstract
Protein acetylation plays a critical regulatory role in eukaryotes but until recently its significance and function in bacteria and the archaea were obscure. It is now clear, however, that prokaryotes have the capacity to acetylate both the α-amino groups of N-terminal residues and the ε-amino groups of lysine side chains. In this review, we bring together information indicating that such acetylation is widespread and that it is likely to regulate fundamental cellular processes. We particularly focus on lysine acetylation, which recent studies show can occur in proteins involved in transcription, translation, pathways associated with central metabolism and stress responses. Intriguingly, specific acetylated lysine residues map to critical regions in the three-dimensional structures of key proteins, e.g. to active sites or to surfaces that dock with other major cellular components. Like phosphorylation, acetylation appears to be an ancient reversible modification that can be present at multiple sites in proteins, thereby potentially producing epigenetic combinatorial complexity. It may be particularly important in regulating central metabolism in prokaryotes due to the requirement for acetyl-CoA and NAD(+) for protein acetyltransferases and Sir2-type deacetylases, respectively.
Collapse
|
216
|
Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JHD. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 2011; 332:981-4. [PMID: 21596992 PMCID: PMC3176341 DOI: 10.1126/science.1202692] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During protein synthesis, the ribosome controls the movement of tRNA and mRNA by means of large-scale structural rearrangements. We describe structures of the intact bacterial ribosome from Escherichia coli that reveal how the ribosome binds tRNA in two functionally distinct states, determined to a resolution of ~3.2 angstroms by means of x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit site. The structures help to explain how the ratchet-like motion of the two ribosomal subunits contributes to the mechanisms of translocation, termination, and ribosome recycling.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Crystallography, X-Ray
- Escherichia coli
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Jack A Dunkle
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Rhodin MHJ, Dinman JD. An extensive network of information flow through the B1b/c intersubunit bridge of the yeast ribosome. PLoS One 2011; 6:e20048. [PMID: 21625514 PMCID: PMC3098278 DOI: 10.1371/journal.pone.0020048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/11/2011] [Indexed: 12/31/2022] Open
Abstract
Yeast ribosomal proteins L11 and S18 form a dynamic intersubunit interaction called the B1b/c bridge. Recent high resolution images of the ribosome have enabled targeting of specific residues in this bridge to address how distantly separated regions within the large and small subunits of the ribosome communicate with each other. Mutations were generated in the L11 side of the B1b/c bridge with a particular focus on disrupting the opposing charge motifs that have previously been proposed to be involved in subunit ratcheting. Mutants had wide-ranging effects on cellular viability and translational fidelity, with the most pronounced phenotypes corresponding to amino acid changes resulting in alterations of local charge properties. Chemical protection studies of selected mutants revealed rRNA structural changes in both the large and small subunits. In the large subunit rRNA, structural changes mapped to Helices 39, 80, 82, 83, 84, and the peptidyltransferase center. In the small subunit rRNA, structural changes were identified in helices 30 and 42, located between S18 and the decoding center. The rRNA structural changes correlated with charge-specific alterations to the L11 side of the B1b/c bridge. These analyses underscore the importance of the opposing charge mechanism in mediating B1b/c bridge interactions and suggest an extensive network of information exchange between distinct regions of the large and small subunits.
Collapse
Affiliation(s)
- Michael H. J. Rhodin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
218
|
Li W, Trabuco LG, Schulten K, Frank J. Molecular dynamics of EF-G during translocation. Proteins 2011; 79:1478-86. [PMID: 21365677 PMCID: PMC3132869 DOI: 10.1002/prot.22976] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/16/2010] [Accepted: 12/11/2010] [Indexed: 11/06/2022]
Abstract
Elongation factor G (EF-G) plays a crucial role in two stages of mRNA-(tRNA)(2) translocation. First, EF-G•GTP enters the pre-translocational ribosome in its intersubunit-rotated state, with tRNAs in their hybrid (P/E and A/P) positions. Second, a conformational change in EF-G's Domain IV induced by GTP hydrolysis disengages the mRNA-anticodon stem-loops of the tRNAs from the decoding center to advance relative to the small subunit when the ribosome undergoes a backward inter-subunit rotation. These events take place as EF-G undergoes a series of large conformational changes as visualized by cryo-EM and X-ray studies. The number and variety of these structures leave open many questions on how these different configurations form during the dynamic translocation process. To understand the molecular mechanism of translocation, we examined the molecular motions of EF-G in solution by means of molecular dynamics simulations. Our results show: (1) rotations of the super-domain formed by Domains III-V with respect to the super-domain formed by I-II, and rotations of Domain IV with respect to Domain III; (2) flexible conformations of both 503- and 575-loops; (3) large conformational variability in the bound form caused by the interaction between Domain V and the GTPase-associated center; (4) after GTP hydrolysis, the Switch I region seems to be instrumental for effecting the conformational change at the end of Domain IV implicated in the disengagement of the codon-anticodon helix from the decoding center.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Leonardo G. Trabuco
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- CellNetworks, University of Heidelberg, Heidelberg 69120, Germany
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
- Department of Biology, Columbia University, New York, New York 10027
| |
Collapse
|
219
|
Ticu C, Murataliev M, Nechifor R, Wilson KS. A central interdomain protein joint in elongation factor G regulates antibiotic sensitivity, GTP hydrolysis, and ribosome translocation. J Biol Chem 2011; 286:21697-705. [PMID: 21531717 DOI: 10.1074/jbc.m110.214056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic fusidic acid potently inhibits bacterial translation (and cellular growth) by lodging between domains I and III of elongation factor G (EF-G) and preventing release of EF-G from the ribosome. We examined the functions of key amino acid residues near the active site of EF-G that interact with fusidic acid and regulate hydrolysis of GTP. Alanine mutants of these residues spontaneously hydrolyzed GTP in solution, bypassing the normal activating role of the ribosome. A conserved phenylalanine in the switch II element of EF-G was important for suppressing GTP hydrolysis in solution and critical for catalyzing translocation of the ribosome along mRNA. These experimental results reveal the multipurpose roles of an interdomain joint in the heart of an essential translation factor that can both promote and inhibit bacterial translation.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
220
|
Ermolenko DN, Noller HF. mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat Struct Mol Biol 2011; 18:457-62. [PMID: 21399643 PMCID: PMC3079290 DOI: 10.1038/nsmb.2011] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/15/2010] [Indexed: 11/09/2022]
Abstract
During protein synthesis, mRNA and tRNA undergo coupled translocation through the ribosome in a process that is catalyzed by elongation factor G (EF-G). On the basis of cryo-EM reconstructions, counterclockwise and clockwise rotational movements between the large and small ribosomal subunits have been implicated in a proposed ratcheting mechanism to drive the unidirectional movement of translocation. We used a combination of two fluorescence-based approaches to study the timing of these events, intersubunit fluorescence resonance energy transfer measurements to observe relative rotational movement of the subunits, and a fluorescence quenching assay to monitor translocation of mRNA. Binding of EF-G-GTP first induces rapid counterclockwise intersubunit rotation, followed by a slower, clockwise reversal of the rotational movement. We compared the rates of these movements and found that mRNA translocation occurs during the second, clockwise rotation event, corresponding to the transition from the hybrid state to the classical state.
Collapse
Affiliation(s)
- Dmitri N Ermolenko
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California, USA
| | | |
Collapse
|
221
|
Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data. JOURNAL OF BIOPHYSICS 2011; 2011:219515. [PMID: 21716650 PMCID: PMC3116532 DOI: 10.1155/2011/219515] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/31/2010] [Accepted: 01/24/2011] [Indexed: 11/17/2022]
Abstract
We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.
Collapse
|
222
|
Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation. Proc Natl Acad Sci U S A 2011; 108:4817-21. [PMID: 21383139 DOI: 10.1073/pnas.1101503108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
mRNA-tRNA translocation is a central and highly regulated process during translational elongation. Along with the mRNA, tRNA moves through the ribosome in a stepwise fashion. Using cryoelectron microscopy on ribosomes with a P-loop mutation, we have identified novel structural intermediates likely to exist transiently during translocation. Our observations suggest a mechanism by which the rate of translocation can be regulated.
Collapse
|
223
|
Kulczycka K, Długosz M, Trylska J. Molecular dynamics of ribosomal elongation factors G and Tu. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:289-303. [PMID: 21152913 PMCID: PMC3045518 DOI: 10.1007/s00249-010-0647-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 11/04/2022]
Abstract
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.
Collapse
Affiliation(s)
- Katarzyna Kulczycka
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Science, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Trylska
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
224
|
Valle M. Almost lost in translation. Cryo-EM of a dynamic macromolecular complex: the ribosome. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:589-97. [DOI: 10.1007/s00249-011-0683-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
225
|
Altuntop ME, Ly CT, Wang Y. Single-molecule study of ribosome hierarchic dynamics at the peptidyl transferase center. Biophys J 2011; 99:3002-9. [PMID: 21044598 DOI: 10.1016/j.bpj.2010.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/01/2022] Open
Abstract
During protein biosynthesis the ribosome moves along mRNA in steps of precisely three nucleotides. The mechanism for this ribosome motion remains elusive. Using a classification algorithm to sort single-molecule fluorescence resonance energy transfer data into subpopulations, we found that the ribosome dynamics detected at the peptidyl transferase center are highly inhomogeneous. The pretranslocation complex has at least four subpopulations that sample two hybrid states, whereas the posttranslocation complex is mainly static. We observed transitions among the ribosome subpopulations under various conditions, including 1), in the presence of EF-G; 2), spontaneously; 3), in different buffers, and 4), bound to antibiotics. Therefore, these subpopulations represent biologically active ribosomes. One key observation indicates that the Hy2 hybrid state only exists in a fluctuating ribosome subpopulation, which prompts us to propose that ribosome dynamics are hierarchically arranged. This proposal may have important implications for the regulation of cellular translation rates.
Collapse
Affiliation(s)
- Mediha Esra Altuntop
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
226
|
Sharma AK, Chowdhury D. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding. Phys Biol 2011; 8:026005. [PMID: 21263169 DOI: 10.1088/1478-3975/8/2/026005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
227
|
Dynamics of the translational machinery. Curr Opin Struct Biol 2011; 21:137-45. [PMID: 21256733 DOI: 10.1016/j.sbi.2010.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 11/25/2010] [Indexed: 11/20/2022]
Abstract
The recent growth in single molecule studies of translation has provided an insight into the molecular mechanism of ribosomal function. Single molecule fluorescence approaches allowed direct observation of the structural rearrangements occurring during translation and revealed dynamic motions of the ribosome and its ligands. These studies demonstrated how ligand binding affects dynamics of the ribosome, and the role of the conformational sampling in large-scale rearrangements intrinsic to translation elongation. The application of time-resolved cryo-electron microscopy revealed new conformational intermediates during back-translocation providing an insight into ribosomal dynamics from an alternative perspective. Recent developments permitted examination of conformational and compositional dynamics of the ribosome in real-time through multiple cycles of elongation at the single molecule level. The zero-mode waveguide approach allowed direct observation of the compositional dynamics of tRNA occupancy on the elongating ribosome. The emergence of single molecule in vivo techniques provided insights into the mechanism and regulation of translation at the organismal level.
Collapse
|
228
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
229
|
Osterman IA, Sergiev PV, Tsvetkov PO, Makarov AA, Bogdanov AA, Dontsova OA. Methylated 23S rRNA nucleotide m2G1835 of Escherichia coli ribosome facilitates subunit association. Biochimie 2011; 93:725-9. [PMID: 21237242 DOI: 10.1016/j.biochi.2010.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/25/2010] [Indexed: 11/18/2022]
Abstract
Among 4.5 thousand nucleotides of Escherichia coli ribosome 36 are modified. These nucleotides are clustered in the functional centers of ribosome, particularly on the interface of large and small subunits. Nucleotide m(2)G1835 located on the 50S side of intersubunit bridge cluster B2 is modified by N2-methyltransferase RlmG. By means of isothermal titration calorimetry and Rayleigh light scattering, we have found that methylation of m(2)G1835 specifically enhances association of ribosomal subunits. No defects in fidelity of translation or interaction with translation GTPases could be ascribed to the ribosomes unmethylated at G1835 of the 23S rRNA. Methylation of G1835 was found to provide a significant advantage for bacteria at osmotic and oxidative stress.
Collapse
Affiliation(s)
- Ilya A Osterman
- Department of Chemistry, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
230
|
Phipps KR, Charette JM, Baserga SJ. The small subunit processome in ribosome biogenesis—progress and prospects. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:1-21. [PMID: 21318072 PMCID: PMC3035417 DOI: 10.1002/wrna.57] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The small subunit (SSU) processome is a 2.2-MDa ribonucleoprotein complex involved in the processing, assembly, and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloging the components is the first step toward understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into subcomplexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of subcomplex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole.
Collapse
MESH Headings
- Animals
- Eukaryota/genetics
- Eukaryota/metabolism
- Humans
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Protein Modification, Translational/genetics
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribosome Subunits, Small/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Kathleen R. Phipps
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - J. Michael Charette
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J. Baserga
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
231
|
Abstract
Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.
Collapse
Affiliation(s)
- Adam Ben-Shem
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 rue Laurent Fries, BP10142, Illkirch F-67400, France.
| | | | | | | |
Collapse
|
232
|
Ratje AH, Loerke J, Mikolajka A, Brünner M, Hildebrand PW, Starosta AL, Dönhöfer A, Connell SR, Fucini P, Mielke T, Whitford PC, Onuchic JN, Yu Y, Sanbonmatsu KY, Hartmann RK, Penczek PA, Wilson DN, Spahn CM. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 2010; 468:713-6. [PMID: 21124459 PMCID: PMC3272701 DOI: 10.1038/nature09547] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 09/30/2010] [Indexed: 11/09/2022]
Abstract
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Guanosine Diphosphate/chemistry
- Guanosine Diphosphate/metabolism
- Models, Molecular
- Movement
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/metabolism
- Protein Biosynthesis
- Protein Conformation
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Thermus thermophilus/chemistry
Collapse
Affiliation(s)
- Andreas H. Ratje
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | - Aleksandra Mikolajka
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Germany
| | - Matthias Brünner
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | - Peter W. Hildebrand
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | - Agata L. Starosta
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
| | - Alexandra Dönhöfer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
| | - Sean R. Connell
- Frankfurt Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Paola Fucini
- Frankfurt Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paul C. Whitford
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Jose’ N Onuchic
- Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanan Yu
- Florida State University, Dept. Computer Science, Tallahasse, Florida 32306
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Germany
| | - Pawel A. Penczek
- The University of Texas – Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Daniel N. Wilson
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Germany
| | - Christian M.T. Spahn
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| |
Collapse
|
233
|
Munro JB, Wasserman MR, Altman RB, Wang L, Blanchard SC. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat Struct Mol Biol 2010; 17:1470-7. [PMID: 21057527 PMCID: PMC2997181 DOI: 10.1038/nsmb.1925] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/09/2010] [Indexed: 11/09/2022]
Abstract
In bacteria, the translocation of tRNA and mRNA with respect to the ribosome is catalyzed by the conserved GTPase elongation factor-G (EF-G). To probe the rate-determining features in this process, we imaged EF-G-catalyzed translocation from two unique structural perspectives using single-molecule fluorescence resonance energy transfer. The data reveal that the rate at which the ribosome spontaneously achieves a transient, 'unlocked' state is closely correlated with the rate at which the tRNA-like domain IV-V element of EF-G engages the A site. After these structural transitions, translocation occurs comparatively fast, suggesting that conformational processes intrinsic to the ribosome determine the rate of translocation. Experiments conducted in the presence of non-hydrolyzable GTP analogs and specific antibiotics further reveal that allosterically linked conformational events in EF-G and the ribosome mediate rapid, directional substrate movement and EF-G release.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|
234
|
Rhodin MHJ, Dinman JD. A flexible loop in yeast ribosomal protein L11 coordinates P-site tRNA binding. Nucleic Acids Res 2010; 38:8377-89. [PMID: 20705654 PMCID: PMC3001080 DOI: 10.1093/nar/gkq711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/12/2022] Open
Abstract
High-resolution structures reveal that yeast ribosomal protein L11 and its bacterial/archael homologs called L5 contain a highly conserved, basically charged internal loop that interacts with the peptidyl-transfer RNA (tRNA) T-loop. We call this the L11 'P-site loop'. Chemical protection of wild-type ribosome shows that that the P-site loop is inherently flexible, i.e. it is extended into the ribosomal P-site when this is unoccupied by tRNA, while it is retracted into the terminal loop of 25S rRNA Helix 84 when the P-site is occupied. To further analyze the function of this structure, a series of mutants within the P-site loop were created and analyzed. A mutant that favors interaction of the P-site loop with the terminal loop of Helix 84 promoted increased affinity for peptidyl-tRNA, while another that favors its extension into the ribosomal P-site had the opposite effect. The two mutants also had opposing effects on binding of aa-tRNA to the ribosomal A-site, and downstream functional effects were observed on translational fidelity, drug resistance/hypersensitivity, virus maintenance and overall cell growth. These analyses suggest that the L11 P-site loop normally helps to optimize ribosome function by monitoring the occupancy status of the ribosomal P-site.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
235
|
Ly CT, Altuntop ME, Wang Y. Single-molecule study of viomycin's inhibition mechanism on ribosome translocation. Biochemistry 2010; 49:9732-8. [PMID: 20886842 DOI: 10.1021/bi101029g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viomycin belongs to the tuberactinomycin family of antibiotics against tuberculosis. However, its inhibition mechanism remains elusive. Although it is clear that viomycin inhibits the ribosome intersubunit ratcheting, there are contradictory reports about whether the antibiotic viomycin stabilizes the tRNA hybrid or classical state. By using a single-molecule FRET method to directly observe the tRNA dynamics relative to ribosomal protein L27, we have found that viomycin trapped the hybrid state within certain ribosome subgroups but did not significantly suppress the tRNA dynamics. The persistent fluctuation of tRNA implied that tRNA motions were decoupled from the ribosome intersubunit ratcheting. Viomycin also promoted peptidyl-tRNA fluctuation in the posttranslocation complex, implying that, in addition to acylated P-site tRNA, the decoding center also played an important role of ribosome locking after translocation. Therefore, viomycin inhibits translocation by trapping the hybrid state in the pretranslocation complex and disturbing the stability of posttranslocation complex. Our results imply that ribosome translocation is possibly a synergistic process of multiple decoupled local dynamics.
Collapse
Affiliation(s)
- Cindy T Ly
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77214, United States
| | | | | |
Collapse
|
236
|
Saha M, Levitt M, Chiu W. MOTIF-EM: an automated computational tool for identifying conserved regions in CryoEM structures. Bioinformatics 2010; 26:i301-9. [PMID: 20529921 PMCID: PMC2881380 DOI: 10.1093/bioinformatics/btq195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present a new, first-of-its-kind, fully automated computational tool MOTIF-EM for identifying regions or domains or motifs in cryoEM maps of large macromolecular assemblies (such as chaperonins, viruses, etc.) that remain conformationally conserved. As a by-product, regions in structures that are not conserved are revealed: this can indicate local molecular flexibility related to biological activity. MOTIF-EM takes cryoEM volumetric maps as inputs. The technique used by MOTIF-EM to detect conserved sub-structures is inspired by a recent breakthrough in 2D object recognition. The technique works by constructing rotationally invariant, low-dimensional representations of local regions in the input cryoEM maps. Correspondences are established between the reduced representations (by comparing them using a simple metric) across the input maps. The correspondences are clustered using hash tables and graph theory is used to retrieve conserved structural domains or motifs. MOTIF-EM has been used to extract conserved domains occurring in large macromolecular assembly maps, including as those of viruses P22 and epsilon 15, Ribosome 70S, GroEL, that remain structurally conserved in different functional states. Our method can also been used to build atomic models for some maps. We also used MOTIF-EM to identify the conserved folds shared among dsDNA bacteriophages HK97, Epsilon 15, and ô29, though they have low-sequence similarity. Contact:mitul@cs.stanford.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mitul Saha
- NIH Center for Biomedical Computation, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
237
|
Weis F, Bron P, Giudice E, Rolland JP, Thomas D, Felden B, Gillet R. tmRNA-SmpB: a journey to the centre of the bacterial ribosome. EMBO J 2010; 29:3810-8. [PMID: 20953161 DOI: 10.1038/emboj.2010.252] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/21/2010] [Indexed: 11/09/2022] Open
Abstract
Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.
Collapse
Affiliation(s)
- Félix Weis
- Université de Rennes, UMR CNRS Equipe Structure et Dynamique des Macromolécules, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
238
|
Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 2010; 466:329-33. [PMID: 20631791 DOI: 10.1038/nature09206] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/25/2010] [Indexed: 11/08/2022]
Abstract
The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.
Collapse
|
239
|
Sengupta J, Bussiere C, Pallesen J, West M, Johnson AW, Frank J. Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. ACTA ACUST UNITED AC 2010; 189:1079-86. [PMID: 20584915 PMCID: PMC2894450 DOI: 10.1083/jcb.201001124] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nucleocytoplasmic shuttling protein Nmd3 is an adaptor for export of the 60S ribosomal subunit from the nucleus. Nmd3 binds to nascent 60S subunits in the nucleus and recruits the export receptor Crm1 to facilitate passage through the nuclear pore complex. In this study, we present a cryoelectron microscopy (cryo-EM) reconstruction of the 60S subunit in complex with Nmd3 from Saccharomyces cerevisiae. The density corresponding to Nmd3 is directly visible in the cryo-EM map and is attached to the regions around helices 38, 69, and 95 of the 25S ribosomal RNA (rRNA), the helix 95 region being adjacent to the protein Rpl10. We identify the intersubunit side of the large subunit as the binding site for Nmd3. rRNA protection experiments corroborate the structural data. Furthermore, Nmd3 binding to 60S subunits is blocked in 80S ribosomes, which is consistent with the assigned binding site on the subunit joining face. This cryo-EM map is a first step toward a molecular understanding of the functional role and release mechanism of Nmd3.
Collapse
Affiliation(s)
- Jayati Sengupta
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
240
|
The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. J Mol Biol 2010; 402:741-60. [PMID: 20691699 DOI: 10.1016/j.jmb.2010.07.056] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
The ribosomal L1 stalk is a mobile structure implicated in directing tRNA movement during translocation through the ribosome. This article investigates three aspects of L1 stalk-tRNA interaction. First, by combining data from cryo electron microscopy, X-ray crystallography, and molecular dynamics simulations through the molecular dynamics flexible fitting method, we obtained atomic models of different tRNAs occupying the hybrid P/E state interacting with the L1 stalk. These models confirm the assignment of fluorescence resonance energy transfer states from previous single-molecule investigations of L1 stalk dynamics. Second, the models reconcile how initiator tRNA(fMet) interacts less strongly with the L1 stalk compared to elongator tRNA(Phe), as seen in previous single-molecule experiments. Third, results from a simulation of the entire ribosome in which the L1 stalk is moved from a half-closed conformation to its open conformation are found to support the hypothesis that L1 stalk opening is involved in tRNA release from the ribosome.
Collapse
|
241
|
Sanz-García E, Stewart AB, Belnap DM. The random-model method enables ab initio 3D reconstruction of asymmetric particles and determination of particle symmetry. J Struct Biol 2010; 171:216-22. [PMID: 20353825 PMCID: PMC2885456 DOI: 10.1016/j.jsb.2010.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Model-based, 3D reconstruction techniques depend on reliable starting models. We present an extension of the random-model method (RMM) that allows the ab initio generation of suitable starting models directly from un-averaged, experimental images of asymmetric or symmetric particles. Therefore, the asymmetric RMM can also be used to determine point-group symmetry. The procedure is facilitated by the use of (a) variable angular step-sizes during iterative origin and orientation searches, (b) high numbers of particle images, and (c) highly defocused images. The method is inhibited by mixed-handedness orientation assignments and by particles with inconspicuous features. For symmetric particles, symmetric RMMs can overcome these deficiencies.
Collapse
Affiliation(s)
- Eduardo Sanz-García
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Aaron B. Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - David M. Belnap
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
242
|
Intrinsic molecular properties of the protein–protein bridge facilitate ratchet-like motion of the ribosome. Biochem Biophys Res Commun 2010; 399:192-7. [DOI: 10.1016/j.bbrc.2010.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 12/27/2022]
|
243
|
Abstract
Computational modeling studies that investigate activity of the bacterial ribosome were reviewed. Computational approaches became possible with the availability of three-dimensional atomic resolution structures of the ribosomal subunits. However, due to the enormous size of the system, theoretical efforts to study the ribosome are few and challenging. For example, to extend the simulation timescales to biologically relevant ones, often, reduced models that require tedious parameterizations need to be applied. To that end, modeling of the ribosome focused on its internal dynamics, electrostatic properties, inhibition by antibiotics, polypeptide folding in the ribosome tunnel and assembly mechanisms driving the formation of the small ribosomal subunit.
Collapse
|
244
|
|
245
|
Abstract
Protein biosynthesis, or translation, occurs on the ribosome, a large RNA-protein assembly universally conserved in all forms of life. Over the last decade, structures of the small and large ribosomal subunits and of the intact ribosome have begun to reveal the molecular details of how the ribosome works. Both cryo-electron microscopy and X-ray crystallography continue to provide fresh insights into the mechanism of translation. In this review, we describe the most recent structural models of the bacterial ribosome that shed light on the movement of messenger RNA and transfer RNA on the ribosome after each peptide bond is formed, a process termed translocation. We also discuss recent structures that reveal the molecular basis for stop codon recognition during translation termination. Finally, we review recent advances in understanding how bacteria handle errors in both translocation and termination.
Collapse
Affiliation(s)
- Jack A Dunkle
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
246
|
Abstract
Our current understanding of the mechanism of translation is based on nearly fifty years of biochemical and biophysical studies. This mechanism, which requires the ribosome to manipulate tRNA and step repetitively along the mRNA, implies movement. High-resolution structures of the ribosome and its ligands have recently described translation in atomic detail, capturing the endpoints of large-scale rearrangements of the ribosome. Direct observation of the dynamic events that underlie the mechanism of translation is challenged by ensemble averaging in bulk solutions. Single-molecule methods, which eliminate these averaging effects, have emerged as powerful tools to probe the mechanism of translation. Single-molecule fluorescence experiments have described the dynamic motion of the ribosome and tRNA. Single-molecule force measurements have directly probed the forces stabilizing ribosomal complexes. Recent developments have allowed real-time observation of ribosome movement and dynamics during translation. This review covers the contributions of single-molecule studies to our understanding of the dynamic nature of translation.
Collapse
|
247
|
Aitken CE, Puglisi JD. Following the intersubunit conformation of the ribosome during translation in real time. Nat Struct Mol Biol 2010; 17:793-800. [PMID: 20562856 PMCID: PMC4459212 DOI: 10.1038/nsmb.1828] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 04/08/2010] [Indexed: 11/09/2022]
Abstract
We report the direct observation of conformational rearrangements of the ribosome during multiple rounds of elongation. Using single-molecule fluorescence resonance energy transfer, we monitored the intersubunit conformation of the ribosome in real time as it proceeds from codon to codon. During each elongation cycle, the ribosome unlocks upon peptide bond formation, then reverts to the locked state upon translocation onto the next codon. Our data reveal both the specific and cumulative effects of antibiotics on individual steps of translation and uncover the processivity of the ribosome as it elongates. Our approach interrogates the precise molecular events occurring at each codon of the mRNA within the full context of ongoing translation.
Collapse
|
248
|
Abstract
This essay is a reflection on the ways the X-ray structures of the ribosome are helping in the interpretation of cryogenic electron microscopy (cryo-EM) density maps showing the translating ribosome in motion. Through advances in classification methods, cryo-EM and single-particle reconstruction methods have recently evolved to the point where they can yield an array of structures from a single sample ("story in a sample"), providing snapshots of an entire subprocess of translation, such as translocation or decoding.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA and Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA, phone: +1 (0)212 305 9510, fax: +1 (0)212 305 9500
| |
Collapse
|
249
|
Seshadri A, Singh NS, Varshney U. Recycling of the posttermination complexes of Mycobacterium smegmatis and Escherichia coli ribosomes using heterologous factors. J Mol Biol 2010; 401:854-65. [PMID: 20561528 DOI: 10.1016/j.jmb.2010.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/19/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022]
Abstract
In eubacteria, ribosome recycling factor (RRF) and elongation factor G (EFG) function together to dissociate posttermination ribosomal complexes. Earlier studies, using heterologous factors from Mycobacterium tuberculosis in Escherichia coli revealed that specific interactions between RRF and EFG are crucial for their function in ribosome recycling. Here, we used translation factors from E. coli, Mycobacterium smegmatis and M. tuberculosis, and polysomes from E. coli and M. smegmatis, and employed in vivo and in vitro experiments to further understand the role of EFG in ribosome recycling. We show that E. coli EFG (EcoEFG) recycles E. coli ribosomes with E. coli RRF (EcoRRF), but not with mycobacterial RRFs. Also, EcoEFG fails to recycle M. smegmatis ribosomes with either EcoRRF or mycobacterial RRFs. On the other hand, mycobacterial EFGs recycle both E. coli and M. smegmatis ribosomes with either of the RRFs. These observations suggest that EFG establishes distinct interactions with RRF and the ribosome to carry out ribosome recycling. Furthermore, the EFG chimeras generated by swapping domains between mycobacterial EFGs and EcoEFG suggest that while the residues needed to specify the EFG interaction with RRF are located in domains IV and V, those required to specify its interaction with the ribosome are located throughout the molecule.
Collapse
Affiliation(s)
- Anuradha Seshadri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
250
|
Jang CJ, Jan E. Modular domains of the Dicistroviridae intergenic internal ribosome entry site. RNA (NEW YORK, N.Y.) 2010; 16:1182-1195. [PMID: 20423979 PMCID: PMC2874170 DOI: 10.1261/rna.2044610] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/16/2010] [Indexed: 05/29/2023]
Abstract
The intergenic region internal ribosome entry site (IGR IRES) of the Dicistroviridae viral family can directly assemble 80S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. These functions are directed by two independently folded domains of the IGR IRES. One domain, composed of overlapping pseudoknots II and III (PKII/III), mediates ribosome recruitment. The second domain, composed of PKI, mimics a tRNA anticodon-codon interaction to position the ribosome at the ribosomal A-site. Although adopting a common secondary structure, the dicistrovirus IGR IRESs can be grouped into two classes based on distinct features within each domain. In this study, we report on the modularity of the IGR IRESs and show that the ribosome-binding domain and the tRNA anticodon mimicry domain are functionally interchangeable between the Type I and the Type II IGR IRESs. Using structural probing, ribosome-binding assays, and ribosome positioning analysis by toeprinting assays, we show that the chimeric IRESs fold properly, assemble 80S ribosomes, and can mediate IRES translation in rabbit reticulocyte lysates. We also demonstrate that the chimeric IRESs can stimulate the ribosome-dependent GTPase activity of eEF2, which suggests that the ribosome is primed for a step downstream from IRES binding. Overall, the results demonstrate that the dicistrovirus IGR IRESs are composed of two modular domains that work in concert to manipulate the ribosome and direct translation initiation.
Collapse
Affiliation(s)
- Christopher J Jang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|