201
|
Cell-cycle control in the face of damage--a matter of life or death. Trends Cell Biol 2009; 19:89-98. [PMID: 19168356 DOI: 10.1016/j.tcb.2008.12.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 12/31/2022]
Abstract
Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.
Collapse
|
202
|
Faustrup H, Bekker-Jensen S, Bartek J, Lukas J, Mailand N. USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. ACTA ACUST UNITED AC 2009; 184:13-9. [PMID: 19124652 PMCID: PMC2615094 DOI: 10.1083/jcb.200807137] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Claspin is an adaptor protein that facilitates the ataxia telangiectasia and Rad3-related (ATR)-mediated phosphorylation and activation of Chk1, a key effector kinase in the DNA damage response. Efficient termination of Chk1 signaling in mitosis and during checkpoint recovery requires SCFβTrCP-dependent destruction of Claspin. Here, we identify the deubiquitylating enzyme ubiquitin-specific protease 7 (USP7) as a novel regulator of Claspin stability. Claspin and USP7 interact in vivo, and USP7 is required to maintain steady-state levels of Claspin. Furthermore, USP7-mediated deubiquitylation markedly prolongs the half-life of Claspin, which in turn increases the magnitude and duration of Chk1 phosphorylation in response to genotoxic stress. Finally, we find that in addition to the M phase–specific, SCFβTrCP-mediated degradation, Claspin is destabilized by the anaphase-promoting complex (APC) and thus remains unstable in G1. Importantly, we demonstrate that USP7 specifically opposes the SCFβTrCP- but not APCCdh1-mediated degradation of Claspin. Thus, Claspin turnover is controlled by multiple ubiquitylation and deubiquitylation activities, which together provide a flexible means to regulate the ATR–Chk1 pathway.
Collapse
Affiliation(s)
- Helene Faustrup
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
203
|
Mordes DA, Glick GG, Zhao R, Cortez D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 2008; 22:1478-89. [PMID: 18519640 DOI: 10.1101/gad.1666208] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR, for TopBP1-mediated activation of ATR, and for cells to survive and recover DNA synthesis following replication stress. We demonstrate that this region is functionally conserved in the Saccharomyces cerevisiae ATRIP ortholog Ddc2, suggesting a conserved mechanism of regulation. In addition, we identify a domain of ATR that is critical for its activation by TopBP1. Mutations of the ATR PRD (PIKK [phosphoinositide 3-kinase related kinase] Regulatory Domain) do not affect the basal kinase activity of ATR but prevent its activation. Cellular complementation experiments demonstrate that TopBP1-mediated ATR activation is required for checkpoint signaling and cellular viability. The PRDs of ATM and mTOR (mammalian target of rapamycin) were shown previously to regulate the activities of these kinases, and our data indicate that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) PRD is important for DNA-PKcs regulation. Therefore, divergent amino acid sequences within the PRD and a unique protein partner allow each of these PIK kinases to respond to distinct cellular events.
Collapse
Affiliation(s)
- Daniel A Mordes
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
204
|
Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9:616-27. [PMID: 18594563 DOI: 10.1038/nrm2450] [Citation(s) in RCA: 1301] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.
Collapse
Affiliation(s)
- Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, Stanford, California 94305-5441, USA.
| | | |
Collapse
|
205
|
Guo JY, Yamada A, Kajino T, Wu JQ, Tang W, Freel CD, Feng J, Chau BN, Wang MZ, Margolis SS, Yoo HY, Wang XF, Dunphy WG, Irusta PM, Hardwick JM, Kornbluth S. Aven-dependent activation of ATM following DNA damage. Curr Biol 2008; 18:933-42. [PMID: 18571408 DOI: 10.1016/j.cub.2008.05.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cell's capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.
Collapse
Affiliation(s)
- Jessie Yanxiang Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Jamil S, Mojtabavi S, Hojabrpour P, Cheah S, Duronio V. An essential role for MCL-1 in ATR-mediated CHK1 phosphorylation. Mol Biol Cell 2008; 19:3212-20. [PMID: 18495871 DOI: 10.1091/mbc.e07-11-1171] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here we report a novel role for myeloid cell leukemia 1 (Mcl-1), a Bcl-2 family member, in regulating phosphorylation and activation of DNA damage checkpoint kinase, Chk1. Increased expression of nuclear Mcl-1 and/or a previously reported short nuclear form of Mcl-1, snMcl-1, was observed in response to treatment with low concentrations of etoposide or low doses of UV irradiation. We showed that after etoposide treatment, Mcl-1 could coimmunoprecipitate with the regulatory kinase, Chk1. Chk1 is a known regulator of DNA damage response, and its phosphorylation is associated with activation of the kinase. Transient transfection with Mcl-1 resulted in an increase in the expression of phospho-Ser345 Chk1, in the absence of any evidence of DNA damage, and accumulation of cells in G2. Importantly, knockdown of Mcl-1 expression abolished Chk1 phosphorylation in response to DNA damage. Mcl-1 could induce Chk1 phosphorylation in ATM-negative (ataxia telangectasia mutated) cells, but this response was lost in ATR (AT mutated and Rad3 related)-defective cells. Low levels of UV treatment also caused transient increases in Mcl-1 levels and an ATR-dependent phosphorylation of Chk1. Together, our results strongly support an essential regulatory role for Mcl-1, perhaps acting as an adaptor protein, in controlling the ATR-mediated regulation of Chk1 phosphorylation.
Collapse
Affiliation(s)
- Sarwat Jamil
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, V6H 3Z6 Canada
| | | | | | | | | |
Collapse
|
207
|
Bennett LN, Larkin C, Gillespie DA, Clarke PR. Claspin is phosphorylated in the Chk1-binding domain by a kinase distinct from Chk1. Biochem Biophys Res Commun 2008; 369:973-6. [DOI: 10.1016/j.bbrc.2008.02.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
208
|
Scorah J, Dong MQ, Yates JR, Scott M, Gillespie D, McGowan CH. A conserved proliferating cell nuclear antigen-interacting protein sequence in Chk1 is required for checkpoint function. J Biol Chem 2008; 283:17250-9. [PMID: 18448427 DOI: 10.1074/jbc.m800369200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human checkpoint kinase 1 (Chk1) is an essential kinase required for cell cycle checkpoints and for coordination of DNA synthesis. To gain insight into the mechanisms by which Chk1 carries out these functions, we used mass spectrometry to identify previously uncharacterized interacting partners of Chk1. We describe a novel interaction between Chk1 and proliferating cell nuclear antigen (PCNA), an essential component of the replication machinery. Binding between Chk1 and PCNA was reduced in the presence of hydroxyurea, suggesting that the interaction is regulated by replication stress. A highly conserved PCNA-interacting protein (PIP) box motif was identified in Chk1. The intact PIP box is required for efficient DNA damage-induced phosphorylation and release of activated Chk1 from chromatin. We find that the PIP box of Chk1 is crucial for Chk1-mediated S-M and G(2)-M checkpoint responses. In addition, we show that mutations in the PIP box of Chk1 lead to decreased rates of replication fork progression and increased aberrant replication. These findings suggest an additional mechanism by which essential components of the DNA replication machinery interact with the replication checkpoint apparatus.
Collapse
Affiliation(s)
- Jennifer Scorah
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
209
|
Erkko H, Pylkäs K, Karppinen SM, Winqvist R. Germline alterations in the CLSPN gene in breast cancer families. Cancer Lett 2008; 261:93-7. [PMID: 18077083 DOI: 10.1016/j.canlet.2007.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 06/13/2007] [Accepted: 11/06/2007] [Indexed: 11/15/2022]
Abstract
About 5-10% of breast cancer is thought to be due to an inherited disease predisposition. Currently known genes account for less than half of the hereditary cases. Claspin, a tumor suppressor protein encoded by the CLSPN gene, is involved in monitoring of replication and sensoring of DNA damage and cooperates with CHK1 and BRCA1. Association with certain cell proliferation stimulatory features has also been described. Many previously identified susceptibility factors act in similar functional pathways as claspin, suggesting possible involvement of CLSPN in heritable breast cancer susceptibility. Here we have screened affected index cases from 125 Finnish cancer families for germline defects in CLSPN using conformation sensitive gel electrophoresis (CSGE) and direct sequencing. Altogether seven different sequence changes were observed, but none of them appeared to associate with breast cancer susceptibility. To our knowledge, this is the first study reporting the mutation screening of the CLSPN gene in familial breast cancer cases.
Collapse
Affiliation(s)
- Hannele Erkko
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, P.O. Box 24, FIN-90029 OYS, Finland
| | | | | | | |
Collapse
|
210
|
Petermann E, Helleday T, Caldecott KW. Claspin promotes normal replication fork rates in human cells. Mol Biol Cell 2008; 19:2373-8. [PMID: 18353973 DOI: 10.1091/mbc.e07-10-1035] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.
Collapse
Affiliation(s)
- Eva Petermann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom.
| | | | | |
Collapse
|
211
|
Abstract
The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.
Collapse
|
212
|
Abstract
The DNA damage response (DDR), through the action of sensors, transducers, and effectors, orchestrates the appropriate repair of DNA damage and resolution of DNA replication problems, coordinating these processes with ongoing cellular physiology. In the past decade, we have witnessed an explosion in understanding of DNA damage sensing, signaling, and the complex interplay between protein phosphorylation and the ubiquitin pathway employed by the DDR network to execute the response to DNA damage. These findings have important implications for aging and cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Pathology, Harvard Medical School, and Center for Genetics and Genomics, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
213
|
Didier C, Cavelier C, Quaranta M, Galcera MO, Demur C, Laurent G, Manenti S, Ducommun B. G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to genotoxic stress. Oncogene 2008; 27:3811-20. [PMID: 18212737 DOI: 10.1038/sj.onc.1211041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukemia (AML) cells exposed to genotoxic agents arrest their cell cycle at the G2/M checkpoint and are inherently chemoresistant. To understand the mechanism of this chemoresistance, we compared the ability of immature CD34+ versus mature CD34- AML cell lines (KG1a and U937, respectively) to recover from a DNA damage-induced cell cycle checkpoint in G2. Here, we report that KG1a cells have a more stringent G2/M checkpoint response than U937 cells. We show that in both cell types, the CDC25B phosphatase participates in the G2/M checkpoint recovery and that its expression is upregulated. Furthermore, we show that CHK1 inhibition by UCN-01 in immature KG1a cells allows checkpoint exit and induces sensitivity to genotoxic agents. Similarly, UCN-01 treatment potentializes genotoxic-induced inhibition of colony formation efficiency of primary leukemic cells from AML patients. Altogether, our results demonstrate that checkpoint stringency varies during the maturation process and indicate that targeting checkpoint mechanisms might represent an attractive therapeutic opportunity for chemoresistant immature AML cells.
Collapse
Affiliation(s)
- C Didier
- LBCMCP-CNRS UMR5088-IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Palermo C, Hope JC, Freyer GA, Rao H, Walworth NC. Importance of a C-terminal conserved region of Chk1 for checkpoint function. PLoS One 2008; 3:e1427. [PMID: 18183307 PMCID: PMC2173936 DOI: 10.1371/journal.pone.0001427] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/06/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The protein kinase Chk1 is an essential component of the DNA damage checkpoint pathway. Chk1 is phosphorylated and activated in the fission yeast Schizosaccharomyces pombe when cells are exposed to agents that damage DNA. Phosphorylation, kinase activation, and nuclear accumulation are events critical to the ability of Chk1 to induce a transient delay in cell cycle progression. The catalytic domain of Chk1 is well-conserved amongst all species, while there are only a few regions of homology within the C-terminus. A potential pseudosubstrate domain exists in the C-terminus of S. pombe Chk1, raising the possibility that the C-terminus acts to inhibit the catalytic domain through interaction of this domain with the substrate binding site. METHODOLOGY/PRINCIPAL FINDINGS To evaluate this hypothesis, we characterized mutations in the pseudosubstrate region. Mutation of a conserved aspartic acid at position 469 to alanine or glycine compromises Chk1 function when the mutants are integrated as single copies, demonstrating that this domain of Chk1 is critical for function. Our data does not support, however, the hypothesis that the domain acts to inhibit Chk1 function as other mutations in the amino acids predicted to comprise the pseudosubstrate do not result in constitutive activation of the protein. When expressed in multi-copy, Chk1D469A remains non-functional. In contrast, multi-copy Chk1D469G confers cell survival and imposes a checkpoint delay in response to some, though not all forms of DNA damage. CONCLUSIONS/SIGNIFICANCE Thus, we conclude that this C-terminal region of Chk1 is important for checkpoint function and predict that a limiting factor capable of associating with Chk1D469G, but not Chk1D469A, interacts with Chk1 to elicit checkpoint activation in response to a subset of DNA lesions.
Collapse
Affiliation(s)
- Carmela Palermo
- Department of Pharmacology, University of Medicine and Dentistry, New Jersey (UMDNJ), Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Joint Graduate Program in Cellular and Molecular Pharmacology, University of Medicine and Dentistry, New Jersey (UMDNJ), Graduate School of Biomedical Sciences and Rutgers, State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Justin C. Hope
- Graduate Programs in Environmental Health Sciences and Anatomy and Cell Biology, Columbia University, New York, New York, United States of America
| | - Greg A. Freyer
- Graduate Programs in Environmental Health Sciences and Anatomy and Cell Biology, Columbia University, New York, New York, United States of America
| | - Hui Rao
- Joint Graduate Program in Cellular and Molecular Pharmacology, University of Medicine and Dentistry, New Jersey (UMDNJ), Graduate School of Biomedical Sciences and Rutgers, State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Nancy C. Walworth
- Department of Pharmacology, University of Medicine and Dentistry, New Jersey (UMDNJ), Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Joint Graduate Program in Cellular and Molecular Pharmacology, University of Medicine and Dentistry, New Jersey (UMDNJ), Graduate School of Biomedical Sciences and Rutgers, State University of New Jersey, Piscataway, New Jersey, United States of America
- The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
215
|
Pursell ZF, Kunkel TA. DNA polymerase epsilon: a polymerase of unusual size (and complexity). PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:101-45. [PMID: 18929140 PMCID: PMC3694787 DOI: 10.1016/s0079-6603(08)00004-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zachary F. Pursell
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| |
Collapse
|
216
|
|
217
|
Calonge TM, O'Connell MJ. Turning off the G2 DNA damage checkpoint. DNA Repair (Amst) 2007; 7:136-40. [PMID: 17851138 PMCID: PMC2233850 DOI: 10.1016/j.dnarep.2007.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 12/11/2022]
Abstract
In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its' upstream regulators.
Collapse
Affiliation(s)
| | - Matthew J. O'Connell
- Corresponding Author: Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York NY 10029. Tel: 212-659-5468, Fax: 212-987-2240,
| |
Collapse
|
218
|
Errico A, Costanzo V, Hunt T. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci U S A 2007; 104:14929-34. [PMID: 17846426 PMCID: PMC1975688 DOI: 10.1073/pnas.0706347104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tipin and its interacting partner Tim1 (Timeless) form a complex at replication forks that plays an important role in the DNA damage checkpoint response. Here we identify Xenopus laevis Tipin as a substrate for cyclin E/cyclin-dependent kinases 2 that is phosphorylated in interphase and undergoes further phosphorylation upon entry into mitosis. During unperturbed DNA replication, the Tipin/Tim1 complex is bound to chromatin, and we were able to detect interactions between Tipin and the MCM helicase. Depletion of Tipin from Xenopus extracts did not significantly impair normal replication but substantially blocked the ability of stalled replication forks to recover after removal of a block imposed by aphidicolin. Tipin-depleted extracts also showed defects in the activation of Chk1 in response to aphidicolin, probably because of a failure to load the checkpoint mediator protein Claspin onto chromatin.
Collapse
Affiliation(s)
- Alessia Errico
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Vincenzo Costanzo
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Tim Hunt
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Hertfordshire EN6 3LD, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
219
|
Lee J, Kumagai A, Dunphy WG. The Rad9-Hus1-Rad1 Checkpoint Clamp Regulates Interaction of TopBP1 with ATR. J Biol Chem 2007; 282:28036-44. [PMID: 17636252 DOI: 10.1074/jbc.m704635200] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TopBP1 serves as an activator of the ATR-ATRIP complex in response to the presence of incompletely replicated or damaged DNA. This process involves binding of ATR to the ATR-activating domain of TopBP1, which is located between BRCT domains VI and VII. TopBP1 displays increased binding to ATR-ATRIP in Xenopus egg extracts containing checkpoint-inducing DNA templates. We show that an N-terminal region of TopBP1 containing BRCT repeats I-II is essential for this checkpoint-stimulated binding of TopBP1 to ATR-ATRIP. The BRCT I-II region of TopBP1 also binds specifically to the Rad9-Hus1-Rad1 (9-1-1) complex in Xenopus egg extracts. This binding occurs via the C-terminal domain of Rad9 and depends upon phosphorylation of its Ser-373 residue. Egg extracts containing either a mutant of TopBP1 lacking the BRCT I-II repeats or a mutant of Rad9 with an alanine substitution at Ser-373 are defective in checkpoint regulation. Furthermore, an isolated C-terminal fragment from Rad9 is an effective inhibitor of checkpoint signaling in egg extracts. These findings suggest that interaction of the 9-1-1 complex with the BRCT I-II region of TopBP1 is necessary for binding of ATR-ATRIP to the ATR-activating domain of TopBP1 and the ensuing activation of ATR.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
220
|
Hodgson B, Calzada A, Labib K. Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 2007; 18:3894-902. [PMID: 17652453 PMCID: PMC1995724 DOI: 10.1091/mbc.e07-05-0500] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mrc1 and Tof1 proteins are conserved throughout evolution, and in budding yeast they are known to associate with the MCM helicase and regulate the progression of DNA replication forks. Previous work has shown that Mrc1 is important for the activation of checkpoint kinases in responses to defects in S phase, but both Mrc1 and Tof1 also regulate the normal process of chromosome replication. Here, we show that these two important factors control the normal progression of DNA replication forks in distinct ways. The rate of progression of DNA replication forks is greatly reduced in the absence of Mrc1 but much less affected by loss of Tof1. In contrast, Tof1 is critical for DNA replication forks to pause at diverse chromosomal sites where nonnucleosomal proteins bind very tightly to DNA, and this role is not shared with Mrc1.
Collapse
Affiliation(s)
- Ben Hodgson
- *Cancer Research U.K., Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom; and
| | - Arturo Calzada
- Cancer Research Institute, Fundación Investigación del Cáncer-Universidad de Salamanca/Consejo Superior de Investigaciones Cientificas, 37007 Salamanca, Spain
| | - Karim Labib
- *Cancer Research U.K., Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom; and
| |
Collapse
|
221
|
Kondratov RV, Antoch MP. Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol 2007; 17:311-7. [PMID: 17644383 DOI: 10.1016/j.tcb.2007.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/02/2007] [Accepted: 07/02/2007] [Indexed: 12/31/2022]
Abstract
The mammalian circadian system has been implicated in the regulation of the genotoxic stress response of an organism; however, the underlying molecular mechanisms are not well understood. Recent data suggest that, in addition to circadian variations in the expression of genes involved in genotoxic stress responses, core circadian proteins PERIOD1 (PER1) and TIMELESS (TIM) interact with components of the cell cycle checkpoint system, such as ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) and ataxia telangiectasia and Rad3-related (ATR)-Chk1, and are necessary for activation of Chk1 and Chk2 by DNA damage. Moreover, in complex with its recently identified partner, TIM-interacting protein (TIPIN), TIM interacts with components of the DNA replication system to regulate DNA replication processes under both normal and stress conditions. These discoveries shed new light on the role of core circadian proteins in various cellular and physiological processes.
Collapse
Affiliation(s)
- Roman V Kondratov
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | |
Collapse
|
222
|
Bartkova J, Horejsí Z, Sehested M, Nesland JM, Rajpert-De Meyts E, Skakkebaek NE, Stucki M, Jackson S, Lukas J, Bartek J. DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene 2007; 26:7414-22. [PMID: 17546051 DOI: 10.1038/sj.onc.1210553] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MDC1 and 53BP1 are critical components of the DNA damage response (DDR) machinery that protects genome integrity and guards against cancer, yet the tissue expression patterns and involvement of these two DDR adaptors/mediators in human tumours remain largely unknown. Here we optimized immunohistochemical analyses of human 53BP1 and MDC1 proteins in situ and identified their virtually ubiquitous expression, both in proliferating and quiescent, differentiated tissues. Focus formation by 53BP1 and/or MDC1 in human spermatogenesis and subsets of breast and lung carcinomas indicated physiological and 'pathological' activation of the DDR, respectively. Furthermore, aberrant reduction or lack of either protein in significant proportions of carcinomas supported the candidacy of 53BP1 and MDC1 for tumour suppressors. Contrary to carcinomas, almost no activation or loss of MDC1 or 53BP1 were found among testicular germ-cell tumours (TGCTs), a tumour type with unique biology and exceptionally low incidence of p53 mutations. Such concomitant presence (in carcinomas) or absence (in TGCTs) of DDR activation and DDR aberrations supports the roles of MDC1 and 53BP1 within the ATM/ATR-regulated checkpoint network which, when activated, provides an early anti-cancer barrier the pressure of which selects for DDR defects such as p53 mutations or loss of 53BP1/MDC1 during cancer progression.
Collapse
Affiliation(s)
- J Bartkova
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Ataxia-telangiectasia Mutated (ATM)-dependent Activation of ATR Occurs through Phosphorylation of TopBP1 by ATM. J Biol Chem 2007; 282:17501-6. [PMID: 17446169 DOI: 10.1074/jbc.m701770200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome.
Collapse
Affiliation(s)
- Hae Yong Yoo
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
224
|
MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA. The structural determinants of checkpoint activation. Genes Dev 2007; 21:898-903. [PMID: 17437996 PMCID: PMC1847708 DOI: 10.1101/gad.1522607] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we demonstrate that primed, single-stranded DNA (ssDNA) is sufficient for activation of the ATR-dependent checkpoint pathway in Xenopus egg extracts. Using this structure, we define the contribution of the 5'- and 3'-primer ends to Chk1 activation when replication is blocked and ongoing. In addition, we show that although ssDNA is not sufficient for checkpoint activation, the amount of ssDNA adjacent to the primer influences the level of Chk1 phosphorylation. These observations define the minimal DNA requirements for checkpoint activation and suggest that primed ssDNA represents a common checkpoint activating-structure formed following many types of damage.
Collapse
Affiliation(s)
- Christina A. MacDougall
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Tony S. Byun
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Christopher Van
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Muh-ching Yee
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
- Corresponding author.E-MAIL ; FAX (650) 725-4665
| |
Collapse
|
225
|
Zou L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev 2007; 21:879-85. [PMID: 17437994 DOI: 10.1101/gad.1550307] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Lee Zou
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
226
|
Semple JI, Smits VAJ, Fernaud JR, Mamely I, Freire R. Cleavage and degradation of Claspin during apoptosis by caspases and the proteasome. Cell Death Differ 2007; 14:1433-42. [PMID: 17431426 DOI: 10.1038/sj.cdd.4402134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apoptosis plays a crucial role in development and tissue homeostasis. Some key survival pathways, such as DNA damage checkpoints and DNA repair, have been described to be inactivated during apoptosis. Here, we describe the processing of the human checkpoint protein Claspin during apoptosis. We observed cleavage of Claspin into multiple fragments in vivo. In vitro cleavage with caspases 3 and 7 of various fragments of the protein, revealed cut sites near the N- and C-termini of the protein. Using mass spectrometry, we identified a novel caspase cleavage site in Claspin at Asp25. Importantly, in addition to cleavage by caspases, we observed a proteasome-dependent degradation of Claspin under apoptotic conditions, resulting in a reduction of the levels of both full-length Claspin and its cleavage products. This degradation was not dependent upon the DSGxxS phosphodegron motif required for SCF(beta-TrCP)-mediated ubiquitination of Claspin. Finally, downregulation of Claspin protein levels by short interfering RNA resulted in an increase in apoptotic induction both in the presence and absence of DNA damage. We conclude that Claspin has antiapoptotic activity and is degraded by two different pathways during apoptosis. The resulting disappearance of Claspin from the cells further promotes apoptosis.
Collapse
Affiliation(s)
- J I Semple
- Unidad de Investigación, Hospital Universitario de Canarias. Ofra s/n, La Cuesta, 38320 La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
227
|
Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD, Boulton SJ. HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol 2007; 9:391-401. [PMID: 17384638 DOI: 10.1038/ncb1555] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/23/2007] [Indexed: 12/26/2022]
Abstract
Here, we show that the human homologue of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2) associates with the S-phase checkpoint components ATR, ATRIP, claspin and Chk1. Consistent with a critical role in the S-phase checkpoint, HCLK2-depleted cells accumulate spontaneous DNA damage in S-phase, exhibit radio-resistant DNA synthesis, are impaired for damage-induced monoubiquitination of FANCD2 and fail to recruit FANCD2 and Rad51 (critical components of the Fanconi anaemia and homologous recombination pathways, respectively) to sites of replication stress. Although Thr 68 phosphorylation of the checkpoint effector kinase Chk2 remains intact in the absence of HCLK2, claspin phosphorylation and degradation of the checkpoint phosphatase Cdc25A are compromised following replication stress as a result of accelerated Chk1 degradation. ATR phosphorylation is known to both activate Chk1 and target it for proteolytic degradation, and depleting ATR or mutation of Chk1 at Ser 345 restored Chk1 protein levels in HCLK2-depleted cells. We conclude that HCLK2 promotes activation of the S-phase checkpoint and downstream repair responses by preventing unscheduled Chk1 degradation by the proteasome.
Collapse
Affiliation(s)
- Spencer J Collis
- DNA Damage Response Laboratory, Cancer Research UK, The London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, UK
| | | | | | | | | | | |
Collapse
|
228
|
Zaugg K, Su YW, Reilly PT, Moolani Y, Cheung CC, Hakem R, Hirao A, Liu Q, Elledge SJ, Mak TW. Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc Natl Acad Sci U S A 2007; 104:3805-10. [PMID: 17360434 PMCID: PMC1820665 DOI: 10.1073/pnas.0611584104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Indexed: 12/22/2022] Open
Abstract
Chk1 is a checkpoint kinase and an important regulator of mammalian cell division. Because null mutation of Chk1 in mice is embryonic lethal, we used the Cre-loxP system and the Lck promoter to generate conditional mutant mice in which Chk1 was deleted only in the T lineage. In the absence of Chk1, the transition of CD4(-)CD8(-) double-negative (DN) thymocytes to CD4(+)CD8(+) double-positive (DP) cells was blocked due to an increase in apoptosis at the DN2 and DN3 stages. Strikingly, loss of Chk1 activated the checkpoint kinase Chk2 as well as the tumor suppressor p53 in these thymocytes. However, the developmental defects caused by Chk1 deletion were not rescued by p53 inactivation. Significantly, even though Chk1 deletion is highly lethal in proliferating tissues, we succeeded in using in vivo methods to generate Chk1/Chk2 double-knockout T cells. Analysis of these T cells revealed an interesting interaction between Chk1 and Chk2 functions that partially rescued the apoptosis of the double-mutant cells. Thus, Chk1 is both critical for the survival of proliferating cells and engages in cross-talk with the Chk2 checkpoint kinase pathway. These factors have implications for the targeting of Chk1 as an anticancer therapy.
Collapse
Affiliation(s)
- Kathrin Zaugg
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| | - Yu-Wen Su
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | - Patrick T. Reilly
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | - Yasmin Moolani
- Institute of Medical Science, University of Toronto, MARS Centre, 101 College Street, Toronto, ON, Canada M5G 2C1
| | - Carol C. Cheung
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| | | | - Atsushi Hirao
- Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Quinghua Liu
- **Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038; and
| | - Stephen J. Elledge
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Tak W. Mak
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| |
Collapse
|
229
|
Ball HL, Ehrhardt MR, Mordes DA, Glick GG, Chazin WJ, Cortez D. Function of a conserved checkpoint recruitment domain in ATRIP proteins. Mol Cell Biol 2007; 27:3367-77. [PMID: 17339343 PMCID: PMC1899971 DOI: 10.1128/mcb.02238-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP.
Collapse
Affiliation(s)
- Heather L Ball
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
230
|
Verlinden L, Eelen G, Van Hellemont R, Engelen K, Beullens I, Van Camp M, Marchal K, Mathieu C, Bouillon R, Verstuyf A. 1alpha,25-Dihydroxyvitamin D3-induced down-regulation of the checkpoint proteins, Chk1 and Claspin, is mediated by the pocket proteins p107 and p130. J Steroid Biochem Mol Biol 2007; 103:411-5. [PMID: 17251008 DOI: 10.1016/j.jsbmb.2006.12.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A previous cDNA microarray analysis in murine MC3T3-E1 osteoblasts revealed a cluster of genes involved in cell cycle progression that was significantly down-regulated after a single treatment with 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] [L. Verlinden, G. Eelen, I. Beullens, M. Van Camp, P. Van Hummelen, K. Engelen, R. Van Hellemont, K. Marchal, B. De Moor, F. Foijer, H. Te Riele, M. Beullens, M. Bollen, C. Mathieu, R. Bouillon, A. Verstuyf, Characterization of the condensin component Cnap1 and protein kinase Melk as novel E2F target genes down-regulated by 1,25-dihydroxyvitamin D3, J. Biol. Chem. 280 (45) (2005) 37319-37330]. Among those genes were the DNA replication and DNA damage checkpoint proteins, Chk1 and Claspin, of which the human homologues were recently shown to be E2F-responsive. Quantitative real-time PCR experiments in 1,25(OH)(2)D(3)-treated MC3T3-E1 cells confirmed the down-regulation observed in the microarray experiment. Moreover, Chk1 and Claspin promoter activities were also reduced after incubation with 1,25(OH)(2)D(3), and this reduction was mediated through the E2F recognition motifs within their promoters because mutation of these motifs almost completely abolished the repressive effect of 1,25(OH)(2)D(3). The antiproliferative effect of 1,25(OH)(2)D(3) as well as its potential to down-regulate the expression of Chk1 and Claspin depended on the pocket proteins p107 and p130 because 1,25(OH)(2)D(3) lost its antiproliferative action and failed to repress these E2F-target genes in p107(-/-);p130(-/-)-cells, but not in pRb(-/-)-cells.
Collapse
Affiliation(s)
- Lieve Verlinden
- Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Grandin N, Charbonneau M. Mrc1, a non-essential DNA replication protein, is required for telomere end protection following loss of capping by Cdc13, Yku or telomerase. Mol Genet Genomics 2007; 277:685-99. [PMID: 17323081 DOI: 10.1007/s00438-007-0218-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 01/25/2007] [Indexed: 01/19/2023]
Abstract
Proteins involved in telomere end protection have previously been identified. In Saccharomyces cerevisiae, Cdc13, Yku and telomerase, mainly, prevent telomere uncapping, thus providing telomere stability and avoiding degradation and death by senescence. Here, we report that in the absence of Mrc1, a component of the replication forks, telomeres of cdc13 or yku70 mutants exhibited increased degradation, while telomerase-negative cells displayed accelerated senescence. Moreover, deletion of MRC1 increased the single-strandedness of the telomeres in cdc13-1 and yku70Delta mutant strains. An mrc1 deletion strain also exhibited slight but stable telomere shortening compared to a wild-type strain. Loss of Mrc1's checkpoint function alone did not provoke synthetic growth defects in combination with the cdc13-1 mutation. Combinations between the cdc13-1 mutation and deletion of either TOF1 or PSY2, coding for proteins physically interacting with Mrc1, also resulted in a synthetic growth defect. Thus, the present data suggest that non-essential components of the DNA replication machinery, such as Mrc1 and Tof1, may have a role in telomere stability in addition to their role in fork progression.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS no 5161, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland, 46, allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
232
|
Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19:238-45. [PMID: 17303408 DOI: 10.1016/j.ceb.2007.02.009] [Citation(s) in RCA: 544] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/07/2007] [Indexed: 12/20/2022]
Abstract
In response to diverse genotoxic stresses, cells activate DNA damage checkpoint pathways to protect genomic integrity and promote survival of the organism. Depending on DNA lesions and context, damaged cells with alarmed checkpoints can be eliminated by apoptosis or silenced by cellular senescence, or can survive and resume cell cycle progression upon checkpoint termination. Over the past two years a plethora of mechanistic studies have provided exciting insights into the biology and pathology of checkpoint initiation and signal propagation, and have revealed the various ways in which the response can be terminated: through recovery, adaptation or cancer-prone subversion. Such studies highlight the dynamic nature of these processes and help us to better understand the molecular basis, spatiotemporal orchestration and biological significance of the DNA damage response in normal and cancerous cells.
Collapse
Affiliation(s)
- Jiri Bartek
- Department of Cell Cycle and Cancer, and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
233
|
Lupardus PJ, Van C, Cimprich KA. Analyzing the ATR-mediated checkpoint using Xenopus egg extracts. Methods 2007; 41:222-31. [PMID: 17189864 PMCID: PMC2657337 DOI: 10.1016/j.ymeth.2006.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 01/14/2023] Open
Abstract
Our knowledge of cell cycle events such as DNA replication and mitosis has been advanced significantly through the use of Xenopus egg extracts as a model system. More recently, Xenopus extracts have been used to investigate the cellular mechanisms that ensure accurate and complete duplication of the genome, processes otherwise known as the DNA damage and replication checkpoints. Here we describe several Xenopus extract methods that have advanced the study of the ATR-mediated checkpoints. These include a protocol for the preparation of nucleoplasmic extract (NPE), which is a soluble extract system useful for studying nuclear events such as DNA replication and checkpoints. In addition, we describe several key assays for studying checkpoint activation as well as methods for using small DNA structures to activate ATR.
Collapse
Affiliation(s)
- Patrick J. Lupardus
- Department of Molecular Pharmacology, Stanford University, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Christopher Van
- Department of Molecular Pharmacology, Stanford University, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A. Cimprich
- Department of Molecular Pharmacology, Stanford University, 318 Campus Drive, Stanford, CA 94305-5441, USA
| |
Collapse
|
234
|
Brondello JM, Ducommun B, Fernandez A, Lamb NJ. Linking PCNA-dependent replication and ATR by human Claspin. Biochem Biophys Res Commun 2007; 354:1028-33. [PMID: 17274954 DOI: 10.1016/j.bbrc.2007.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies in Xenopus have identified a new checkpoint protein called Claspin that is believed to transduce the checkpoint DNA damage signals to Chk1 kinase. Here we show that the human Claspin homolog is a chromatin bound protein either in the absence or in the presence of damaged DNA, independent of its association with ATR. Furthermore, we show that human Claspin is found in complex with PCNA, an essential component of the DNA replication machinery, and is released upon DNA replication arrest. Interfering with PCNA function by overexpression of p21 mutant, impaired in its interaction with Cdks but not with PCNA, leads to ATR-dependent Chk1 activation. These findings suggest that the dissociation of Claspin-PCNA could be part of the signal leading to Chk1 activation.
Collapse
Affiliation(s)
- Jean-Marc Brondello
- INSERM EMI 0229 Génotypes et Phénotypes Tumoraux CRLC Val d'Aurelle, 34298 Montpellier, Cedex 5, France.
| | | | | | | |
Collapse
|
235
|
Yoshizawa-Sugata N, Masai H. Human Tim/Timeless-interacting Protein, Tipin, Is Required for Efficient Progression of S Phase and DNA Replication Checkpoint. J Biol Chem 2007; 282:2729-40. [PMID: 17102137 DOI: 10.1074/jbc.m605596200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tipin was originally isolated as a protein interacting with Timeless/Tim1/Tim (Tim), which is known to be involved in both circadian rhythm and cell cycle checkpoint regulation. The endogenous Tim and Tipin proteins in human cells, interacting through the N-terminal segment of each molecule, form a complex throughout the cell cycle. Tipin and Tim are expressed in the interphase nuclei mostly at constant levels during the cell cycle, and small fractions are recovered in the chromatin-enriched fractions during S phase. Depletion of endogenous Tipin results in reduced growth rate, and this may be due in part to inefficient progression of S phase and DNA synthesis. Knockdown of Tipin induces radioresistant DNA synthesis and inhibits phosphorylation of Chk1 kinase caused by replication stress, as was observed with that of Tim. Knockdown of Tipin or Tim results in reduced protein level and relocation to the cytoplasm of the respective binding partner, suggesting that the complex formation may be required for stabilization and nuclear accumulation of both proteins. Furthermore, both Tipin and Tim may facilitate the accumulation of Claspin in the nuclei under replication stress, whereas nuclear localization of Tipin and Tim is unaffected by Claspin. Our results indicate that mammalian Tipin is a checkpoint mediator that cooperates with Tim and may regulate the nuclear relocation of Claspin in response to replication checkpoint.
Collapse
Affiliation(s)
- Naoko Yoshizawa-Sugata
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | |
Collapse
|
236
|
Hasthorpe S, Tainton K, Peart M, Roeszler KN, Bell KM, Lusby PE, Hutson JM, Tymms MJ. G2/M checkpoint gene expression in developing germ cells. Mol Reprod Dev 2007; 74:531-8. [PMID: 17290426 DOI: 10.1002/mrd.20549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cell cycle progression is prevented by signal transduction pathways known as checkpoints which are activated in response to replication interference and DNA damage. We cloned a G2/M cell cycle phase-related checkpoint gene from a neonatal mouse testis cDNA library which was identified as mouse claspin, a proposed adaptor protein for Chk1. As part of a study on germ cell differentiation we examined the expression of the checkpoint gene, Chk1, and claspin at 12.5 and 14.5 days post coitum (dpc) and in the post-natal phase. Chk1 mRNA expression increased from 12.5 to 14.5 dpc in female gonads and was strong in males at both time points. Claspin however, was not detected until 14.5 dpc. This suggests there may be some dissociation of claspin expression from Chk1 in fetal germ cell development. Chk1 and claspin expression was also studied in testis over the first 3 days following birth, when apoptosis regulates germ stem cell number. We modulated checkpoint-related gene expression in testis using the anti-metabolite, 5-fluorouracil, resulting in increased apoptosis and upregulation of Chk1 (P<0.0001) and Cdc2 (P<0.02) mRNA. Although we do not fully understand the role checkpoint gene expression has during mammalian germ cell development this report is the first to show the expression of checkpoint-related genes in early mammalian germ cells.
Collapse
Affiliation(s)
- Suzanne Hasthorpe
- Germ Cell Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Praetorius-Ibba M, Wang QE, Wani G, El-Mahdy MA, Zhu Q, Qin S, Wani AA. Role of Claspin in regulation of nucleotide excision repair factor DDB2. DNA Repair (Amst) 2006; 6:578-87. [PMID: 17196446 DOI: 10.1016/j.dnarep.2006.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
The replication checkpoint protein Claspin is important for maintenance of genomic stability and is required for cells to overcome genotoxic stress. Upon UV-induced DNA damage, Claspin is required for activation of the ATR-mediated DNA damage checkpoint response, leading to arrest of DNA replication and inhibition of cell cycle progression. Located at the DNA replication fork, Claspin is also suggested to monitor replication and sense damage. Our present studies in HeLa cells demonstrate associations between the Claspin/ATR-related DNA damage checkpoint response and the global genomic nucleotide excision repair pathway. siRNA-mediated knockdown of Claspin abolishes the UV-induced degradation of DDB2 and impairs the co-localization of DDB2 to DNA damage sites. Thus, the presence of Claspin is required for the total turnover of DNA damage binding protein DDB2, as well as for its functionality in DNA damage recognition. Claspin, however, seems not to be required for maintaining the cellular level of the NER factor XPC and its UV-induced post-translational modifications. Co-localization of XPC with DNA lesions is also intact in the absence of Claspin as is the repair of the UV-induced lesions CPD and 6-4PP. Claspin itself may be directly responsible for physical interaction between the two pathways since Claspin is able to associate with DDB1, DDB2 and XPC. Taken together, these findings reveal physical and functional interplay between Claspin and NER-related proteins and demonstrate crosstalk between the DNA damage checkpoint control and DNA damage repair pathways.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Radiology, The Ohio State University, Columbus, OH 43240, United States.
| | | | | | | | | | | | | |
Collapse
|
238
|
Hashimoto Y, Tsujimura T, Sugino A, Takisawa H. The phosphorylated C-terminal domain of Xenopus Cut5 directly mediates ATR-dependent activation of Chk1. Genes Cells 2006; 11:993-1007. [PMID: 16923121 DOI: 10.1111/j.1365-2443.2006.00998.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
ATR-dependent activation of the kinase Chk1 is the initial step in signal transduction in the DNA replication checkpoint, which allows a cell to enter mitosis only after the completion of DNA replication. TopBP1-related proteins in higher eukaryotes are implicated in the replication checkpoint, but their exact role remains elusive because of their requirements for replication initiation. Here we report that the initiation function of Xenopus Cut5/TopBP1 could be entirely separated from its checkpoint function: the N-terminal half fragment, a region of Cut5 conserved through evolution, is sufficient for initiation, but is incapable of activating the checkpoint; the C-terminal half fragment, which is unique in metazoan species, is by itself capable of activating the checkpoint response without initiating replication. Upon the activation of Chk1, the Ser1131 within the C-terminal region of Cut5 is phosphorylated, and this phosphorylation is critical for the checkpoint response. Furthermore, Cut5 directly stimulated Chk1 phosphorylation in the in vitro kinase assay reconstituted with recombinant proteins and ATR immunoprecipitated from extracts. On the basis of replication protein A (RPA)-dependent loading of Cut5 on to replicating and replication-arrested chromatin, we propose that Cut5 plays a crucial role in the initial amplification step of the ATR-Chk1 signaling pathway at the stalled replication fork.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- Department of Bioscience, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
239
|
Chini CCS, Chen J. Repeated Phosphopeptide Motifs in Human Claspin Are Phosphorylated by Chk1 and Mediate Claspin Function. J Biol Chem 2006; 281:33276-82. [PMID: 16963448 DOI: 10.1074/jbc.m604373200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claspin is a checkpoint protein involved in ATR (ataxia telangiectasia mutated- and Rad3-related)-dependent Chk1 activation in Xenopus and human cells. In Xenopus, Claspin interacts with Chk1 after DNA damage through a region containing two highly conserved repeats, which becomes phosphorylated during the checkpoint response. Because this region is also conserved in human Claspin, we investigated the regulation and function of these potential phosphorylation sites in human Claspin. We found that Claspin is phosphorylated in vivo at Thr-916 in response to replication stress and UV damage. Mutation of these phosphorylation sites on Claspin inhibited Claspin-Chk1 interaction in vivo, impaired Chk1 activation, and induced premature chromatin condensation in cells, indicating a defect in replication checkpoint. In addition, we found that Thr-916 on Claspin is phosphorylated by Chk1, suggesting that Chk1 regulates Claspin during checkpoint response. These results together indicate that phosphorylation of Claspin repeats in human Claspin is important for Claspin function and the regulation of Claspin-Chk1 interaction in human cells.
Collapse
Affiliation(s)
- Claudia C S Chini
- Department of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
240
|
Mamely I, van Vugt MA, Smits VAJ, Semple JI, Lemmens B, Perrakis A, Medema RH, Freire R. Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 2006; 16:1950-5. [PMID: 16934469 DOI: 10.1016/j.cub.2006.08.026] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/28/2022]
Abstract
DNA-damage checkpoints maintain genomic integrity by mediating a cell-cycle delay in response to genotoxic stress or stalled replication forks. In response to damage, the checkpoint kinase ATR phosphorylates and activates its effector kinase Chk1 in a process that critically depends on Claspin . However, it is not known how exactly this kinase cascade is silenced. Here we demonstrate that the abundance of Claspin is regulated through proteasomal degradation. In response to DNA damage, Claspin is transiently stabilized, and its expression depends on Chk1 kinase activity. In addition, we show that Claspin is degraded upon mitotic entry, a process that depends on the beta-TrCP-SCF ubiquitin ligase and Polo-like kinase-1 (Plk1). We demonstrate that Claspin interacts with both beta-TrCP and Plk1 and that inactivation of these components or the beta-TrCP recognition motif in Claspin prevents its mitotic degradation. Interestingly, expression of a nondegradable Claspin mutant inhibits recovery from a DNA-damage-induced checkpoint arrest. Thus, we conclude that Claspin levels are tightly regulated, both during unperturbed cell cycles and after DNA damage. Moreover, our data demonstrate that the degradation of Claspin at the onset of mitosis is an essential step for the recovery of a cell from a DNA-damage-induced cell-cycle arrest.
Collapse
Affiliation(s)
- Ivan Mamely
- Unidad de Investigación, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Wang X, Zou L, Lu T, Bao S, Hurov KE, Hittelman WN, Elledge SJ, Li L. Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Mol Cell 2006; 23:331-41. [PMID: 16885023 DOI: 10.1016/j.molcel.2006.06.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 05/14/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
The ATR-mediated checkpoint is not only critical for responding to genotoxic stress but also essential for cell proliferation. The RFC-related checkpoint protein Rad17, a phosphorylation substrate of ATR, is critical for ATR-mediated checkpoint signaling and cell survival. Here, we show that phosphorylation of Rad17 by ATR is important for genomic stability and restraint of S phase but is not essential for cell survival. The phosphomutant Rad17AA exhibits distinct defects in hydroxyurea- (HU) and ultraviolet- (UV) induced Chk1 activation, indicating that separate Rad17 functions are required differently in response to different types of replication interference. Although cells expressing Rad17AA can initiate Chk1 phosphorylation after HU treatment, they fail to sustain Chk1 phosphorylation after withdrawal of HU and are profoundly sensitive to HU. Importantly, we found that phosphorylated Rad17 interacts with Claspin and regulates its phosphorylation. These findings reveal a phosphorylation-dependent function of Rad17 in an ATR-Rad17-Claspin-Chk1-signaling cascade that responds to specific replication stress.
Collapse
Affiliation(s)
- Xin Wang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Mailand N, Bekker-Jensen S, Bartek J, Lukas J. Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 2006; 23:307-18. [PMID: 16885021 DOI: 10.1016/j.molcel.2006.06.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/05/2006] [Accepted: 06/21/2006] [Indexed: 11/27/2022]
Abstract
We show that Claspin, an adaptor protein required for Chk1 activation, becomes degraded at the onset of mitosis. Claspin degradation was triggered by its interaction with, and ubiquitylation by, the SCFbetaTrCP ubiquitin ligase. This interaction was phosphorylation dependent and required the activity of the Plk1 kinase and the integrity of a betaTrCP recognition motif (phosphodegron) in the N terminus of Claspin. Uncoupling of Claspin from betaTrCP by mutating the conserved serines in Claspin's phosphodegron or by knocking down betaTrCP stabilized Claspin in mitosis, impaired Chk1 dephosphorylation, and delayed G2/M transition during recovery from cell cycle arrest imposed by DNA damage or replication stress. Moreover, the inability to degrade Claspin allowed partial reactivation of Chk1 in cells exposed to DNA damage after passing the G2/M transition. Our data suggest that degradation of Claspin facilitates timely reversal of the checkpoint response and delineates the period permissive for Chk1 activation during cell cycle progression.
Collapse
Affiliation(s)
- Niels Mailand
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|
243
|
Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 2006; 23:319-29. [PMID: 16885022 DOI: 10.1016/j.molcel.2006.06.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/23/2006] [Accepted: 06/01/2006] [Indexed: 11/20/2022]
Abstract
During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint.
Collapse
Affiliation(s)
- Angelo Peschiaroli
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, MSB 599, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 2006; 26:6056-64. [PMID: 16880517 PMCID: PMC1592810 DOI: 10.1128/mcb.00492-06] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TopBP1 and Claspin are adaptor proteins that facilitate phosphorylation of Chk1 by the ATR kinase in response to genotoxic stress. Despite their established requirement for Chk1 activation, the exact way in which TopBP1 and Claspin control Chk1 phosphorylation remains unclear. We show that TopBP1 tightly colocalizes with ATR in distinct nuclear subcompartments generated by DNA damage. Although depletion of TopBP1 by RNA interference (RNAi) strongly impaired phosphorylation of multiple ATR targets, including Chk1, Nbs1, Smc1, and H2AX, it did not interfere with ATR assembly at the sites of DNA damage. These findings challenge the current concept of ATR activation by recruitment to damaged DNA. In contrast, Claspin, like Chk1, remained distributed throughout the nucleus both before and after DNA damage. Consistently, the RNAi-mediated ablation of Claspin selectively abrogated ATR's ability to phosphorylate Chk1 but not other ATR targets. In addition, downregulation of Claspin mimicked Chk1 inactivation by inducing spontaneous DNA damage. Finally, we show that TopBP1 is required for the DNA damage-induced interaction between Claspin and Chk1. Together, these results suggest that while TopBP1 is a general regulator of ATR, Claspin operates downstream of TopBP1 to selectively regulate the Chk1-controlled branch of the genotoxic stress response.
Collapse
Affiliation(s)
- Shizhou Liu
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
245
|
Chang DJ, Lupardus PJ, Cimprich KA. Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J Biol Chem 2006; 281:32081-8. [PMID: 16959771 DOI: 10.1074/jbc.m606799200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a homotrimeric, ring-shaped protein complex that functions as a processivity factor for DNA polymerases. Following genotoxic stress, PCNA is modified at a conserved site by either a single ubiquitin moiety or a polyubiquitin chain. These modifications are required to coordinate DNA damage tolerance processes with ongoing replication. The molecular mechanisms responsible for inducing PCNA ubiquitination are not well understood. Using Xenopus egg extracts, we show that ultraviolet radiation and aphidicolin treatment induce the mono- and diubiquitination of PCNA. PCNA ubiquitination is replication-dependent and coincides with activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent DNA damage checkpoint pathway. However, loss of ATR signaling by depletion of the ATR-interacting protein (ATRIP) or Rad1, a component of the 911 checkpoint clamp, does not impair PCNA ubiquitination. Primed single-stranded DNA generated by uncoupling of mini-chromosome maintenance helicase and DNA polymerase activities has been shown previously to be necessary for ATR activation. Here we show that PCNA ubiquitination also requires uncoupling of helicase and polymerase activities. We further demonstrate that replicating single-stranded DNA, which mimics the structure produced upon uncoupling, is sufficient to induce PCNA monoubiquitination. Our results suggest that PCNA ubiquitination and ATR activation are two independent events that occur in response to a common single-stranded DNA intermediate generated by functional uncoupling of mini-chromosome maintenance (MCM) helicase and DNA polymerase activities.
Collapse
Affiliation(s)
- Debbie J Chang
- Department of Molecular Pharmacology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | | | | |
Collapse
|
246
|
Abstract
RecQ DNA helicases function during DNA replication and are essential for the maintenance of genome stability. There is increasing evidence that spontaneous genomic instability occurs primarily during DNA replication, and that proteins involved in the S-phase checkpoint are a principal defence against such instability. Cells that lack functional RecQ helicases exhibit phenotypes consistent with an inability to fully resume replication fork progress after encountering DNA damage or fork arrest. In this review we will concentrate on the various functions of RecQ helicases during S phase in model organisms.
Collapse
Affiliation(s)
- Jennifer A Cobb
- Frontiers in Genetics NCCR Program, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
247
|
Nedelcheva-Veleva MN, Krastev DB, Stoynov SS. Coordination of DNA synthesis and replicative unwinding by the S-phase checkpoint pathways. Nucleic Acids Res 2006; 34:4138-46. [PMID: 16935878 PMCID: PMC1616944 DOI: 10.1093/nar/gkl528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The process of DNA replication includes duplex unwinding, followed immediately by DNA synthesis. In eukaryotes, DNA synthesis is disturbed in damaged DNA regions, in replication slow zones, or as a result of insufficient nucleotide level. This review aims to discuss the mechanisms that coordinate DNA unwinding and synthesis, allowing replication to be completed even in the presence of genomic insults. There is a growing body of evidence which suggests that S-phase checkpoint pathways regulate both replicative unwinding and DNA synthesis, to synchronize the two processes, thus ensuring genome stability.
Collapse
Affiliation(s)
| | | | - Stoyno S. Stoynov
- To whom correspondence should be addressed. Tel: +359 979 36 89; Fax: +359 2 72 25 077;
| |
Collapse
|
248
|
Bennett LN, Clarke PR. Regulation of Claspin degradation by the ubiquitin-proteosome pathway during the cell cycle and in response to ATR-dependent checkpoint activation. FEBS Lett 2006; 580:4176-81. [PMID: 16828751 DOI: 10.1016/j.febslet.2006.06.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/12/2006] [Accepted: 06/21/2006] [Indexed: 02/04/2023]
Abstract
Claspin is involved in ATR-dependent activation of Chk1 during DNA replication and in response to DNA damage. We show that degradation of Claspin by the ubiquitin-proteosome pathway is regulated during the cell cycle. Claspin is stabilized in S-phase but is abruptly degraded in mitosis and is absent from early G(1) cells in which the phosphorylation of Chk1 by ATR is abrogated. In response to hydroxyurea, UV or aphidicolin, Claspin is phosphorylated in the Chk1-binding domain and its protein levels are increased in an ATR-dependent manner. Thus, the Chk1 pathway is regulated through both phosphorylation of Claspin and its controlled degradation.
Collapse
Affiliation(s)
- Lara N Bennett
- Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | |
Collapse
|
249
|
Kumagai A, Lee J, Yoo HY, Dunphy WG. TopBP1 activates the ATR-ATRIP complex. Cell 2006; 124:943-55. [PMID: 16530042 DOI: 10.1016/j.cell.2005.12.041] [Citation(s) in RCA: 560] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/10/2005] [Accepted: 12/30/2005] [Indexed: 12/17/2022]
Abstract
ATR is a key regulator of checkpoint responses to incompletely replicated and damaged DNA, but the mechanisms underlying control of its kinase activity are unknown. TopBP1, the vertebrate homolog of yeast Cut5/Dbp11, has dual roles in initiation of DNA replication and regulation of checkpoint responses. We show that recombinant TopBP1 induces a large increase in the kinase activity of both Xenopus and human ATR. The ATR-activating domain resides in a conserved segment of TopBP1 that is distinct from its numerous BRCT repeats. The isolated ATR-activating domain from TopBP1 induces ectopic activation of ATR-dependent signaling in both Xenopus egg extracts and human cells. Furthermore, Xenopus egg extracts containing a version of TopBP1 with an inactivating point mutation in the ATR-activating domain are defective in checkpoint regulation. These studies establish that activation of ATR by TopBP1 is a crucial step in the initiation of ATR-dependent signaling processes.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
250
|
Yan S, Lindsay HD, Michael WM. Direct requirement for Xmus101 in ATR-mediated phosphorylation of Claspin bound Chk1 during checkpoint signaling. J Cell Biol 2006; 173:181-6. [PMID: 16618813 PMCID: PMC2063809 DOI: 10.1083/jcb.200601076] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 03/16/2006] [Indexed: 11/22/2022] Open
Abstract
TopBP1-like proteins, which include Xenopus laevis Xmus101, are required for DNA replication and have been linked to replication checkpoint control. A direct role for TopBP1/Mus101 in checkpoint control has been difficult to prove, however, because of the requirement for replication in generating the DNA structures that activate the checkpoint. Checkpoint activation occurs in X. laevis egg extracts upon addition of an oligonucleotide duplex (AT70). We show that AT70 bypasses the requirement for replication in checkpoint activation. We take advantage of this replication-independent checkpoint system to determine the role of Xmus101 in the checkpoint. We find that Xmus101 is essential for AT70-mediated checkpoint signaling and that it functions to promote phosphorylation of Claspin bound Chk1 by the ataxia-telangiectasia and Rad-3-related (ATR) protein kinase. We also identify a separation-of-function mutant of Xmus101. In extracts expressing this mutant, replication of sperm chromatin occurs normally; however, the checkpoint response to stalled replication forks fails. These data demonstrate that Xmus101 functions directly during signal relay from ATR to Chk1.
Collapse
Affiliation(s)
- Shan Yan
- The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|