201
|
Nelson HH, Marsit CJ, Kelsey KT. Global methylation in exposure biology and translational medical science. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1528-33. [PMID: 21669556 PMCID: PMC3226501 DOI: 10.1289/ehp.1103423] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/13/2011] [Indexed: 05/16/2023]
Abstract
BACKGROUND Many groups are actively investigating how the epigenetic state relates to environmental exposures and development of disease, including cancer. There are myriad choices for capturing and measuring the epigenetic state of a tissue, ranging from assessing the total methyl-CpG content to array-based platforms that simultaneously probe hundreds of thousands of CpG loci. There is an emerging literature that uses CpG methylation at repetitive sequences, including LINE-1 (long interspersed nuclear element-1) elements, to capture the epigenomic state. OBJECTIVES We explored the complexity of using CpG methylation at repetitive sequences in epidemiology and translational medical research and suggest needed avenues of research to clarify its meaning and utility. CONCLUSIONS Among the most urgent avenues of research is the need for prospective studies to eliminate the possibilities of reverse causality, and development of new LINE-1 assays that capture both class of LINE-1 element and copy number.
Collapse
Affiliation(s)
- Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|
202
|
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
|
203
|
Flom JD, Ferris JS, Liao Y, Tehranifar P, Richards CB, Cho YH, Gonzalez K, Santella RM, Terry MB. Prenatal smoke exposure and genomic DNA methylation in a multiethnic birth cohort. Cancer Epidemiol Biomarkers Prev 2011; 20:2518-23. [PMID: 21994404 DOI: 10.1158/1055-9965.epi-11-0553] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Exposure to prenatal tobacco smoke (PTS) has been associated with a number of health outcomes in the offspring, including some childhood cancers. Lower levels of genomic DNA methylation have also been associated with several types of cancers. We investigated whether PTS was associated with global DNA methylation levels in the offspring. METHODS Our sample was drawn from a birth cohort of women born between 1959 and 1963 in New York City (n = 90). We measured methylation of repetitive elements (Sat2, Alu, LINE-1) from peripheral blood granulocytes. We combined prospectively collected data on PTS with adult epidemiologic data and blood samples collected in 2001 to 2007 (mean age, 43 years). We used linear regression to assess the association between PTS and repetitive element methylation. RESULTS Thirty-six percent of mothers smoked during pregnancy. We observed an inverse association between PTS and Sat2 methylation. This inverse association remained even after adjustment for potential mediators including child environmental tobacco smoke exposure, birth size, postnatal weight and height changes, and adult smoking status and alcohol intake (β = -0.22, 95% confidence interval = -0.40 to -0.03 for ever exposed to PTS vs. never exposed using models of log-transformed methylation levels). PTS exposure was not statistically significantly associated with LINE-1 or Alu methylation. CONCLUSIONS PTS exposure, measured at the time of pregnancy and not retrospectively reported, was associated with a decrease in Sat2 methylation but not LINE-1 or Alu methylation. IMPACT If replicated in larger studies, this study supports a persistent effect of PTS on DNA methylation levels, as measured by Sat2, in adulthood.
Collapse
Affiliation(s)
- Julie D Flom
- Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Villarreal LP. Viral ancestors of antiviral systems. Viruses 2011; 3:1933-58. [PMID: 22069523 PMCID: PMC3205389 DOI: 10.3390/v3101933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
205
|
Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 2011; 43:1154-9. [PMID: 21946353 DOI: 10.1038/ng.917] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 08/01/2011] [Indexed: 12/16/2022]
Abstract
A fundamental challenge in biology is explaining the origin of novel phenotypic characters such as new cell types; the molecular mechanisms that give rise to novelties are unclear. We explored the gene regulatory landscape of mammalian endometrial cells using comparative RNA-Seq and found that 1,532 genes were recruited into endometrial expression in placental mammals, indicating that the evolution of pregnancy was associated with a large-scale rewiring of the gene regulatory network. About 13% of recruited genes are within 200 kb of a Eutherian-specific transposable element (MER20). These transposons have the epigenetic signatures of enhancers, insulators and repressors, directly bind transcription factors essential for pregnancy and coordinately regulate gene expression in response to progesterone and cAMP. We conclude that the transposable element, MER20, contributed to the origin of a novel gene regulatory network dedicated to pregnancy in placental mammals, particularly by recruiting the cAMP signaling pathway into endometrial stromal cells.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology & Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
206
|
Retroviruses and retroelements in diseases and in gene therapy: 15 years later. Infect Agent Cancer 2011; 6:14. [PMID: 21943326 PMCID: PMC3205012 DOI: 10.1186/1750-9378-6-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/24/2011] [Indexed: 12/30/2022] Open
Abstract
The past 15 years opened new avenues for retrovirus and retroelement research. Not surprisingly, they stemmed from essential knowledge collected in the past, which remains the ground of the present and therefore should be remembered. However, a short supplement of new break-through discoveries and ideas should be recollected. Using selected examples of recent works, I tried to extend and supplement my original article published in Folia Biologica (1996).
Collapse
|
207
|
Abstract
Many evolutionary studies over the past decade have estimated α(sel), the proportion of all nucleotides in the human genome that are subject to purifying selection because of their biological function. Most of these studies have estimated the nucleotide substitution rates from genome sequence alignments across many diverse mammals. Some α(sel) estimates will be affected by the heterogeneity of substitution rates in neutral sequence across the genome. Most will also be inaccurate if change in the functional sequence repertoire occurs rapidly relative to the separation of lineages that are being compared. Evidence gathered from both evolutionary and experimental analyses now indicate that rates of "turnover" of functional, predominantly noncoding, sequence are, indeed, high. They are sufficiently high that an estimated 50% of mouse constrained noncoding sequence is predicted not to be shared with rat, a closely related rodent. The rapidity of turnover results in, at least, a twofold underestimate of α(sel) by analyses that measure constraint across the eutherian phylogeny. Approaches that take account of turnover estimate that the steady-state value of α(sel) lies between 10% and 15%. Experimental studies corroborate the predicted rates of loss and gain of noncoding functional sites. These studies show the limitations inherent in the use of deep sequence conservation for identifying functional sequence. Experimental investigations focusing on lineage-specific, noncoding, and functional sequence are now essential if we are to appreciate the complete functional repertoire of the human genome.
Collapse
Affiliation(s)
- Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | |
Collapse
|
208
|
Ebersole T, Kim JH, Samoshkin A, Kouprina N, Pavlicek A, White RJ, Larionov V. tRNA genes protect a reporter gene from epigenetic silencing in mouse cells. Cell Cycle 2011; 10:2779-91. [PMID: 21822054 PMCID: PMC3219543 DOI: 10.4161/cc.10.16.17092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 12/17/2022] Open
Abstract
It is a well-established fact that the tRNA genes in yeast can function as chromatin barrier elements. However, so far there is no experimental evidence that tRNA and other Pol III-transcribed genes exhibit barrier activity in mammals. This study utilizes a recently developed reporter gene assay to test a set of Pol III-transcribed genes and gene clusters with variable promoter and intergenic regions for their ability to prevent heterochromatin-mediated reporter gene silencing in mouse cells. The results show that functional copies of mouse tRNA genes are effective barrier elements. The number of tRNA genes as well as their orientation influence barrier function. Furthermore, the DNA sequence composition of intervening and flanking regions affects barrier activity of tRNA genes. Barrier activity was maintained for much longer time when the intervening and flanking regions of tRNA genes were replaced by AT-rich sequences, suggesting a negative role of DNA methylation in the establishment of a functional barrier. Thus, our results suggest that tRNA genes are essential elements in establishment and maintenance of chromatin domain architecture in mammalian cells.
Collapse
Affiliation(s)
- Thomas Ebersole
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Jung-Hyun Kim
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Alexander Samoshkin
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Natalay Kouprina
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Adam Pavlicek
- Computational Biology; Oncology Research Unit; Pfizer Global Research and Development; San Diego, CA USA
| | | | - Vladimir Larionov
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| |
Collapse
|
209
|
Sepp M, Kannike K, Eesmaa A, Urb M, Timmusk T. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing. PLoS One 2011; 6:e22138. [PMID: 21789225 PMCID: PMC3137626 DOI: 10.1371/journal.pone.0022138] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms.
Collapse
Affiliation(s)
- Mari Sepp
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Kannike
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Ave Eesmaa
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mari Urb
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
210
|
Abstract
The identification of molecular signatures predictive of clinical behavior and outcome in brain tumors has been the focus of many studies in the recent years. Despite the wealth of data that are available in the public domain on alterations in the genome, epigenome and transcriptome of brain tumors, the underlying molecular mechanisms leading to tumor initiation and progression remain largely unknown. Unfortunately, most of these data are scattered in multiple databases and supplementary materials of publications, thus making their retrieval, evaluation, comparison and visualization a rather arduous task. Here we report the development and implementation of an open access database (BTECH), a community resource for the deposition of a wide range of molecular data derived from brain tumor studies. This comprehensive database integrates multiple datasets, including transcript profiles, epigenomic CpG methylation data, DNA copy number alterations and structural chromosomal rearrangements, tumor-associated gene lists, SNPs, genomic features concerning Alu repeats and general genomic annotations. A genome browser has also been developed that allows for the simultaneous visualization of the different datasets and the various annotated features. Besides enabling an integrative view of diverse datasets through the genome browser, we also provide links to the original references for users to have a more accurate understanding of each specific dataset. This integrated platform will facilitate uncovering interactions among genetic and epigenetic factors associated with brain tumor development. BTECH is freely available at http://cmbteg.childrensmemorial.org/.
Collapse
|
211
|
Wang L, Wang FF, Qian W. Evolutionary rewiring and reprogramming of bacterial transcription regulation. J Genet Genomics 2011; 38:279-88. [DOI: 10.1016/j.jgg.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
212
|
Zhang Z, Pugh BF. Genomic organization of H2Av containing nucleosomes in Drosophila heterochromatin. PLoS One 2011; 6:e20511. [PMID: 21738578 PMCID: PMC3124471 DOI: 10.1371/journal.pone.0020511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/28/2011] [Indexed: 12/23/2022] Open
Abstract
H2Av is a versatile histone variant that plays both positive and negative roles in transcription, DNA repair, and chromatin structure in Drosophila. H2Av, and its broader homolog H2A.Z, tend to be enriched toward 5′ ends of genes, and exist in both euchromatin and heterochromatin. Its organization around euchromatin genes and other features have been described in many eukaryotic model organisms. However, less is known about H2Av nucleosome organization in heterochromatin. Here we report the properties and organization of individual H2Av nucleosomes around genes and transposable elements located in Drosophila heterochromatic regions. We compare the similarity and differences with that found in euchromatic regions. Our analyses suggest that nucleosomes are intrinsically positioned on inverted repeats of DNA transposable elements such as those related to the “1360” element, but are not intrinsically positioned on retrotransposon-related elements.
Collapse
Affiliation(s)
- Zhenhai Zhang
- Center for Comparative Genomics and Bioinformatics, Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - B. Franklin Pugh
- Center for Comparative Genomics and Bioinformatics, Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
213
|
Oliver KR, Greene WK. Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mob DNA 2011; 2:8. [PMID: 21627776 PMCID: PMC3123540 DOI: 10.1186/1759-8753-2-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/31/2011] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are increasingly being recognized as powerful facilitators of evolution. We propose the TE-Thrust hypothesis to encompass TE-facilitated processes by which genomes self-engineer coding, regulatory, karyotypic or other genetic changes. Although TEs are occasionally harmful to some individuals, genomic dynamism caused by TEs can be very beneficial to lineages. This can result in differential survival and differential fecundity of lineages. Lineages with an abundant and suitable repertoire of TEs have enhanced evolutionary potential and, if all else is equal, tend to be fecund, resulting in species-rich adaptive radiations, and/or they tend to undergo major evolutionary transitions. Many other mechanisms of genomic change are also important in evolution, and whether the evolutionary potential of TE-Thrust is realized is heavily dependent on environmental and ecological factors. The large contribution of TEs to evolutionary innovation is particularly well documented in the primate lineage. In this paper, we review numerous cases of beneficial TE-caused modifications to the genomes of higher primates, which strongly support our TE-Thrust hypothesis.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Sciences and Biotechnology, Faculty of Science and Engineering, Murdoch University, Perth W. A. 6150, Australia
| | - Wayne K Greene
- School of Veterinary and Biomedical Sciences, Faculty of Health Sciences, Murdoch University, Perth W. A. 6150, Australia
| |
Collapse
|
214
|
Casteret S, Moiré N, Aupinel P, Tasei JN, Bigot Y. Profile of the mosaic element BTMR1 in the genome of the bumble bee Bombus terrestris (Hymenoptera: Apidae). INSECT MOLECULAR BIOLOGY 2011; 20:153-164. [PMID: 20958807 DOI: 10.1111/j.1365-2583.2010.01051.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Co-evolution involving a mariner transposon, Botmar1 and the other repeats contained in the Bombus terrestris genome was investigated. We found that the 5'-region of Botmar1 forms one of the components of a mosaic element, known as B. terrestris mosaic repeat 1 (BTMR1), which is also composed of inner segments originating from two different retrotransposons and a pseudogene corresponding to an RNA methyltransferase cDNA. The fact that BTMR1 is interspersed within chromosomes and the differences in its abundance in different species indicate that it is very probably a mobile element. Nevertheless, the absences of direct or inverted repeats at its ends and of target site duplication indicate that its mobility is not ensured by a cardinal transposable element, but putatively by a Crypton-like element.
Collapse
Affiliation(s)
- S Casteret
- UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | | | | | | | | |
Collapse
|
215
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
216
|
The transposon-driven evolutionary origin and basis of histone deacetylase functions and limitations in disease prevention. Clin Epigenetics 2011; 2:97-112. [PMID: 22704332 PMCID: PMC3365375 DOI: 10.1007/s13148-011-0020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/03/2011] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylases (HDACs) are homologous to prokaryotic enzymes that removed acetyl groups from non-histone proteins before the evolution of eukaryotic histones. Enzymes inherited from prokaryotes or from a common ancestor were adapted for histone deacetylation, while useful deacetylation of non-histone proteins was selectively retained. Histone deacetylation served to prevent transcriptions with pathological consequences, including the expression of viral DNA and the deletion or dysregulation of vital genes by random transposon insertions. Viruses are believed to have evolved from transposons, with transposons providing the earliest impetus of HDAC evolution. Because of the wide range of genes potentially affected by transposon insertions, the range of diseases that can be prevented by HDACs is vast and inclusive. Repressive chromatin modifications that may prevent transcription also include methylation of selective lysine residues of histones H3 and H4 and the methylation of selective DNA cytosines following specific histone lysine methylation. Methylation and acetylation of individual histone residues are mutually exclusive. While transposons were sources of disease to be prevented by HDAC evolution, they were also the source of numerous and valuable coding and regulatory sequences recruited by “molecular domestication.” Those sequences contribute to evolved complex transcription regulation in which components with contradictory effects, such as HDACs and HATs, may be coordinated and complementary. Within complex transcription regulation, however, HDACs remain ineffective as defense against some critical infectious and non-infectious diseases because evolutionary compromises have rendered their activity transient.
Collapse
|
217
|
Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human gene promoters. Gene 2011; 475:39-48. [PMID: 21215797 DOI: 10.1016/j.gene.2010.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.
Collapse
Affiliation(s)
- Ahsan Huda
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
218
|
Shou C, Bhardwaj N, Lam HYK, Yan KK, Kim PM, Snyder M, Gerstein MB. Measuring the evolutionary rewiring of biological networks. PLoS Comput Biol 2011; 7:e1001050. [PMID: 21253555 PMCID: PMC3017101 DOI: 10.1371/journal.pcbi.1001050] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 12/03/2010] [Indexed: 11/18/2022] Open
Abstract
We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.
Collapse
Affiliation(s)
- Chong Shou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Nitin Bhardwaj
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Hugo Y. K. Lam
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Koon-Kiu Yan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Philip M. Kim
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Mark B. Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
219
|
Cui F, Sirotin MV, Zhurkin VB. Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 2011; 6:2. [PMID: 21208455 PMCID: PMC3032802 DOI: 10.1186/1745-6150-6-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/06/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs) reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs) remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. RESULTS We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. CONCLUSIONS The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu transcription, which, in turn, influences expression of the host genes.
Collapse
Affiliation(s)
- Feng Cui
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michael V Sirotin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
220
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|
221
|
|
222
|
Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y, Santella RM, Terry MB. Global methylation profiles in DNA from different blood cell types. Epigenetics 2011; 6:76-85. [PMID: 20890131 DOI: 10.4161/epi.6.1.13391] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation measured in white blood cell DNA is increasingly being used as in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran), and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources (WBC, Gran, mononuclear (MN), and lymphoblastoid cell lines (LCL)), we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA), and [(3)H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LBC, MN, or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [(3)H]-methyl acceptance, LINE1, and Alu assays. Methylation in MN was correlated with methylation in WBC for the [(3)H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant positive correlations ranging from 0.3-0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39-0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18-0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Ponting CP, Nellåker C, Meader S. Rapid turnover of functional sequence in human and other genomes. Annu Rev Genomics Hum Genet 2011; 12:275-99. [PMID: 21721940 DOI: 10.1146/annurev-genom-090810-183115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount of a genome's sequence that is functional has been surprisingly difficult to estimate accurately. This has severely hindered analyses asking whether the amount of functional genomic sequence correlates with organismal complexity. Most studies estimate these amounts by considering nucleotide substitution rates within aligned sequences. These approaches show reduced power to identify sequence that is aligned, functional, and constrained only within narrowly defined phyla. The neutral indel model exploits insertions or deletions (indels) rather than substitutions in predicting functional sequence. Surprisingly, this method indicates that half of all functional sequence is specific to individual eutherian lineages. This review considers the rates at which coding or noncoding and functional or nonfunctional sequence changes among mammalian genomes. In contrast to the slow rate at which protein-coding sequence changes, functional noncoding sequence appears to change or be turned over at rapid rates in mammals.
Collapse
Affiliation(s)
- Chris P Ponting
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | | | |
Collapse
|
224
|
Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, Maekita T, Nakazawa K, Tatematsu M, Ichinose M, Ushijima T. Alu and Satα hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer 2010; 128:33-9. [PMID: 20602342 DOI: 10.1002/ijc.25534] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Global hypomethylation and regional hypermethylation are supposed to be hallmarks of cancer cells. During gastric carcinogenesis, in which Helicobacter pylori infection is causally involved, aberrant hypermethylation is already present in H. pylori-infected gastric mucosae. In contrast, little is known about global hypomethylation, which can be caused by hypomethylation of individual repetitive elements and other sequences. We, therefore, investigated hypomethylation of individual repetitive elements and the global 5-methylcytosine content in four groups of gastric mucosal samples that represented the time course of H. pylori infection and gastric carcinogenesis [gastric mucosae of H. pylori-negative healthy volunteers (G1, n = 34), H. pylori-positive healthy volunteers (G2, n = 42), H. pylori-positive gastric cancer patients (G3, n = 34) and H. pylori-negative gastric cancer patients (G4, n = 20)] and 52 primary gastric cancers. Major variants of Alu, LINE1 and Satα were identified, and their methylation levels were quantified by bisulfite pyrosequencing. Compared with G1, the Alu methylation level was decreased in G2, G3, G4 and cancers (89.2-97.1% of that in G1, p < 0.05). The Satα methylation level was decreased in G2 (91.6%, p < 0.05) and G3 (94.3%, p = 0.08) but not in G4 and cancers. The LINE1 methylation level was decreased only in cancers. The 5-methylcytosine content was at similar levels in G2, G3 and G4 and highly variable in cancers. These results showed that Alu and Satα hypomethylation is induced in gastric mucosae by H. pylori infection during gastric carcinogenesis, possibly in different target cells, and that global hypomethylation is not always present in human gastric cancers.
Collapse
Affiliation(s)
- Takeichi Yoshida
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Sakabe NJ, Nobrega MA. Genome-wide maps of transcription regulatory elements. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:422-437. [PMID: 20836039 DOI: 10.1002/wsbm.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of eukaryotic genes with complex spatial-temporal regulation during development requires finer regulation than that of genes with simpler expression patterns. Given the high degree of conservation of the developmental gene set across distantly related phylogenetic taxa, it is argued that evolutionary variation has occurred by tweaking regulation of expression of developmental genes, rather than by changes in genes themselves. Complex regulation is often achieved through the coordinated action of transcription regulatory elements spread across the genome up to tens of kilobases from the promoters of their target genes. Disruption of regulatory elements has been implicated in several diseases and studies showing associations between disease traits and nonprotein coding variation hint for a role of regulatory elements as cause of diseases. Therefore, the identification and mapping of regulatory elements in genome scale is crucial to understand how gene expression is regulated, how organisms evolve, and to identify sequence variation causing diseases. Previously developed experimental techniques have been adapted to identify regulatory elements in genome scale and high-throughput, allowing a global view of their biological roles. We review methods as chromatin immunoprecipitation, DNase I hypersensitivity, and computational approaches and how they have been employed to generate maps of histone modifications, open chromatin, nucleosome positioning, and transcription factor binding regions in whole mammalian genomes. Given the importance of non-promoter elements in gene regulation and the recent explosion in the number of studies devoted to them, we focus on these elements and discuss the insights on gene regulation being obtained by these studies.
Collapse
Affiliation(s)
- Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
226
|
Singh V, Mishra RK. RISCI--Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes. BMC Bioinformatics 2010; 11:609. [PMID: 21184688 PMCID: PMC3024322 DOI: 10.1186/1471-2105-11-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background - The availability of multiple whole genome sequences has facilitated in silico identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects. Results - We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of Mycobacterium tuberculosis for IS 6100 insertion polymorphism. Conclusions - RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.
Collapse
Affiliation(s)
- Vipin Singh
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
227
|
Carlini F, Ridolfi B, Molinari A, Parisi C, Bozzuto G, Toccacieli L, Formisano G, De Orsi D, Paradisi S, Grober OMV, Ravo M, Weisz A, Arcieri R, Vella S, Gaudi S. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. PLoS One 2010; 5:e14221. [PMID: 21151977 PMCID: PMC2997057 DOI: 10.1371/journal.pone.0014221] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 11/15/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.
Collapse
Affiliation(s)
- Francesca Carlini
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ridolfi
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Parisi
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Bozzuto
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Toccacieli
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Formisano
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela De Orsi
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Paradisi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maria Ravo
- Department of General Pathology, Second University of Naples, Naples, Italy
| | - Alessandro Weisz
- Department of General Pathology, Second University of Naples, Naples, Italy
- Laboratory of Molecular Medicine, Faculty of Medicine, University of Salerno, Salerno, Italy
| | - Romano Arcieri
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Vella
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Gaudi
- Department of Therapeutic Research and Drug Evaluation, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
228
|
Vakhrusheva AA, Kazanov MD, Mironov AA, Bazykin GA. Evolution of prokaryotic genes by shift of stop codons. J Mol Evol 2010; 72:138-46. [PMID: 21082168 DOI: 10.1007/s00239-010-9408-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/29/2010] [Indexed: 11/30/2022]
Abstract
De novo origin of coding sequence remains an obscure issue in molecular evolution. One of the possible paths for addition (subtraction) of DNA segments to (from) a gene is stop codon shift. Single nucleotide substitutions can destroy the existing stop codon, leading to uninterrupted translation up to the next stop codon in the gene's reading frame, or create a premature stop codon via a nonsense mutation. Furthermore, short indels-caused frameshifts near gene's end may lead to premature stop codons or to translation past the existing stop codon. Here, we describe the evolution of the length of coding sequence of prokaryotic genes by change of positions of stop codons. We observed cases of addition of regions of 3'UTR to genes due to mutations at the existing stop codon, and cases of subtraction of C-terminal coding segments due to nonsense mutations upstream of the stop codon. Many of the observed stop codon shifts cannot be attributed to sequencing errors or rare deleterious variants segregating within bacterial populations. The additions of regions of 3'UTR tend to occur in those genes in which they are facilitated by nearby downstream in-frame triplets which may serve as new stop codons. Conversely, subtractions of coding sequence often give rise to in-frame stop codons located nearby. The amino acid composition of the added region is significantly biased, compared to the overall amino acid composition of the genes. Our results show that in prokaryotes, shift of stop codon is an underappreciated contributor to functional evolution of gene length.
Collapse
Affiliation(s)
- Anna A Vakhrusheva
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorbyevy Gory 1-73, Moscow 119992, Russia
| | | | | | | |
Collapse
|
229
|
Babu MM. Early Career Research Award Lecture. Structure, evolution and dynamics of transcriptional regulatory networks. Biochem Soc Trans 2010; 38:1155-78. [PMID: 20863280 DOI: 10.1042/bst0381155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The availability of entire genome sequences and the wealth of literature on gene regulation have enabled researchers to model an organism's transcriptional regulation system in the form of a network. In such a network, TFs (transcription factors) and TGs (target genes) are represented as nodes and regulatory interactions between TFs and TGs are represented as directed links. In the present review, I address the following topics pertaining to transcriptional regulatory networks. (i) Structure and organization: first, I introduce the concept of networks and discuss our understanding of the structure and organization of transcriptional networks. (ii) Evolution: I then describe the different mechanisms and forces that influence network evolution and shape network structure. (iii) Dynamics: I discuss studies that have integrated information on dynamics such as mRNA abundance or half-life, with data on transcriptional network in order to elucidate general principles of regulatory network dynamics. In particular, I discuss how cell-to-cell variability in the expression level of TFs could permit differential utilization of the same underlying network by distinct members of a genetically identical cell population. Finally, I conclude by discussing open questions for future research and highlighting the implications for evolution, development, disease and applications such as genetic engineering.
Collapse
Affiliation(s)
- M Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
230
|
Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31:631-55. [PMID: 20506564 DOI: 10.1002/humu.21260] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of reported germline mutations in human nuclear genes, either underlying or associated with inherited disease, has now exceeded 100,000 in more than 3,700 different genes. The availability of these data has both revolutionized the study of the morbid anatomy of the human genome and facilitated "personalized genomics." With approximately 300 new "inherited disease genes" (and approximately 10,000 new mutations) being identified annually, it is pertinent to ask how many "inherited disease genes" there are in the human genome, how many mutations reside within them, and where such lesions are likely to be located? To address these questions, it is necessary not only to reconsider how we define human genes but also to explore notions of gene "essentiality" and "dispensability."Answers to these questions are now emerging from recent novel insights into genome structure and function and through complete genome sequence information derived from multiple individual human genomes. However, a change in focus toward screening functional genomic elements as opposed to genes sensu stricto will be required if we are to capitalize fully on recent technical and conceptual advances and identify new types of disease-associated mutation within noncoding regions remote from the genes whose function they disrupt.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Cagliani R, Fumagalli M, Biasin M, Piacentini L, Riva S, Pozzoli U, Bonaglia MC, Bresolin N, Clerici M, Sironi M. Long-term balancing selection maintains trans-specific polymorphisms in the human TRIM5 gene. Hum Genet 2010; 128:577-88. [PMID: 20811909 DOI: 10.1007/s00439-010-0884-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/25/2010] [Indexed: 01/09/2023]
Abstract
The human TRIM5 genes encodes a retroviral restriction factor (TRIM5α). Evolutionary analyses of this gene in mammals have revealed a complex and multifaceted scenario, suggesting that TRIM5 has been the target of exceptionally strong selective pressures, possibly exerted by recurrent waves of retroviral infections. TRIM5 displays inter-individual expression variability in humans and high levels of TRIM5 mRNA have been associated with a reduced risk of HIV-1 infection. We resequenced TRIM5 in chimpanzees and identified two polymorphisms in intron 1 that are shared with humans. Analysis of the gene region encompassing the two trans-specific variants in human populations identified exceptional nucleotide diversity levels and an excess of polymorphism compared to fixed divergence. Most tests rejected the null hypothesis of neutral evolution for this region and haplotype analysis revealed the presence of two deeply separated clades. Calculation of the time to the most recent common ancestor (TMRCA) for TRIM5 haplotypes yielded estimates ranging between 4 and 7 million years. Overall, these data indicate that long-term balancing selection, an extremely rare process outside MHC genes, has maintained trans-specific polymorphisms in the first intron of TRIM5. Bioinformatic analyses indicated that variants in intron 1 may affect transcription factor-binding sites and, therefore, TRIM5 transcriptional activity. Data herein confirm an extremely complex evolutionary history of TRIM5 genes in primates and open the possibility that regulatory variants in the gene modulate the susceptibility to HIV-1.
Collapse
Affiliation(s)
- R Cagliani
- Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842, Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Mortada H, Vieira C, Lerat E. Genes devoid of full-length transposable element insertions are involved in development and in the regulation of transcription in human and closely related species. J Mol Evol 2010; 71:180-91. [PMID: 20798934 DOI: 10.1007/s00239-010-9376-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/26/2010] [Indexed: 02/04/2023]
Abstract
Transposable elements (TEs) are major components of mammalian genomes, and their impact on genome evolution is now well established. In recent years several findings have shown that they are associated with the expression level and function of genes. In this study, we analyze the relationships between human genes and full-length TE copies in terms of three factors (gene function, expression level, and selective pressure). We classified human genes according to their TE density, and found that TE-free genes are involved in important functions such as development, transcription, and the regulation of transcription, whereas TE-rich genes are involved in functions such as transport and metabolism. This trend is conserved through evolution. We show that this could be explained by a stronger selection pressure acting on both the coding and non-coding regions of TE-free genes than on those of TE-rich genes. The higher level of expression found for TE-rich genes in tumor and immune system tissues suggests that TEs play an important role in gene regulation.
Collapse
|
233
|
Jacox E, Gotea V, Ovcharenko I, Elnitski L. Tissue-specific and ubiquitous expression patterns from alternative promoters of human genes. PLoS One 2010; 5:e12274. [PMID: 20806066 PMCID: PMC2923625 DOI: 10.1371/journal.pone.0012274] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/18/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcriptome diversity provides the key to cellular identity. One important contribution to expression diversity is the use of alternative promoters, which creates mRNA isoforms by expanding the choice of transcription initiation sites of a gene. The proximity of the basal promoter to the transcription initiation site enables prediction of a promoter's location based on the gene annotations. We show that annotation of alternative promoters regulating expression of transcripts with distinct first exons enables a novel methodology to quantify expression levels and tissue specificity of mRNA isoforms. PRINCIPAL FINDINGS The use of distinct alternative first exons in 3,296 genes was examined using exon-microarray data from 11 human tissues. Comparing two transcripts from each gene we found that the activity of alternative promoters (i.e., P1 and P2) was not correlated through tissue specificity or level of expression. Furthermore neither P1 nor P2 conferred any bias for tissue-specific or ubiquitous expression. Genes associated with specific diseases produced transcripts whose limited expression patterns were consistent with the tissue affected in disease. Notably, genes that were historically designated as tissue-specific or housekeeping had alternative isoforms that showed differential expression. Furthermore, only a small number of alternative promoters showed expression exclusive to a single tissue indicating that "tissue preference" provides a better description of promoter activity than tissue specificity. When compared to gene expression data in public databases, as few as 22% of the genes had detailed information for more than one isoform, whereas the remainder collapsed the expression patterns from individual transcripts into one profile. CONCLUSIONS We describe a computational pipeline that uses microarray data to assess the level of expression and breadth of tissue profiles for transcripts with distinct first exons regulated by alternative promoters. We conclude that alternative promoters provide individualized regulation that is confirmed through expression levels, tissue preference and chromatin modifications. Although the selective use of alternative promoters often goes uncharacterized in gene expression analyses, transcripts produced in this manner make unique contributions to the cell that requires further exploration.
Collapse
Affiliation(s)
- Edwin Jacox
- National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Valer Gotea
- National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, United States of America
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivan Ovcharenko
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
234
|
Warnefors M, Pereira V, Eyre-Walker A. Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol Biol Evol 2010; 27:1955-62. [PMID: 20332159 DOI: 10.1093/molbev/msq084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Transposable elements (TEs) can affect the regulation of nearby genes through several mechanisms. Here, we examine to what extent recent TE insertions have contributed to the evolution of gene expression in hominids. We compare expression levels of human and chimpanzee orthologs and detect a weak increase in expression divergence (ED) for genes with species-specific TE insertions compared with unaffected genes. However, we show that genes with TE insertions predating the human-chimpanzee split also exhibit a similar increase in ED and therefore conclude that the increase is not due to the transcriptional influence of the TEs. These results are further confirmed by lineage-specific analysis of ED, using rhesus macaque as an outgroup: Human-chimpanzee ortholog pairs, where one ortholog has suffered TE insertion but not the other, do not show increased ED along the lineage where the insertion occurred, relative to the other lineage. We also show that genes with recent TE insertions tend to produce more alternative transcripts but find no evidence that the TEs themselves promote transcript diversity. Finally, we observe that TEs are enriched upstream relative to downstream of genes and show that this is due to insertional bias, rather than selection, because this bias is only observed in genes expressed in the germ line. This provides an alternative neutral explanation for the accumulation of TEs in upstream sequences.
Collapse
Affiliation(s)
- Maria Warnefors
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | | |
Collapse
|
235
|
Paquet Y, Anderson A. Sequence composition similarities with the 7SL RNA are highly predictive of functional genomic features. Nucleic Acids Res 2010; 38:4907-16. [PMID: 20392819 PMCID: PMC2926601 DOI: 10.1093/nar/gkq234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Transposable elements derived from the 7SL RNA gene, such as Alu elements in primates, have had remarkable success in several mammalian lineages. The results presented here show a broad spectrum of functions for genomic segments that display sequence composition similarities with the 7SL RNA gene. Using thoroughly documented loci, we report that DNaseI-hypersensitive sites can be singled out in large genomic sequences by an assessment of sequence composition similarities with the 7SL RNA gene. We apply a root word frequency approach to illustrate a distinctive relationship between the sequence of the 7SL RNA gene and several classes of functional genomic features that are not presumed to be of transposable origin. Transposable elements that show noticeable similarities with the 7SL sequence include Alu sequences, as expected, but also long terminal repeats and the 5′-untranslated regions of long interspersed repetitive elements. In sequences masked for repeated elements, we find, when using the 7SL RNA gene as query sequence, distinctive similarities with promoters, exons and distal gene regulatory regions. The latter being the most notoriously difficult to detect, this approach may be useful for finding genomic segments that have regulatory functions and that may have escaped detection by existing methods.
Collapse
Affiliation(s)
- Yanick Paquet
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec G1R 2J6 and Département de biologie, Université Laval, Québec G1K 7P4, Canada
| | - Alan Anderson
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec G1R 2J6 and Département de biologie, Université Laval, Québec G1K 7P4, Canada
- *To whom correspondence should be addressed. Tel: + 418 691 5281; Fax: +418 691 5439;
| |
Collapse
|
236
|
Belancio VP, Roy-Engel AM, Deininger PL. All y'all need to know 'bout retroelements in cancer. Semin Cancer Biol 2010; 20:200-10. [PMID: 20600922 PMCID: PMC2943028 DOI: 10.1016/j.semcancer.2010.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 01/08/2023]
Abstract
Genetic instability is one of the principal hallmarks and causative factors in cancer. Human transposable elements (TE) have been reported to cause human diseases, including several types of cancer through insertional mutagenesis of genes critical for preventing or driving malignant transformation. In addition to retrotransposition-associated mutagenesis, TEs have been found to contribute even more genomic rearrangements through non-allelic homologous recombination. TEs also have the potential to generate a wide range of mutations derivation of which is difficult to directly trace to mobile elements, including double strand breaks that may trigger mutagenic genomic rearrangements. Genome-wide hypomethylation of TE promoters and significantly elevated TE expression in almost all human cancers often accompanied by the loss of critical DNA sensing and repair pathways suggests that the negative impact of mobile elements on genome stability should increase as human tumors evolve. The biological consequences of elevated retroelement expression, such as the rate of their amplification, in human cancers remain obscure, particularly, how this increase translates into disease-relevant mutations. This review is focused on the cellular mechanisms that control human TE-associated mutagenesis in cancer and summarizes the current understanding of TE contribution to genetic instability in human malignancies.
Collapse
Affiliation(s)
- Victoria P. Belancio
- Tulane University, Department of Structural and Cellular Biology, School of Medicine, Tulane Cancer Center and Tulane Center for Aging
| | - Astrid M. Roy-Engel
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center
| | - Prescott L. Deininger
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center
| |
Collapse
|
237
|
Bousios A, Waxman D, Pearce SR. Absence of close-facing retrotransposons: a comparison of molecular data and theory. J Theor Biol 2010; 264:205-10. [PMID: 19962995 DOI: 10.1016/j.jtbi.2009.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Retrotransposons occur in extremely large numbers in many eukaryotic genomes. However, little is known of the factors which affect the distribution of close proximity elements. In this work we investigate the frequency of close facing retrotransposons in a plant species with extremely high numbers of retrotransposons. Molecular observations are compared with predictions of a mathematical model that assumes a uniform probability of retrotransposon insertion into the genome. The mathematical model plays the role of a null hypothesis. We find that compared with the predictions of the model, there is a statistically significant deficit of identical copies of facing retroelements that are close to one another. This suggests that an efficient mechanism exists that removes or limits close facing retroelements.
Collapse
Affiliation(s)
- Alexandros Bousios
- School of Life Sciences, University of Sussex, John Maynard-Smith Building, Brighton BN1 9QG, Sussex UK
| | | | | |
Collapse
|
238
|
Laurent GS, Hammell N, McCaffrey TA. A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 2010; 131:299-305. [PMID: 20346965 PMCID: PMC2875337 DOI: 10.1016/j.mad.2010.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 12/15/2022]
Abstract
Advancing age remains the largest risk factor for devastating diseases, such as heart disease, stroke, and cancer. The mechanisms by which advancing age predisposes to disease are now beginning to unfold, due in part, to genetic and environmental manipulations of longevity in lower organisms. Converging lines of evidence suggest that DNA damage may be a final common pathway linking several proposed mechanisms of aging. The present review forwards a theory for an additional aging pathway that involves modes of inherent genetic instability. Long interspersed nuclear elements (LINEs) are endogenous non-LTR retrotransposons that compose about 20% of the human genome. The LINE-1 (L1) gene products, ORF1p and ORF2p, possess mRNA binding, endonuclease, and reverse transcriptase activity that enable retrotransposition. While principally active only during embryogenesis, L1 transcripts are detected in adult somatic cells under certain conditions. The present hypothesis proposes that L1s act as an 'endogenous clock', slowly eroding genomic integrity by competing with the organism's double-strand break repair mechanism. Thus, while L1s are an accepted mechanism of genetic variation fueling evolution, it is proposed that longevity is negatively impacted by somatic L1 activity. The theory predicts testable hypotheses about the relationship between L1 activity, DNA repair, healthy aging, and longevity.
Collapse
Affiliation(s)
- Georges St. Laurent
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, DC 20037
- Immunovirology – Biogenisis Group, University of Antioquia, A.A. 1226, Medellin, Colombia And Brown University, Department of Biology, Providence, RI 02912
| | - Neil Hammell
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, DC 20037
| | - Timothy A. McCaffrey
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, DC 20037
| |
Collapse
|
239
|
Muñoz-López M, García-Pérez JL. DNA transposons: nature and applications in genomics. Curr Genomics 2010; 11:115-28. [PMID: 20885819 PMCID: PMC2874221 DOI: 10.2174/138920210790886871] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 11/18/2009] [Accepted: 12/01/2009] [Indexed: 12/19/2022] Open
Abstract
Repeated DNA makes up a large fraction of a typical mammalian genome, and some repetitive elements are able to move within the genome (transposons and retrotransposons). DNA transposons move from one genomic location to another by a cut-and-paste mechanism. They are powerful forces of genetic change and have played a significant role in the evolution of many genomes. As genetic tools, DNA transposons can be used to introduce a piece of foreign DNA into a genome. Indeed, they have been used for transgenesis and insertional mutagenesis in different organisms, since these elements are not generally dependent on host factors to mediate their mobility. Thus, DNA transposons are useful tools to analyze the regulatory genome, study embryonic development, identify genes and pathways implicated in disease or pathogenesis of pathogens, and even contribute to gene therapy. In this review, we will describe the nature of these elements and discuss recent advances in this field of research, as well as our evolving knowledge of the DNA transposons most widely used in these studies.
Collapse
Affiliation(s)
- Martín Muñoz-López
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| | - José L. García-Pérez
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| |
Collapse
|
240
|
Featherstone K, Wood AL, Bowen AJ, Corcoran AE. The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J Biol Chem 2010; 285:9327-9338. [PMID: 20100833 PMCID: PMC2843181 DOI: 10.1074/jbc.m109.098251] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 12/24/2009] [Indexed: 01/06/2023] Open
Abstract
During immunoglobulin heavy chain (Igh) V(D)J recombination, D to J precedes V to DJ recombination in an ordered manner, controlled by differential chromatin accessibility of the V and DJ regions and essential for correct antibody assembly. However, with the exception of the intronic enhancer Emu, which regulates D to J recombination, cis-acting regulatory elements have not been identified. We have assembled the sequence of a strategically located 96-kb V-D intergenic region in the mouse Igh and analyzed its activity during lymphocyte development. We show that Emu-dependent D antisense transcription, proposed to open chromatin before D to J recombination, extends into the V-D region for more than 30 kb in B cells before, during, and after V(D)J recombination and in T cells but terminates 40 kb from the first V gene. Thus, subsequent V antisense transcription before V to DJ recombination is actively prevented and must be independently activated. To find cis-acting elements that regulate this differential chromatin opening, we identified six DNase I-hypersensitive sites (HSs) in the V-D region. One conserved HS upstream of the first D gene locally regulates D genes. Two further conserved HSs near the D region mark a sharp decrease in antisense transcription, and both HSs bind CTCF in vivo. Further, they both possess enhancer-blocking activity in vivo. Thus, we propose that they are enhancer-blocking insulators preventing Emu-dependent chromatin opening extending into the V region. Thus, they are the first elements identified that may control ordered V(D)J recombination and correct assembly of antibody genes.
Collapse
Affiliation(s)
- Karen Featherstone
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Andrew L Wood
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Adam J Bowen
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Anne E Corcoran
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
241
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
242
|
Abstract
BACKGROUND Transposons are "jumping genes" that account for large quantities of repetitive content in genomes. They are known to affect transcriptional regulation in several different ways, and are implicated in many human diseases. Transposons are related to microRNAs and viruses, and many genes, pseudogenes, and gene promoters are derived from transposons or have origins in transposon-induced duplication. Modeling transposon-derived genomic content is difficult because they are poorly conserved. Profile hidden Markov models (profile HMMs), widely used for protein sequence family modeling, are rarely used for modeling DNA sequence families. The algorithm commonly used to estimate the parameters of profile HMMs, Baum-Welch, is prone to prematurely converge to local optima. The DNA domain is especially problematic for the Baum-Welch algorithm, since it has only four letters as opposed to the twenty residues of the amino acid alphabet. RESULTS We demonstrate with a simulation study and with an application to modeling the MIR family of transposons that two recently introduced methods, Conditional Baum-Welch and Dynamic Model Surgery, achieve better estimates of the parameters of profile HMMs across a range of conditions. CONCLUSIONS We argue that these new algorithms expand the range of potential applications of profile HMMs to many important DNA sequence family modeling problems, including that of searching for and modeling the virus-like transposons that are found in all known genomes.
Collapse
Affiliation(s)
- Paul T Edlefsen
- Department of Statistics, Harvard University, One Oxford Street, Cambridge, MA, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, One Oxford Street, Cambridge, MA, USA
| |
Collapse
|
243
|
Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics 2010; 41:194-200. [PMID: 20145203 DOI: 10.1152/physiolgenomics.00146.2009] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interspersed repetitive sequences (IRSs) are a major contributor to genome size and may contribute to cellular functions. IRSs are subdivided according to size and functionally related structures into short interspersed elements, long interspersed elements (LINEs), DNA transposons, and LTR-retrotransposons. Many IRSs may produce RNA and regulate genes by a variety of mechanisms. The majority of DNA methylation occurs in IRSs and is believed to suppress IRS activities. Global hypomethylation, or the loss of genome-wide methylation, is a common epigenetic event not only in senescent cells but also in cancer cells. Loss of LINE-1 methylation has been characterized in many cancers. Here, we evaluated the methylation levels of peripheral blood mononuclear cells of LINE-1, Alu, and human endogenous retrovirus K (HERV-K) in 177 samples obtained from volunteers between 20 and 88 yr of age. Age was negatively associated with methylation levels of Alu (r = -0.452, P < 10(-3)) and HERV-K (r = -0.326, P < 10(-3)) but not LINE-1 (r = 0.145, P = 0.055). Loss of methylation of Alu occurred during ages 34-68 yr, and loss of methylation of HERV-K occurred during ages 40-63 yr and again during ages 64-83 yr. Interestingly, methylation of Alu and LINE-1 are directly associated, particularly at ages 49 yr and older (r = 0.49, P < 10(-3)). Therefore, only some types of IRSs lose methylation at certain ages. Moreover, Alu and HERV-K become hypomethylated differently. Finally, there may be several mechanisms of global methylation. However, not all of these mechanisms are age-dependent. This finding may lead to a better understanding of not only the biological causes and consequences of genome-wide hypomethylation but also the role of IRSs in the aging process.
Collapse
Affiliation(s)
- Pornrutsami Jintaridth
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University
| | | |
Collapse
|
244
|
Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome. Mol Genet Genomics 2010; 283:255-71. [PMID: 20127492 DOI: 10.1007/s00438-009-0509-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/24/2009] [Indexed: 01/30/2023]
Abstract
Retrotransposons constitute a major proportion of the Triticeae genomes. Genome-scale studies have revealed their role in evolution affecting both genome structure and function and their potential for the development of novel markers. In this study, family members of an LTR copia retrotransposon which mediated the duplication of the gene encoding the high molecular weight glutenin subunit Bx7 in cultivar Glenlea were characterized. This novel element was named Sasanda_EU157184-1 (TREP3516). High density filters of the Glenlea hexaploid wheat BAC library were screened with a Sasanda long terminal repeat (LTR)-specific probe and approximately 1,075 positive clones representing an estimated copy number of 347 elements per haploid genome were identified. The 242 BAC clones with the strongest hybridization signal were selected. To maximize isolation of complete elements, this subset of clones was screened with a reverse transcriptase (RT) domain probe and DNA was isolated from the 133 clones that produced a strong hybridization signal. Left (5') and right (3') LTRs as well as the RT domains were PCR amplified and sequencing was carried out on the final subset of 121 clones. Evolutionary relationships were inferred from a data set consisting of 100 RT, 102 5' LTR and 100 3' LTR sequences representing 233, 451 and 495 informative sites for comparison, respectively. Neighbour-joining tree indicated that the element is at least 1.8 million years old and has evolved into a minimum of five sub-families. The insertion times of the 89 complete elements were estimated based on the divergence between their LTRs. Corroborating the inference from the RT domain, analysis of the LTR domains also indicated bursts of amplification from 2.6 million years ago (MYA) to now, except for one member dated to 4.6 +/- 0.7 MYA, which corresponds to the interval of divergence of Triticum and Aegilops (3 MYA) and divergence of Triticum and Rye (7 MYA). In 44 elements, the 5' and 3' LTRs were identical indicating recent transposition activity. The element can be used to develop retrotransposon-based markers such as sequence-specific amplified polymorphism, retrotransposon microsatellite amplified polymorphism and inter-retrotransposon amplified polymorphism, all of which are well suited for genotyping studies.
Collapse
|
245
|
Abstract
While once almost synonymous, there is an increasing gap between the expanding definition of what constitutes a gene and the conservative and narrowly defined terms code or coding, which for a long time, almost exclusively constituted the open reading frame. Much confusion results from this disparity, especially in light of the plethora of noncoding RNAs (more correctly termed "non-protein-coding RNAs") that usually are encoded and transcribed by their own genes. A simple solution would be to adopt Ed Trifonov's less constrained definition of a code as any sequence pattern that can have a biological function. Such consideration favors not only a more complex view of the gene as an entity composed of many more or less conserved subgenic modules, but also a concept of modular evolution of genes and entire genomes.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
246
|
Levy A, Schwartz S, Ast G. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res 2009; 38:1515-30. [PMID: 20008508 PMCID: PMC2836564 DOI: 10.1093/nar/gkp1134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.
Collapse
Affiliation(s)
- Asaf Levy
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
247
|
Singh ND, Larracuente AM, Sackton TB, Clark AG. Comparative Genomics on the Drosophila Phylogenetic Tree. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the sequencing of 12 complete euchromatic Drosophila genomes, the genus Drosophila is a leading model for comparative genomics. In this review, we discuss the novel insights into evolutionary processes afforded by the newly available genomic sequences when placed in the context of the phylogeny. We focus on three levels: insights into whole-genome content, such as changes in genome size and content across the phylogeny; insights into large-scale patterns of divergence and conservation, such as selective constraints on genes and chromosome-level evolution of sex chromosomes; and insights into finer-scale processes in individual lineages and genes, such as lineage-specific evolution in response to ecological context. As the field of comparative genomics is still young, we also discuss current challenges, such as the development of more sophisticated evolutionary models to capture nonequilibrium processes and the improvement of assembly and alignment algorithms to better capture uncertainty in the data.
Collapse
Affiliation(s)
- Nadia D. Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Amanda M. Larracuente
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
248
|
Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 2009; 19:607-12. [PMID: 19914058 DOI: 10.1016/j.gde.2009.10.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 01/30/2023]
Abstract
Repetitive DNA and in particular transposable elements have been intimately linked to eukaryotic genomes for millions of years. Once overlooked for being only a collection of selfish debris and a nuisance for sequence assembly, genomic repeats are now being recognized as a key driving force in genome evolution. Indeed, by changing the DNA landscape of genomes, transposable elements have been a rich source of innovation in genes, regulatory elements and genome structures. In this review, I will focus on recent advances that demonstrate that genomic repeats have had a global impact on vertebrate gene regulatory networks. I will also summarize results that show how transposable elements have been a major catalyst of structural rearrangements throughout evolution.
Collapse
|
249
|
Uchiyama T, Fujino K, Ogawa T, Wakatsuki A, Kishima Y, Mikami T, Sano Y. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin. PLANT PHYSIOLOGY 2009; 151:1557-69. [PMID: 19759347 PMCID: PMC2773084 DOI: 10.1104/pp.109.142356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Transposon insertions occasionally occur in the promoter regions of plant genes, many of which are still capable of being transcribed. However, it remains unclear how transcription of such promoters is able to occur. Insertion of the Tam3 transposon into various genes of Antirrhinum majus can confer leaky phenotypes without its excision. These genes, named Tam3-permissible alleles, often contain Tam3 in their promoter regions. Two alleles at different anthocyanin biosynthesis loci, nivea(recurrensTam3) (niv(rec)) and pallida(recurrensTam3) (pal(rec)), both contain Tam3 at a similar position immediately upstream of the promoter TATA-box; however, these insertions had different phenotypic consequences. Under conditions where the inserted Tam3 is immobilized, the niv(rec) line produces pale red petals, whereas the pal(rec) line produces no pigment. These pigmentation patterns are correlated with the level of transcripts from the niv(rec) or pal(rec) alleles, and these transcriptional activities are independent of DNA methylation in their promoter regions. In niv(rec), Tam3 is inserted in an orientation that results in the 3' end of Tam3 adjacent to the 5' region of the gene coding sequence. In contrast, the pal(rec) allele contains a Tam3 insertion in the opposite orientation. Four of five different nonrelated genes that are also Tam3-permissible alleles and contain Tam3 within the promoter region share the same Tam3 orientation as niv(rec). The different transcriptional activities dependent on Tam3 orientation in the Antirrhinum promoters were consistent with expression of luciferase reporter constructs introduced into yeast chromosomes but not with transient expression of these constructs in Antirrhinum cells. These results suggest that for Tam3 to sustain stable transcriptional activity in various promoters it must be embedded in chromatin.
Collapse
Affiliation(s)
| | | | | | | | - Yuji Kishima
- Laboratories of Plant Breeding (T.U., T.O., Y.K., Y.S.), Crop Physiology (K.F.), and Genetic Engineering (A.W., T.M.), Research Faculty of Agriculture, Hokkaido University, Sapporo 060–8589, Japan
| | | | | |
Collapse
|
250
|
Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 2: retroviral symbiosis. J R Soc Med 2009; 102:324-31. [PMID: 19679734 DOI: 10.1258/jrsm.2009.090183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Frank P Ryan
- Sheffield Primary Care Trust and Department of Animal and Plant Sciences, Sheffield University, Sheffield, UK.
| |
Collapse
|