201
|
Ma X, Cao X, Mo B, Chen X. Trip to ER: MicroRNA-mediated translational repression in plants. RNA Biol 2013; 10:1586-92. [PMID: 24100209 DOI: 10.4161/rna.26313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
miRNAs elicit gene silencing at the post-transcriptional level by several modes of action: translational repression, mRNA decay, and mRNA cleavage. Studies in animals have suggested that translational repression occurs at early steps of translation initiation, which can be followed by deadenylation and mRNA decay. Plant miRNAs were originally thought to solely participate in mRNA cleavage, but increasing evidence has indicated that they are also commonly involved in translational inhibition. Here we discuss recent findings on miRNA-mediated translational repression in plants. The identification of AMP1 in Arabidopsis as a protein required for the translational repression but not the mRNA cleavage activity of miRNAs links miRNA-based translational repression to the endoplasmic reticulum (ER). Future work is required to further elucidate the miRNA machinery on the ER.
Collapse
Affiliation(s)
- Xuan Ma
- Shenzhen Key Laboratory of Microbial Genetic Engineering; College of Life Sciences; Shenzhen University; Shenzhen, P.R. China; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, P.R. China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, P.R. China
| | - Beixin Mo
- Shenzhen Key Laboratory of Microbial Genetic Engineering; College of Life Sciences; Shenzhen University; Shenzhen, P.R. China
| | - Xuemei Chen
- Department of Botany and Plant Sciences; Institute of Integrative Genome Biology; University of California; Riverside, CA USA; Howard Hughes Medical Institute; University of California; Riverside, CA USA
| |
Collapse
|
202
|
Peláez P, Sanchez F. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. FRONTIERS IN PLANT SCIENCE 2013; 4:343. [PMID: 24046772 PMCID: PMC3763480 DOI: 10.3389/fpls.2013.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 05/20/2023]
Abstract
Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant-microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant-bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins.
Collapse
Affiliation(s)
| | - Federico Sanchez
- *Correspondence: Federico Sanchez, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, Morelos, México e-mail:
| |
Collapse
|
203
|
Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. PLANT MOLECULAR BIOLOGY 2013; 83:59-75. [PMID: 23771582 DOI: 10.1007/s11103-013-0089-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.
Collapse
MESH Headings
- Adaptation, Biological
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/metabolism
- Disease Resistance
- Food Supply
- Food, Genetically Modified
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Engineering/methods
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Risk Factors
- Transgenes
Collapse
Affiliation(s)
- Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | | |
Collapse
|
204
|
Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:781-794. [PMID: 23663233 DOI: 10.1111/tpj.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
205
|
Li XM, Sang YL, Zhao XY, Zhang XS. High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One 2013; 8:e72852. [PMID: 23991159 PMCID: PMC3749131 DOI: 10.1371/journal.pone.0072852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/13/2013] [Indexed: 11/18/2022] Open
Abstract
In angiosperms, successful pollen-pistil interactions are the prerequisite and guarantee of subsequent fertilization and seed production. Recent profile analyses have helped elucidate molecular mechanisms underlying these processes at both transcriptomic and proteomic levels, but the involvement of miRNAs in pollen-pistil interactions is still speculative. In this study, we sequenced four small RNA libraries derived from mature pollen, in vitro germinated pollen, mature silks, and pollinated silks of maize (Zea mays L.). We identified 161 known miRNAs belonging to 27 families and 82 novel miRNAs. Of these, 40 conserved and 16 novel miRNAs showed different expression levels between mature and germinated pollen, and 30 conserved and eight novel miRNAs were differentially expressed between mature and pollinated silks. As candidates for factors associated with pollen-silk (pistil) interactions, expression patterns of the two sets of differentially expressed miRNAs were confirmed by stem-loop real-time RT-PCR. Transcript levels of 22 predicted target genes were also validated using real-time RT-PCR; most of these exhibited expression patterns contrasting with those of their corresponding miRNAs. In addition, GO analysis of target genes of differentially expressed miRNAs revealed that functional categories related to auxin signal transduction and gene expression regulation were overrepresented. These results suggest that miRNA-mediated auxin signal transduction and transcriptional regulation have roles in pollen-silk interactions. The results of our study provide novel information for understanding miRNA regulatory roles in pollen-pistil interactions.
Collapse
Affiliation(s)
- Xiao Ming Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ya Lin Sang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
206
|
Martínez F, Elena SF, Daròs JA. Fate of artificial microRNA-mediated resistance to plant viruses in mixed infections. PHYTOPATHOLOGY 2013; 103:870-6. [PMID: 23617337 DOI: 10.1094/phyto-09-12-0233-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Artificial microRNAs (amiRNAs) are the expression products of engineered microRNA (miRNA) genes that efficiently and specifically downregulate RNAs that contain complementary sequences. Transgenic plants expressing high levels of one or more amiRNAs targeting particular sequences in the genomes of some RNA viruses have shown specific resistance to the corresponding virus. This is the case of the Arabidopsis thaliana transgenic line 12-4 expressing a high level of the amiR159-HC-Pro targeting 21 nucleotides in the Turnip mosaic virus (TuMV) (family Potyviridae) cistron coding for the viral RNA-silencing suppressor HC-Pro that is highly resistant to TuMV infection. In this study, we explored the fate of this resistance when the A. thaliana 12-4 plants are challenged with a second virus in addition to TuMV. The A. thaliana 12-4 plants maintained the resistance to TuMV when this virus was co-inoculated with Tobacco mosaic virus, Tobacco rattle virus (TRV), Cucumber mosaic virus (CMV), Turnip yellow mosaic virus, Cauliflower mosaic virus (CaMV), Lettuce mosaic virus, or Plum pox virus. However, when the plants were preinfected with these viruses, TuMV was able to co-infect 12-4 plants preinfected with TRV, CaMV, and, particularly, CMV. Therefore, preinfection by another virus jeopardizes the amiRNA-mediated resistance to TuMV.
Collapse
Affiliation(s)
- Fernando Martínez
- Instituto de Biologia Molecular y Celular de Plantas, Valencia, Spain
| | | | | |
Collapse
|
207
|
Várallyay E, Havelda Z. Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. MOLECULAR PLANT PATHOLOGY 2013; 14:567-75. [PMID: 23578299 PMCID: PMC6638692 DOI: 10.1111/mpp.12029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Various plant viruses ubiquitously mediate the induction of miR168, resulting in the control of ARGONAUTE 1 (AGO1), which is the pivotal component of the microRNA (miRNA) regulation pathway and can also exhibit antiviral function. Here, we demonstrate that miR168-driven control of AGO1 can persist for a long time in virus-infected plants and can be an important component of symptom development. We also show that infection of RNA viruses belonging to various genera is associated with the transcriptional induction of the MIR168 precursor gene. Moreover, in a transient expression study, we reveal that different unrelated viral suppressors of RNA silencing (VSRs) are responsible for the enhanced accumulation of miR168. The induction of miR168 accumulation is an early function of VSRs and this activity is associated with the control of the endogenous AGO1 protein level. The common ability of unrelated VSRs to induce the miR168 level implies that this activity might be a component of the host defence suppression in plant-virus interactions.
Collapse
Affiliation(s)
- Eva Várallyay
- Plant Developmental Biology Group, Agricultural Biotechnology Center, Szent Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | | |
Collapse
|
208
|
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. TRENDS IN PLANT SCIENCE 2013; 18:382-92. [PMID: 23684690 DOI: 10.1016/j.tplants.2013.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 05/19/2023]
Abstract
Plants employ multiple layers of innate immunity to fight pathogens. For both RNA and DNA viruses, RNA silencing plays a critical role in plant resistance. To escape this antiviral silencing-based immune response, viruses have evolved various counterdefense strategies, the most widespread being production of viral suppressors of RNA silencing (VSRs) that target various stages of the silencing mechanisms. Recent findings from in planta analyses have provided new insights into the mode of action of VSRs and revealed that plants react to the perturbation of the silencing pathways brought by viral infection by deploying a battery of counter-counterdefense measures. As well as discussing which experimental approaches have been most effective in delivering clear and unambiguous results, this review provides a detailed account of the surprising variety of offensive and defensive strategies set forth by both viruses and hosts in their struggle for survival.
Collapse
Affiliation(s)
- Marco Incarbone
- IBMP-CNRS, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
209
|
Wang C, Han J, Korir NK, Wang X, Liu H, Li X, Leng X, Fang J. Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:943-57. [PMID: 23582890 DOI: 10.1016/j.jplph.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRNAs) regulate target gene expression by mediating target gene cleavage or inhibition of translation at transcriptional and post-transcriptional levels in higher plants. Until now, many grapevine microRNAs (Vv-miRNAs) have been identified and quite a number of miRNA target genes were also verified by various analysis. However, global interaction of miRNAs with their target genes still remained to perform more research. We reported experimental validation of a number of miRNA target genes in table grapevine that had been previously identified by bioinformatics in our earlier studies. To verify more predicted target genes of Vv-miRNAs and elucidate the modes by which these Vv-miRNAs work on their target genes, 31 unverified potential target genes for 18 Vv-miRNAs were experimentally verified by a new integrated strategy employing a modified 5'-RLM-RACE (RNA ligase-mediated 5' rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3' rapid amplification of cDNA ends) and qRT-PCRs of cleavage products. The results showed that these Vv-miRNAs negatively regulated expression of their target messenger RNAs (mRNAs) through guiding corresponding target mRNA cleavage, of which about 94.4% Vv-miRNAs cleaved their target mRNAs mainly at the tenth nucleotide of 5'-end of miRNAs. Expression levels of both miRNAs and their target mRNAs in eight tissues exhibited inverse relationships, and expressions both of cleaved targets and miRNAs indicated a cleavage mode of Vv-miRNAs on their target genes. Our results confirm the importance of Vv-miRNAs in grapevine growth and development, and suggest more study on Vv-miRNAs and targets can enrich the knowledge of miRNA mediated-regulation in grapevine.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Murray GGR, Kosakovsky Pond SL, Obbard DJ. Suppressors of RNAi from plant viruses are subject to episodic positive selection. Proc Biol Sci 2013; 280:20130965. [PMID: 23804618 PMCID: PMC3712444 DOI: 10.1098/rspb.2013.0965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viral suppressors of RNAi (VSRs) are proteins that actively inhibit the antiviral RNA interference (RNAi) immune response, providing an immune evasion route for viruses. It has been hypothesized that VSRs are engaged in a molecular ‘arms race’ with RNAi pathway genes. Two lines of evidence support this. First, VSRs from plant viruses display high sequence diversity, and are frequently gained and lost over evolutionary time scales. Second, Drosophila antiviral RNAi genes show high rates of adaptive evolution. Here, we investigate whether VSRs diversify faster than other genes and, if so, whether this is a result of positive selection, as might be expected in an arms race. By analysis of 12 plant RNA viruses, we show that the relative rate of protein evolution is higher for VSRs than for other genes, but that this is not attributable to pervasive positive selection. We argue that, because evolutionary time scales are extremely different for viruses and eukaryotes, it is improbable that viral adaptation (as measured by the ratio of non-synonymous to synonymous change) will be dominated by one-to-one coevolution with eukaryotes. Instead, for plant virus VSRs, we find strong evidence of episodic selection—diversifying selection that acts on a subset of lineages—which might be attributable to frequent shifts between different host genotypes or species.
Collapse
Affiliation(s)
- Gemma G R Murray
- Centre for Infection Immunity and Evolution, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
211
|
Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013; 153:562-74. [PMID: 23622241 DOI: 10.1016/j.cell.2013.04.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/13/2013] [Accepted: 03/22/2013] [Indexed: 01/23/2023]
Abstract
Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER.
Collapse
Affiliation(s)
- Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Flores R, Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions. Front Microbiol 2013; 4:98. [PMID: 23653624 PMCID: PMC3642503 DOI: 10.3389/fmicb.2013.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/06/2013] [Indexed: 11/13/2022] Open
Abstract
The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3′-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de investigaciones Científicas-Universidad Politécnica de Valencia Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
García-Marcos A, Pacheco R, Manzano A, Aguilar E, Tenllado F. Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and Tomato spotted wilt virus. J Virol 2013; 87:5769-83. [PMID: 23487466 PMCID: PMC3648178 DOI: 10.1128/jvi.03573-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/04/2013] [Indexed: 11/20/2022] Open
Abstract
One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta.
Collapse
Affiliation(s)
- Alberto García-Marcos
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
214
|
Ning S, Wang N, Sakuma S, Pourkheirandish M, Wu J, Matsumoto T, Koba T, Komatsuda T. Structure, transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1273-83. [PMID: 23381807 DOI: 10.1007/s00122-013-2052-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/19/2013] [Indexed: 05/22/2023]
Abstract
The majority of genes present in the hexaploid bread wheat genome are present as three homoeologs. Here, we describe the three homoeologous orthologs of the barley cleistogamy gene Cly1, a member of the AP2 gene family. As in barley, the wheat genes (designated TaAP2-A, -B and -D) map to the sub-telomeric region of the long arms of the group 2 chromosomes. The structure and pattern of transcription of the TaAP2 homoeologs were similar to those of Cly1. Transcript abundance was high in the florets, and particularly in the lodicule. The TaAP2 message was cleaved at its miR172 target sites. The set of homoeolog-specific PCR assays developed will be informative for identifying either naturally occurring or induced cleistogamous alleles at each of the three wheat homoeologs. By combining such alleles via conventional crossing, it should be possible to generate a cleistogamous form of bread wheat, which would be advantageous both with respect to improving the level of the crop's resistance against the causative pathogen of fusarium head blight, and for controlling pollen-mediated gene flow to and from genetically modified cultivars.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Biomarkers/metabolism
- Chromosomes, Artificial, Bacterial
- Chromosomes, Plant/chemistry
- Chromosomes, Plant/genetics
- Flowers/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genome, Plant
- Hordeum/genetics
- Hordeum/growth & development
- Hordeum/metabolism
- MicroRNAs/genetics
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Triticum/genetics
- Triticum/growth & development
- Triticum/metabolism
Collapse
Affiliation(s)
- Shunzong Ning
- Plant Genome Research Unit, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Zhang H, Li L. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:98-109. [PMID: 23289771 DOI: 10.1111/tpj.12107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs repressing target gene expression post-transcriptionally and are critically involved in various development processes and responses to environmental stresses. MiR408 is highly conserved in land plants and targets several transcripts encoding copper proteins. Although it has been well documented that expression level of miR408 is strongly influenced by a variety of environmental conditions including copper availability, the biological function of this miRNA is still unknown. Here we show that constitutive expression of miR408 results in enhanced growth of seedling and adult plant while knocking down miR408 level by T-DNA insertions or the artificial miRNA technique causes impaired growth. Further, we found that constitutively activated miR408 is able to complement the growth defects of the T-DNA lines. Regarding the molecular mechanism governing miR408 expression, we found that the transcription factors SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) binds to the GTAC motifs in the MIR408 promoter in response to copper deficiency. Interestingly, constitutive activation of miR408 in the spl7 background could partially rescue the severe growth defects of the mutant. Together these results demonstrate that miR408 is a powerful modulator of vegetative growth. Our finding thus reveals a novel control mechanism for vegetative development based on calculated miR408 expression in response to environmental cues.
Collapse
Affiliation(s)
- Huiyong Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
216
|
Libri V, Miesen P, van Rij RP, Buck AH. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci 2013; 70:3525-44. [PMID: 23354060 PMCID: PMC3771402 DOI: 10.1007/s00018-012-1257-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.
Collapse
Affiliation(s)
- Valentina Libri
- Centre for Immunity, Infection and Evolution, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | | | |
Collapse
|
217
|
Sattar MN, Kvarnheden A, Saeed M, Briddon RW. Cotton leaf curl disease - an emerging threat to cotton production worldwide. J Gen Virol 2013; 94:695-710. [PMID: 23324471 DOI: 10.1099/vir.0.049627-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is a serious disease of cotton which has characteristic symptoms, the most unusual of which is the formation of leaf-like enations on the undersides of leaves. The disease is caused by whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus) in association with specific, symptom-modulating satellites (betasatellites) and an evolutionarily distinct group of satellite-like molecules known as alphasatellites. CLCuD occurs across Africa as well as in Pakistan and north-western India. Over the past 25 years, Pakistan and India have experienced two epidemics of the disease, the most recent of which involved a virus and satellite that are resistance breaking. Loss of this conventional host-plant resistance, which saved the cotton growers from ruin in the late 1990s, leaves farmers with only relatively poor host plant tolerance to counter the extensive losses the disease causes. There has always been the fear that CLCuD could spread from the relatively limited geographical range it encompasses at present to other cotton-growing areas of the world where, although the disease is not present, the environmental conditions are suitable for its establishment and the whitefly vector occurs. Unfortunately recent events have shown this fear to be well founded, with CLCuD making its first appearance in China. Here, we outline recent advances made in understanding the molecular biology of the components of the disease complex, their interactions with host plants, as well as efforts being made to control CLCuD.
Collapse
Affiliation(s)
- M Naeem Sattar
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, Sweden
| | - Muhammad Saeed
- National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
218
|
Potkar R, Recla J, Busov V. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochem Biophys Res Commun 2013; 431:512-8. [PMID: 23321309 DOI: 10.1016/j.bbrc.2013.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/06/2013] [Indexed: 11/25/2022]
Abstract
Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2-5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2-5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2-5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2-5 transcript. We experimentally verified the cleavage of PtrHAP2-5 at the predicted miR169a site at the time when PtrHAP2-5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.
Collapse
Affiliation(s)
- Rewati Potkar
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | |
Collapse
|
219
|
Szittya G, Burgyán J. RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Curr Top Microbiol Immunol 2013; 371:153-81. [DOI: 10.1007/978-3-642-37765-5_6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
220
|
Miozzi L, Gambino G, Burgyan J, Pantaleo V. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. MOLECULAR PLANT PATHOLOGY 2013; 14:30-43. [PMID: 22947170 PMCID: PMC6638717 DOI: 10.1111/j.1364-3703.2012.00828.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, RNA silencing is a surveillance mechanism against invading viruses. It involves the production of virus-derived small interfering RNAs (vsiRNAs), which guide the RNA-induced silencing complex (RISC) to inactivate viruses. vsiRNAs may also promote the silencing of host mRNAs in a sequence-specific manner. In this work, vsiRNAs derived from two grapevine-infecting viruses (Grapevine fleck virus and Grapevine rupestris stem pitting-associated virus) were selected from cDNA libraries of short RNAs and were cross-referenced with the remnants of both cleaved host transcripts and viral RNAs from a degradome dataset. We identified dozens of host transcripts targeted by vsiRNAs. Among them, several encode putative proteins involved in ribosome biogenesis and in biotic and abiotic stresses. Moreover, we identified vsiRNAs which explain the cleavage sites in viral genomes. A consistent fraction of vsiRNAs did not apparently account for cleavage, suggesting that only a low percentage of vsiRNAs are involved in the antiviral response.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale del CNR, 10135, Torino, Italy
| | | | | | | |
Collapse
|
221
|
Alabi OJ, Zheng Y, Jagadeeswaran G, Sunkar R, Naidu RA. High-throughput sequence analysis of small RNAs in grapevine (Vitis vinifera L.) affected by grapevine leafroll disease. MOLECULAR PLANT PATHOLOGY 2012; 13:1060-76. [PMID: 22827483 PMCID: PMC6638782 DOI: 10.1111/j.1364-3703.2012.00815.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grapevine leafroll disease (GLRD) is one of the most economically important virus diseases of grapevine (Vitis spp.) worldwide. In this study, we used high-throughput sequencing of cDNA libraries made from small RNAs (sRNAs) to compare profiles of sRNA populations recovered from own-rooted Merlot grapevines with and without GLRD symptoms. The data revealed the presence of sRNAs specific to Grapevine leafroll-associated virus 3, Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid 1 (GYSVd-1) and Grapevine yellow speckle viroid 2 (GYSVd-2) in symptomatic grapevines and sRNAs specific only to HpSVd, GYSVd-1 and GYSVd-2 in nonsymptomatic grapevines. In addition to 135 previously identified conserved microRNAs in grapevine (Vvi-miRs), we identified 10 novel and several candidate Vvi-miRs in both symptomatic and nonsymptomatic grapevine leaves based on the cloning of miRNA star sequences. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected conserved Vvi-miRs indicated that individual members of an miRNA family are differentially expressed in symptomatic and nonsymptomatic leaves. The high-resolution mapping of sRNAs specific to an ampelovirus and three viroids in mixed infections, the identification of novel Vvi-miRs and the modulation of certain conserved Vvi-miRs offers resources for the further elucidation of compatible host-pathogen interactions and for the provision of ecologically relevant information to better understand host-pathogen-environment interactions in a perennial fruit crop.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | | | | | | | | |
Collapse
|
222
|
Liang G, He H, Yu D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 2012; 7:e48951. [PMID: 23155433 PMCID: PMC3498362 DOI: 10.1371/journal.pone.0048951] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/02/2012] [Indexed: 01/23/2023] Open
Abstract
microRNAs (miRNAs) are a class of negative regulators that take part in many processes such as growth and development, stress responses, and metabolism in plants. Recently, miRNAs were shown to function in plant nutrient metabolism. Moreover, several miRNAs were identified in the response to nitrogen (N) deficiency. To investigate the functions of other miRNAs in N deficiency, deep sequencing technology was used to detect the expression of small RNAs under N-sufficient and -deficient conditions. The results showed that members from the same miRNA families displayed differential expression in response to N deficiency. Upon N starvation, the expression of miR169, miR171, miR395, miR397, miR398, miR399, miR408, miR827, and miR857 was repressed, whereas those of miR160, miR780, miR826, miR842, and miR846 were induced. miR826, a newly identified N-starvation-induced miRNA, was found to target the AOP2 gene. Among these N-starvation-responsive miRNAs, several were involved in cross-talk among responses to different nutrient (N, P, S, Cu) deficiencies. miR160, miR167, and miR171 could be responsible for the development of Arabidopsis root systems under N-starvation conditions. In addition, twenty novel miRNAs were identified and nine of them were significantly responsive to N-starvation. This study represents comprehensive expression profiling of N-starvation-responsive miRNAs and advances our understanding of the regulation of N homeostasis mediated by miRNAs.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hua He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- The Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
223
|
Bozorov TA, Baldwin IT, Kim SG. Identification and profiling of miRNAs during herbivory reveals jasmonate-dependent and -independent patterns of accumulation in Nicotiana attenuata. BMC PLANT BIOLOGY 2012; 12:209. [PMID: 23134682 PMCID: PMC3502350 DOI: 10.1186/1471-2229-12-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/04/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant microRNAs (miRNAs) play key roles in the transcriptional responses to environmental stresses. However, the role of miRNAs in responses to insect herbivory has not been thoroughly explored. To identify herbivory-responsive miRNAs, we identified conserved miRNAs in the ecological model plant Nicotiana attenuata whose interactions with herbivores have been well-characterized in both laboratory and field studies. RESULTS We identified 59 miRNAs from 36 families, and two endogenous trans-acting small interfering RNAs (tasiRNA) targeted by miRNAs. We characterized the response of the precursor and mature miRNAs to simulated attack from the specialist herbivore Manduca sexta by quantitative PCR analysis and used ir-aoc RNAi transformants, deficient in jasmonate biosynthesis, to identify jasmonate-dependent and -independent miRNA regulation. Expression analysis revealed that groups of miRNAs and tasiRNAs were specifically regulated by either mechanical wounding or wounding plus oral secretions from M. sexta larvae, and these small RNAs were accumulated in jasmonate-dependent or -independent manners. Moreover, cDNA microarray analysis indicated that the expression patterns of the corresponding target genes were correlated with the accumulation of miRNAs and tasiRNAs. CONCLUSIONS We show that a group of miRNAs and tasiRNAs orchestrates the expression of target genes involved in N. attenuata's responses to herbivore attack.
Collapse
Affiliation(s)
- Tohir A Bozorov
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
224
|
Romanel E, Silva TF, Corrêa RL, Farinelli L, Hawkins JS, Schrago CEG, Vaslin MFS. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection. PLANT MOLECULAR BIOLOGY 2012; 80:443-60. [PMID: 22987114 DOI: 10.1007/s11103-012-9959-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 05/13/2023]
Abstract
Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.
Collapse
Affiliation(s)
- Elisson Romanel
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
225
|
Comparative Analysis of MicroRNAs between Sporophyte and Gametophyte of Porphyra yezoensis. Comp Funct Genomics 2012; 2012:912843. [PMID: 23055822 PMCID: PMC3463926 DOI: 10.1155/2012/912843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/06/2012] [Accepted: 08/22/2012] [Indexed: 01/07/2023] Open
Abstract
Porphyra yezoensis Ueda is an intertidal marine red algae that has received increasing attention as a model organism owing to its important role in biological research and the agronomic industry. The two generations of Porphyra yezoensis, the sporophyte and the gametophyte, have the same genome but show great differences in many aspects, including structural features, habitat, and gene expression. To identify miRNAs and their probable roles in P. yezoensis development, we constructed and sequenced libraries of small RNA from P. yezoensis sporophytes and gametophytes. The sequencing data were analyzed, and 14 miRNAs were identified, with only one common to these two samples. Our results show that P. yezoensis has a complex small RNA processing system containing novel miRNAs that have no identifiable homolog in other organisms. These miRNAs might have important regulatory roles in development of the different generations of P. yezoensis.
Collapse
|
226
|
Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. THE NEW PHYTOLOGIST 2012; 196:427-440. [PMID: 22931461 DOI: 10.1111/j.1469-8137.2012.04277.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/12/2012] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
227
|
Shikata M, Yamaguchi H, Sasaki K, Ohtsubo N. Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri. PLANTA 2012; 236:1027-1035. [PMID: 22552637 DOI: 10.1007/s00425-012-1649-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
miR156/157 is a small RNA molecule that is highly conserved among various plant species. Overexpression of miR156/157 has been reported to induce bushy architecture and delayed phase transition in several plant species. To investigate the effect of miR157 overexpression in a horticultural plant, and to explore the applicability of miRNA to molecular breeding, we introduced Arabidopsis MIR157b (AtMIR157b) into torenia (Torenia fournieri). The resulting 35S:AtMIR157b plants showed a high degree of branching along with small leaves, which resembled miR156/157-overexpressing plants of other species. We also isolated torenia SBP-box genes with target miR156/157 sequences and confirmed that their expression was selectively downregulated in 35S:AtMIR157b plants. The reduced accumulation of mRNA was probably due to sequence specificity. Moreover, expression of torenia homologs of the SBP-box protein-regulated genes TfLFY and TfMIR172 was also reduced by AtmiR157 overexpression. These findings suggest that the molecular mechanisms of miR156/157 regulation are conserved between Arabidopsis and torenia. The bushy architecture and small leaves of 35S:AtMIR157b torenia plants could be applied in molecular breeding of various horticultural plants as well as for increasing biomass and crop production.
Collapse
Affiliation(s)
- Masahito Shikata
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan.
| | | | | | | |
Collapse
|
228
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
229
|
Variations in hypovirus interactions with the fungal-host RNA-silencing antiviral-defense response. J Virol 2012; 86:12933-9. [PMID: 22993160 DOI: 10.1128/jvi.00961-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoviruses Cryphonectria hypovirus 1 (CHV-1)/EP713, CHV-1/Euro7, and CHV-1/EP721, which infect the chestnut blight fungus Cryphonectria parasitica, differ in their degrees of virulence attenuation (hypovirulence), symptom expression, and viral RNA accumulation, even though they share between 90% and 99% amino acid sequence identity. In this report we examine whether this variability is influenced by interactions with the C. parasitica Dicer gene dcl2-dependent RNA-silencing antiviral defense response. The mild symptoms exhibited by strains infected with CHV-1/Euro7 and CHV-1/EP721 relative to those with severe hypovirus CHV-1/EP713 did not correlate with a higher induction of the RNA-silencing pathway. Rather, dcl2 transcripts accumulated to a higher level (∼8-fold) following infection by CHV-1/EP713 than following infection by CHV-1/Euro7 (1.2-fold) or CHV-1/EP721 (1.4-fold). The differences in dcl2 transcript accumulation in response to CHV-1/EP713 and CHV-1/EP721 were unrelated to the suppressor of RNA silencing, p29, encoded by the two viruses. Moreover, the coding strand viral RNA levels increased by 33-, 32-, and 16-fold for CHV-1/EP713, CHV-1/Euro7, and CHV-1/EP721, respectively, in Δdcl2 mutant strains. This indicates that a very robust antiviral RNA-silencing response was induced against all three viruses, even though significant differences in the levels of dcl2 transcript accumulation were observed. Unexpectedly, the severe debilitation previously reported for CHV-1/EP713-infected Δdcl2 mutant strains, and observed here for the CHV-1/Euro7-infected Δdcl2 mutant strains, was not observed with infection by CHV-1/EP721. By constructing chimeric viruses containing portions of CHV-1/EP713 and CHV-1/EP721, it was possible to map the region that is associated with the severe debilitation of the Δdcl2 mutant hosts to a 4.1-kb coding domain located in the central part of the CHV-1/EP713 genome.
Collapse
|
230
|
Arazi T. MicroRNAs in the moss Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2012; 80:55-65. [PMID: 21373961 DOI: 10.1007/s11103-011-9761-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/25/2011] [Indexed: 05/10/2023]
Abstract
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter's evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.
Collapse
Affiliation(s)
- Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
231
|
Jones-Rhoades MW. Conservation and divergence in plant microRNAs. PLANT MOLECULAR BIOLOGY 2012; 80:3-16. [PMID: 21996939 DOI: 10.1007/s11103-011-9829-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 09/15/2011] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression in eukaryotic cells. The past decade has seen an explosion in our understanding of the sets of miRNA genes encoded in the genomes in different species of plants and the mechanisms by which miRNAs interact with target RNAs. A subset of miRNA families (and their binding sites in target RNAs) are conserved between angiosperms and basal plants, suggesting they predate the divergence of existing lineages of plants. However, the majority of miRNA families expressed by any given plant species have a narrow phylogenetic distribution. As a group, these "young" miRNAs genes appear to be evolutionarily fluid and lack clearly understood biological function. The goal of this review is to summarize our understanding of the sets of miRNA genes and miRNA targets that exist in various plant species and to discuss hypotheses that explain the patterns of conservation and divergence observed among microRNAs in plants.
Collapse
|
232
|
Chorostecki U, Crosa VA, Lodeyro AF, Bologna NG, Martin AP, Carrillo N, Schommer C, Palatnik JF. Identification of new microRNA-regulated genes by conserved targeting in plant species. Nucleic Acids Res 2012; 40:8893-904. [PMID: 22772987 PMCID: PMC3467045 DOI: 10.1093/nar/gks625] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) are major regulators of gene expression in multicellular organisms. They recognize their targets by sequence complementarity and guide them to cleavage or translational arrest. It is generally accepted that plant miRNAs have extensive complementarity to their targets and their prediction usually relies on the use of empirical parameters deduced from known miRNA-target interactions. Here, we developed a strategy to identify miRNA targets which is mainly based on the conservation of the potential regulation in different species. We applied the approach to expressed sequence tags datasets from angiosperms. Using this strategy, we predicted many new interactions and experimentally validated previously unknown miRNA targets in Arabidopsis thaliana. Newly identified targets that are broadly conserved include auxin regulators, transcription factors and transporters. Some of them might participate in the same pathways as the targets known before, suggesting that some miRNAs might control different aspects of a biological process. Furthermore, this approach can be used to identify targets present in a specific group of species, and, as a proof of principle, we analyzed Solanaceae-specific targets. The presented strategy can be used alone or in combination with other approaches to find miRNA targets in plants.
Collapse
Affiliation(s)
- Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Pani A, Mahapatra RK, Behera N, Naik PK. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:200-10. [PMID: 22289476 PMCID: PMC5054163 DOI: 10.1016/s1672-0229(11)60023-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022]
Abstract
Despite its efficacy against malaria, the relatively low yield (0.01%-0.8%) of artemisinin in Artemisia annua is a serious limitation to the commercialization of the drug. A better understanding of the biosynthetic pathway of artemisinin and its regulation by both exogenous and endogenous factors is essential to improve artemisinin yield. Increasing evidence has shown that microRNAs (miRNAs) play multiple roles in various biological processes. In this study, we used previously known miRNAs from Arabidopsis and rice against expressed sequence tag (EST) database of A. annua to search for potential miRNAs and their targets in A. annua. A total of six potential miRNAs were predicted, which belong to the miR414 and miR1310 families. Furthermore, eight potential target genes were identified in this species. Among them, seven genes encode proteins that play important roles in artemisinin biosynthesis, including HMG-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS), farnesyl pyrophosphate synthase (FPS) and cytochrome P450. In addition, a gene coding for putative AINTEGUMENTA, which is involved in signal transduction and development, was also predicted as one of the targets. This is the first in silico study to indicate that miRNAs target genes encoding enzymes involved in artemisinin biosynthesis, which may help to understand the miRNA-mediated regulation of artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Alok Pani
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
- School of Life Sciences, Sambalpur University, Burla, Odisha 768019, India
- Corresponding author.
| | - Niranjan Behera
- School of Life Sciences, Sambalpur University, Burla, Odisha 768019, India
| | - Pradeep Kumar Naik
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India
| |
Collapse
|
234
|
Maliogka VI, Calvo M, Carbonell A, García JA, Valli A. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection. J Gen Virol 2012; 93:1601-1611. [PMID: 22513385 DOI: 10.1099/vir.0.042168-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Carbonell
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
235
|
Abstract
MicroRNAs (miRNAs) are an extensive class of newly identified small RNAs that regulate gene expression at post-transcription level by mRNA cleavage or translation. In our study, we used qRT-PCR and found that Vv-miR164 is expression in grapevine leaves, stems, tendrils, inflorescences, flowers and fruits. In addition, two potential target genes for Vv-miR164 were also found and verified by PPM-RACE and RLM-RACE. The results not only maps the cleavage site of the target mRNA but allowed for detection the expression pattern of cleaved fragments that can indicate the regulatory function of this miRNA on its target genes. These target genes were explored by qRT-PCR where some exhibited different expression patterns from their corresponding miRNA, indicating the cleavage mode of the miRNA on its target genes. The efficient and powerful approach used in this study can help in further understanding of how miRNAs cleaved their target mRNAs. Results from this study prove the importance of Vv-miR164 in regulating development and growth of grapes, and adds to the existing knowledge of small RNA-mediated regulation in grapes.
Collapse
|
236
|
Sun X, Korir NK, Han J, Shangguan LF, Kayesh E, Leng XP, Fang JG. Characterization of grapevine microR164 and its target genes. Mol Biol Rep 2012; 39:9463-72. [PMID: 22733489 DOI: 10.1007/s11033-012-1811-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/10/2012] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are an extensive class of newly identified small RNAs that regulate gene expression at post-transcription level by mRNA cleavage or translation. In our study, we used qRT-PCR and found that Vv-miR164 is expression in grapevine leaves, stems, tendrils, inflorescences, flowers and fruits. In addition, two potential target genes for Vv-miR164 were also found and verified by PPM-RACE and RLM-RACE. The results not only maps the cleavage site of the target mRNA but allowed for detection the expression pattern of cleaved fragments that can indicate the regulatory function of this miRNA on its target genes. These target genes were explored by qRT-PCR where some exhibited different expression patterns from their corresponding miRNA, indicating the cleavage mode of the miRNA on its target genes. The efficient and powerful approach used in this study can help in further understanding of how miRNAs cleaved their target mRNAs. Results from this study prove the importance of Vv-miR164 in regulating development and growth of grapes, and adds to the existing knowledge of small RNA-mediated regulation in grapes.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095 Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
237
|
Rahman J, Karjee S, Mukherjee SK. MYMIV-AC2, a geminiviral RNAi suppressor protein, has potential to increase the transgene expression. Appl Biochem Biotechnol 2012; 167:758-75. [PMID: 22592775 DOI: 10.1007/s12010-012-9702-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Gene silencing is one of the limiting factors for transgene expression in plants. But the plant viruses have learnt to suppress gene silencing by encoding the protein(s), called RNA silencing suppressor(s) (RSS). Hence, these proteins could be used to overcome the limitation for transgene expression. The RNAi suppressors, namely HC-Pro and P19, have been shown to enhance the transgene expression but other RSS proteins have not been screened for similar role. Moreover, none of RSSs from the DNA viruses are known for enhancing the expression of transgenes. The Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus Begomovirus within the family of Geminiviridae encodes an RSS called the AC2 protein. Here, we used AC2 to elevate the expression of the transgenes. Upon introduction of MYMIV-AC2 in the silenced GFP transgenic tobacco lines, by either genetic hybridisation or transgenesis, the GFP expression was enhanced several fold in F1 and T0 lines. The GFP-siRNA levels were much reduced in F1 and T0 lines compared with those of the initial parental silenced lines. The enhanced GFP expression was also observed at the cellular level. This approach was also successful in enhancing the expression of another transgene, namely topoisomeraseII.
Collapse
Affiliation(s)
- Jamilur Rahman
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
238
|
Atsumi G, Nakahara KS, Wada TS, Choi SH, Masuta C, Uyeda I. Heterologous expression of viral suppressors of RNA silencing complements virulence of the HC-Pro mutant of clover yellow vein virus in pea. Arch Virol 2012; 157:1019-28. [PMID: 22398917 DOI: 10.1007/s00705-012-1281-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Many plant viruses encode suppressors of RNA silencing, including the helper component-proteinase (HC-Pro) of potyviruses. Our previous studies showed that a D-to-Y mutation at amino acid position 193 in HC-Pro (HC-Pro-D193Y) drastically attenuated the virulence of clover yellow vein virus (ClYVV) in legume plants. Furthermore, RNA-silencing suppression (RSS) activity of HC-Pro-D193Y was significantly reduced in Nicotiana benthamiana. Here, we examine the effect of expression of heterologous suppressors of RNA silencing, i.e., tomato bushy stunt virus p19, cucumber mosaic virus 2b, and their mutants, on the virulence of the ClYVV point mutant with D193Y (Cl-D193Y) in pea. P19 and 2b fully and partially complemented Cl-D193Y multiplication and virulence, including lethal systemic HR in pea, respectively, but the P19 and 2b mutants with defects in their RSS activity did not. Our findings strongly suggest that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary for ClYVV multiplication and virulence in pea.
Collapse
Affiliation(s)
- Go Atsumi
- Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
239
|
Liu C, Axtell MJ, Fedoroff NV. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. PLANT PHYSIOLOGY 2012; 159:748-58. [PMID: 22474216 PMCID: PMC3406889 DOI: 10.1104/pp.112.193508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 05/18/2023]
Abstract
Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 null mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher K(cat) and lower K(m) values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 null mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates.
Collapse
|
240
|
Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:991-1003. [PMID: 22332758 DOI: 10.1111/j.1365-313x.2012.04940.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale-CNR, Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
241
|
Li F, Orban R, Baker B. SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:891-901. [PMID: 22268718 DOI: 10.1111/j.1365-313x.2012.04922.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) play important roles in a variety of biological processes. Bioinformatics prediction and small RNA (sRNA) cloning are the most important approaches for identification of miRNAs and tasiRNAs and their targets. However, these approaches are not readily accessible to every researcher. Here we present SoMART, a web server for miRNA/tasiRNA analysis resources and tools, which is designed for researchers who are interested in identifying miRNAs or tasiRNAs that potentially regulate genes of interest. The server includes four sets of tools: 'Slicer detector' for detecting sRNAs targeting input genes, 'dRNA mapper' for detecting degradome (d)RNA products derived from input genes, 'PreMIR detector' for identifying miRNA precursors (MIRs) or tasiRNA precursor (TASs) of input sRNAs, and 'sRNA mapper' for mapping sRNAs onto input genes. We also developed a dRNA-seq protocol to achieve longer dRNA reads for better characterization of miRNA precursors by dRNA mapper. To validate the server function and robustness, we installed sRNA, dRNA and collected genomic DNA or transcriptome databases from Arabidopsis and solanaceous plants, and characterized miR172-mediated regulation of the APETALA2 gene in potato (Solanum tuberosum) and demonstrated conservation of MIR390-triggered TAS3 in tomato (Solanum lycopersicum). More importantly, we predicted the existence of MIR482-triggered TAS5 in tomato. We further tested and confirmed the efficiency and accuracy of the server by analyses of 21 validated miRNA targets and 115 miRNA precursors in Arabidopsis thaliana. SoMART is available at http://somart.ist.berkeley.edu.
Collapse
Affiliation(s)
- Feng Li
- Department of Plant and Microbial Biology, Plant Gene Expression Center, University of California, Berkeley, USA.
| | | | | |
Collapse
|
242
|
RNA silencing suppressor Pns11 of rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol 2012; 157:1531-9. [DOI: 10.1007/s00705-012-1339-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/04/2012] [Indexed: 01/10/2023]
|
243
|
Song C, Yu M, Han J, Wang C, Liu H, Zhang Y, Fang J. Validation and characterization of Citrus sinensis microRNAs and their target genes. BMC Res Notes 2012; 5:235. [PMID: 22583737 PMCID: PMC3436860 DOI: 10.1186/1756-0500-5-235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs play vital role in plant growth and development by changeable expression of their target genes with most plant microRNAs having perfect or near-perfect complementarities with their target genes but miRNAs in Citrus sinensis (csi-miRNAs) and their function have not been widely studied. Findings In this study, 15 potential microRNAs in Citrus sinensis (csi-miRNAs) were identified and bioinformatically validated using miR-RACE, a newly developed method for determination of miRNAs prediction computationally. The expression of these fifteen C. sinensis miRNAs can be detected in leaves, stems, flowers and fruits of C. sinensis by QRT-PCR with some of them showed tissue-specific expression. Six potential target genes were identified for six csi-miRNAs and also experimentally verified by Poly (A) polymerase -mediated 3′ rapid amplification of cDNA ends (PPM-RACE) and RNA ligase-mediated 5′ rapid amplification of cDNA ends (RLM-RACE) which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that indicate the regulatory function of the miRNAs on their target genes. Conclusions Our results confirm that small RNA-mediated regulation whereby all csi-miRNAs regulate their target genes by degradation.
Collapse
Affiliation(s)
- Changnian Song
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
244
|
Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:791-9. [PMID: 22122669 DOI: 10.1089/omi.2011.0073] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a lack of knowledge on the tissue-specific expression of miRNAs in response to dehydration stress in Brachypodium (Brachypodium distachyon (L.) Beauv), a model for temperate grass species. In this study, miRNA expression patterns of drought-tolerant Brachypodium were investigated using the miRNA microarray platform. A total of 205 miRNAs in control and 438 miRNAs in both drought-treated leaf and root tissues were expressed. Seven of the detected Brachypodium miRNAs were dehydration stress responsive. Expression levels of known drought-responsive miRNAs, miR896, and miR1867 were quantified by qRT-PCR in Brachypodium upon 4 h and 8 h dehydration stress applications. This was performed to compare drought responsiveness of miRNAs in closely related species. Target transcripts of selected drought responsive miRNAs, miR170, miR1850, miR896, miR406, miR528, miR390, were computationally predicted. Target transcript of miR896 was verified by retrieving a cleaved miR896 transcript from drought stress-treated leaf samples using a modified 5' RLM-RACE. Brachypodium dehydration responsive miRNA were also detected in barley and wild emmer wheat. Hence, the outcomes highlighted the conserved features of miRNA upon dehydration stress in Triticeae.
Collapse
Affiliation(s)
- Hikmet Budak
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | |
Collapse
|
245
|
Pacheco R, García-Marcos A, Barajas D, Martiáñez J, Tenllado F. PVX-potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res 2012; 165:231-5. [PMID: 22387565 DOI: 10.1016/j.virusres.2012.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 01/13/2023]
Abstract
In comparison to single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) or Plum pox virus (PPV), resulted in increased systemic symptoms (synergism in pathology). Previous studies have shown that virus infections affected the accumulation of various microRNAs (miRNAs) and miRNA target genes. Our studies revealed that double infection by PVX and PVY or PPV that produced the most severe symptoms in N. benthamiana altered accumulation of miR156, 171, 398, and 168, and/or their target transcripts to a greater extent or in a different direction than single infections that produced milder symptoms. These findings indicate a differential effect on miRNA metabolism of the combined infection by two unrelated plant viruses, which may account in part for the severe symptoms caused by PVX/potyvirus-associated synergisms.
Collapse
Affiliation(s)
- Remedios Pacheco
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
246
|
Pacheco R, García-Marcos A, Manzano A, de Lacoba MG, Camañes G, García-Agustín P, Díaz-Ruíz JR, Tenllado F. Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:709-23. [PMID: 22273391 DOI: 10.1094/mpmi-11-11-0305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hypersensitive response-related programmed cell death (PCD) has been extensively analyzed in various plant-virus interactions. However, little is known about the changes in gene expression and phytohormone levels associated with cell death caused by compatible viruses. The synergistic interaction of Potato virus X (PVX) with a number of Potyvirus spp. results in increased symptoms that lead to systemic necrosis (SN) in Nicotiana benthamiana. Here, we show that SN induced by a PVX recombinant virus expressing a potyviral helper component-proteinase (HC-Pro) gene is associated with PCD. We have also compared transcriptomic and hormonal changes that occur in response to a compatible synergistic virus interaction that leads to SN, a systemic incompatible interaction conferred by the Tobacco mosaic virus-resistance gene N, and a PCD response conditioned by depletion of proteasome function. Our analysis indicates that the SN response clusters with the incompatible response by the similarity of their overall gene expression profiles. However, the expression profiles of both defense-related genes and hormone-responsive genes, and also the relative accumulation of several hormones in response to SN, relate more closely to the response to depletion of proteasome function than to that elicited by the incompatible interaction. This suggests a potential contribution of proteasome dysfunction to the increased pathogenicity observed in PVX-Potyvirus mixed infections. Furthermore, silencing of coronatine insensitive 1, a gene involved in jasmonate perception, in N. benthamiana accelerated cell death induced by PVX expressing HC-Pro.
Collapse
Affiliation(s)
- Remedios Pacheco
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J 2012; 31:2553-65. [PMID: 22531783 DOI: 10.1038/emboj.2012.92] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/09/2012] [Indexed: 01/02/2023] Open
Abstract
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.
Collapse
|
248
|
Kim K, Choi D, Kim SM, Kwak DY, Choi J, Lee S, Lee BC, Hwang D, Hwang I. A systems approach for identifying resistance factors to Rice stripe virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:534-545. [PMID: 22217248 DOI: 10.1094/mpmi-11-11-0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rice stripe virus (RSV) causes disease that can severely affect the productivity of rice (Oryza sativa). Several RSV-resistant cultivars have been developed. However, host factors conferring RSV resistance in these cultivars are still elusive. Here, we present a systems approach for identifying potential rice resistance factors. We developed two near-isogenic lines (NIL), RSV-resistant NIL22 and RSV-susceptible NIL37, and performed gene expression profiling of the two lines in RSV-infected and RSV-uninfected conditions. We identified 237 differentially expressed genes (DEG) between NIL22 and NIL37. By integrating with known quantitative trait loci (QTL), we selected 11 DEG located within the RSV resistance QTL as RSV resistance factor candidates. Furthermore, we identified 417 DEG between RSV-infected and RSV-uninfected conditions. Using an interaction network-based method, we selected 20 DEG highly interacting with the two sets of DEG as RSV resistance factor candidates. Among the 31 candidates, we selected the final set of 21 potential RSV resistance factors whose differential expression was confirmed in the independent samples using real-time reverse-transcription polymerase chain reaction. Finally, we reconstructed a network model delineating potential association of the 21 selected factors with resistance-related processes. In summary, our approach, based on gene expression profiling, revealed potential host resistance factors and a network model describing their relationships with resistance-related processes, which can be further validated in detailed experiments.
Collapse
Affiliation(s)
- Kangmin Kim
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Muñoz-Mérida A, Perkins JR, Viguera E, Thode G, Bejarano ER, Pérez-Pulido AJ. Semirna: Searching for Plant miRNAs Using Target Sequences. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:168-77. [DOI: 10.1089/omi.2011.0115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Antonio Muñoz-Mérida
- Departamento de Arquitectura de Computadores, Universidad de Málaga, Málaga, Spain
| | - James R. Perkins
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Enrique Viguera
- Departamento de Biología Cellular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Guillermo Thode
- Departamento de Biología Cellular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Eduardo R. Bejarano
- Departamento de Biología Cellular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málagna, Spain
| | - Antonio J. Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
250
|
Viral suppression of RNA silencing. SCIENCE CHINA-LIFE SCIENCES 2012; 55:109-18. [DOI: 10.1007/s11427-012-4279-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 01/28/2023]
|