201
|
Huang C, Shang X, Zhou X, Zhang Z, Huang X, Lu Y, Wang M, Löffler M, Liao Z, Qi H, Kaiser U, Schwarz D, Fery A, Wang T, Mannsfeld SCB, Hu G, Feng X, Dong R. Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer. Nat Commun 2023; 14:3850. [PMID: 37386039 DOI: 10.1038/s41467-023-39630-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the environment is largely limited to slow molecular diffusion, which severely hinders the enhancement of heterogeneous reaction kinetics. Herein, we report a hierarchical-structure-accelerated interfacial dynamic strategy to improve interfacial gas transfer on hierarchical conductive metal-organic framework (c-MOF) films. Hierarchical c-MOF films are synthesized via the in-situ transformation of insulating MOF film precursors using π-conjugated ligands and comprise both a nanoporous shell and hollow inner voids. The introduction of hollow structures in the c-MOF films enables an increase of gas permeability, thus enhancing the motion velocity of gas molecules toward the c-MOF film surface, which is more than 8.0-fold higher than that of bulk-type film. The c-MOF film-based chemiresistive sensor exhibits a faster response towards ammonia than other reported chemiresistive ammonia sensors at room temperature and a response speed 10 times faster than that of the bulk-type film.
Collapse
Affiliation(s)
- Chuanhui Huang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xinglong Shang
- Department of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| | - Xinyuan Zhou
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Zhe Zhang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xing Huang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yang Lu
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, 01109, Dresden, Germany
| | - Haoyuan Qi
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy Universität Ulm, 89081, Ulm, Germany
| | - Ute Kaiser
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy Universität Ulm, 89081, Ulm, Germany
| | - Dana Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, Dresden, 01069, Germany
| | - Andreas Fery
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, Dresden, 01069, Germany
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Guoqing Hu
- Department of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Department of Synthetic Materials and Functional Devices, Max Planck Institute for Microstructure Physics, D-06120, Halle (Saale), Germany.
| | - Renhao Dong
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
202
|
Gao Z, Hou M, Shi Y, Li L, Sun Q, Yang S, Jiang Z, Yang W, Zhang Z, Hu W. A conductive catecholate-based framework coordinated with unsaturated bismuth boosts CO 2 electroreduction to formate. Chem Sci 2023; 14:6860-6866. [PMID: 37389251 PMCID: PMC10306104 DOI: 10.1039/d3sc01876h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Bismuth-based metal-organic frameworks (Bi-MOFs) have received attention in electrochemical CO2-to-formate conversion. However, the low conductivity and saturated coordination of Bi-MOFs usually lead to poor performance, which severely limits their widespread application. Herein, a conductive catecholate-based framework with Bi-enriched sites (HHTP, 2,3,6,7,10,11-hexahydroxytriphenylene) is constructed and the zigzagging corrugated topology of Bi-HHTP is first unraveled via single-crystal X-ray diffraction. Bi-HHTP possesses excellent electrical conductivity (1.65 S m-1) and unsaturated coordination Bi sites are confirmed by electron paramagnetic resonance spectroscopy. Bi-HHTP exhibited an outstanding performance for selective formate production of 95% with a maximum turnover frequency of 576 h-1 in a flow cell, which surpassed most of the previously reported Bi-MOFs. Significantly, the structure of Bi-HHTP could be well maintained after catalysis. In situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirms that the key intermediate is *COOH species. Density functional theory (DFT) calculations reveal that the rate-determining step is *COOH species generation, which is consistent with the in situ ATR-FTIR results. DFT calculations confirmed that the unsaturated coordination Bi sites acted as active sites for electrochemical CO2-to-formate conversion. This work provides new insights into the rational design of conductive, stable, and active Bi-MOFs to improve their performance towards electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Zengqiang Gao
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Man Hou
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Yongxia Shi
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Li Li
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Qisheng Sun
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Shuyuan Yang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Zhiqiang Jiang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University Panzhihua Sichuan 617000 P. R. China
| | - Wenjuan Yang
- Julong College, Shenzhen Technology University Shenzhen 518118 China
| | - Zhicheng Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Wenping Hu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
203
|
An X, Jiang D, Cao Q, Xu F, Shiigi H, Wang W, Chen Z. Highly Efficient Dual-Color Luminophores for Sensitive and Selective Detection of Diclazepam Based on MOF/COF Bi-Mesoporous Composites. ACS Sens 2023. [PMID: 37363936 DOI: 10.1021/acssensors.3c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Currently, studies on electrochemiluminescence (ECL) mainly focused on the single emission of luminophores while those on multi-color ECL were rarely reported. Here, a bi-mesoporous composite of the metal-organic framework (MOF)/covalent-organic framework (COF) with strong and stable dual-color ECL was prepared to construct a novel ECL sensor for sensitive detecting targets. A PTCA-COF with excellent ECL performance was loaded with a great amount of another ECL emitter Cu3(HHTP)2. Remarkably, the integrated composite had both ECL properties of PTCA-COF at 520 nm and Cu3(HHTP)2 at 600 nm wavelengths. Furthermore, Cu3(HHTP)2 with good electron transfer ability can greatly enhance the electrical conductivity and promote electrochemical activation. Thus, the simultaneous enhanced two-color ECL intensity and the catalytic properties of the conductive MOF exerted a dual enhancement effect on the ECL signal of the composite. Significantly, diclazepam can not only be adsorbed well on the multi-stage porous structure MOF/COF composite by π-π interactions but also selectively quench the ECL signal of the PTCA-COF, realizing the sensitive detection. The ECL sensor showed a wide detection range from 1.0 × 10-13 to 1.0 × 10-8 g/L, and the limit of detection (LOD) was as low as 2.6 × 10-14 g/L (S/N = 3). The proposed ECL sensor preparation method was simple and sensitive, providing a new perspective for the potential application of multi-color ECL in the sensing field.
Collapse
Affiliation(s)
- Xiaomei An
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| | - Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi 214431, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, Naka Ku, 1-2 Gakuen, Sakai, Osaka 5998570, Japan
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou 213164, China
| |
Collapse
|
204
|
Tachimoto K, Ohata T, Takeno KJ, Nomoto A, Watanabe T, Hirosawa I, Makiura R. Assembling Triphenylene-Based Metal-Organic Framework Nanosheets at the Air/Liquid Interface: Modification by Tuning the Spread Solution Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37326601 DOI: 10.1021/acs.langmuir.2c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)─crystalline coordination polymers─with unique characteristics such as structural designability accompanied by tunable electronic properties and intrinsic uniform nanopores have become the platform for applications in diverse scientific areas ranging from nanotechnology to energy/environmental sciences. To utilize the superior features of MOF in potential applications, the fabrication and integration of thin films are of importance and have been actively sought. Especially, downsized MOFs into nanosheets can act as ultimately thin functional components in nanodevices and potentially display unique chemical/physical properties rarely seen in bulk MOFs. Assembling nanosheets by aligning amphiphilic molecules at the air/liquid interface has been known as the Langmuir technique. By utilizing the air/liquid interface as a reaction field between metal ions and organic ligands, MOFs are readily formed into the nanosheet state. The expected features in MOF nanosheets including electrical conduction largely depend on the nanosheet characteristics such as lateral size, thickness, morphology, crystallinity, and orientation. However, their control has not been achieved as yet. Here, we demonstrate how changing the concentration of a ligand spread solution can modify the assembly of MOF nanosheets, composed of 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and Ni2+ ions (HITP-Ni-NS), at the air/liquid interface. A systematic increase in the concentration of the ligand spread solution leads to the enlargement of both the lateral size and the thickness of the nanosheets while retaining their perfect alignment and preferred orientation. On the other hand, at much higher concentrations, we find that unreacted ligand molecules are included in HITP-Ni-NS, introducing disorder in HITP-Ni-NS. These findings can develop further sophisticated control of MOF nanosheet features, accelerating fundamental and applied studies on MOFs.
Collapse
Affiliation(s)
- Kazuaki Tachimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Takashi Ohata
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Kanokwan Jumtee Takeno
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ichiro Hirosawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Rie Makiura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| |
Collapse
|
205
|
Xie S, Zhou Z, Zhang X, Fransaer J. Cathodic deposition of MOF films: mechanism and applications. Chem Soc Rev 2023. [PMID: 37309247 DOI: 10.1039/d3cs00131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic framework (MOF) thin films could be used for ion/molecular sieving, sensing, catalysis, and energy storage, but thus far no large-scale applications are known. One of the reasons is the lack of convenient and controllable fabrication methods. This work reviews the cathodic deposition of MOF films, which has advantages (e.g., simple operations, mild conditions, and controllable MOF film thickness/morphology) over other reported techniques. Accordingly, we discuss the mechanism of the cathodic deposition of MOF films which consists of the electrochemically triggered deprotonation of organic linkers and the formation of inorganic building blocks. Thereafter, the main applications of cathodically deposited MOF films are introduced with the aim of showing this technique's wide-ranging applications. Finally, we give the remaining issues and outlooks of the cathodic deposition of MOF films to drive its future development.
Collapse
Affiliation(s)
- Sijie Xie
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium.
| | - Zhenyu Zhou
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium.
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, P. R. China.
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium.
| |
Collapse
|
206
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
207
|
Wang D, Du LH, Li L, Wei YM, Wang T, Cheng J, Du B, Jia Y, Yu BY. Zn(II)-Based Mixed-Ligand-Bearing Coordination Polymers as Multi-Responsive Fluorescent Sensors for Detecting Dichromate, Iodide, Nitenpyram, and Imidacloprid. Polymers (Basel) 2023; 15:polym15112570. [PMID: 37299368 DOI: 10.3390/polym15112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Coordination polymers (CPs) are organo-inorganic porous materials consisting of metal ions or clusters and organic linkers. These compounds have attracted attention for use in the fluorescence detection of pollutants. Here, two Zn-based mixed-ligand-bearing CPs, [Zn2(DIN)2(HBTC2-)2] (CP-1) and [Zn(DIN)(HBTC2-)]·ACN·H2O (CP-2) (DIN = 1,4-di(imidazole-1-yl)naphthalene, H3BTC = 1,3,5-benzenetricarboxylic acid, and ACN = acetonitrile), were synthesized under solvothermal conditions. CP-1 and CP-2 were characterized by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and powder X-ray diffraction analysis. Solid-state fluorescence analysis revealed an emission peak at 350 nm upon excitation at 225 and 290 nm. Fluorescence sensing tests showed that CP-1 was highly efficient, sensitive, and selective for detecting Cr2O72- at 225 and 290 nm, whereas I- was only detected well at an excitation of 225 nm. CP-1 detected pesticides differently at excitation wavelengths of 225 and 290 nm; the highest quenching rates were for nitenpyram at 225 nm and imidacloprid at 290 nm. The quenching process may occur via the inner filter effect and fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Huan Du
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Long Li
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Yu-Meng Wei
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Tao Wang
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Cheng
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Bin Du
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
208
|
Lin YC, Aulia S, Yeh MH, Hsiao LY, Tarigan AM, Ho KC. Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2023; 648:193-202. [PMID: 37301144 DOI: 10.1016/j.jcis.2023.05.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
High energy resource demand has led to the rapid development of hydrogen as a clean fuel through electrolytic water splitting. The exploration of high-performance and cost-effective electrocatalysts for water splitting is a challenging task to obtain renewable and clean energy. However, the sluggish kinetics of oxygen evolution reaction (OER) greatly hindered its application. Herein, a novel oxygen plasma-treated graphene quantum dots embedded Ni-Fe Prussian blue analogue (O-GQD-NiFe PBA) is proposed as a highly active electrocatalysts for OER. Furthermore, the defect induced by GQD can provide an abundant lattice mismatch in the matrix of NiFe PBA, which further facilitates faster electron transport and kinetic performance. After optimization, the as-assembled O-GQD-NiFe PBA exhibits excellent electrocatalytic performance towards OER with a low overpotential of 259 mV for reaching a current density of 10 mA cm-2 and impressive long-term stability for 100 h in an alkaline solution. This work broadens the scope of metal-organic frameworks (MOF) and high-functioning carbon composite as an active material for energy conversion systems.
Collapse
Affiliation(s)
- Yin-Chen Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sofiannisa Aulia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Li-Yin Hsiao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Angelina Melanita Tarigan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
209
|
Han S, Li L, Ji C, Liu X, Wang GE, Xu G, Sun Z, Luo J. Visible-Photoactive Perovskite Ferroelectric-Driven Self-Powered Gas Detection. J Am Chem Soc 2023. [PMID: 37263965 DOI: 10.1021/jacs.3c03719] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemiresistive sensing has been regarded as the key monitoring technique, while classic oxide gas detection devices always need an external power supply. In contrast, the bulk photovoltage of photoferroelectric materials could provide a controllable power source, holding a bright future in self-powered gas sensing. Herein, we present a new photoferroelectric ([n-pentylaminium]2[ethylammonium]2Pb3I10, 1), which possesses large spontaneous polarization (∼4.8 μC/cm2) and prominent visible-photoactive behaviors. Emphatically, driven by the bulk photovoltaic effect, 1 enables excellent self-powered sensing responses for NO2 at room temperature, including extremely fast response/recovery speeds (0.15/0.16 min) and high sensitivity (0.03 ppm-1). Such figures of merit are superior to those of typical inorganic systems (e.g., ZnO) using an external power supply. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements confirm the great selectivity of 1 for NO2. As far as we know, this is the first realization of ferroelectricity-driven self-powered gas detection. Our work sheds light on the self-powered sensing systems and provides a promising way to broaden the functionalities of photoferroelectrics.
Collapse
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
210
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
211
|
Li X, Anderson R, Fry HC, Pratik SM, Xu W, Goswami S, Allen TG, Yu J, Rajasree SS, Cramer CJ, Rumbles G, Gómez-Gualdrón DA, Deria P. Metal-Carbodithioate-Based 3D Semiconducting Metal-Organic Framework: Porous Optoelectronic Material for Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37256818 DOI: 10.1021/acsami.3c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Solar energy conversion requires the working compositions to generate photoinduced charges with high potential and the ability to deliver charges to the catalytic sites and/or external electrode. These two properties are typically at odds with each other and call for new molecular materials with sufficient conjugation to improve charge conductivity but not as much conjugation as to overly compromise the optical band gap. In this work, we developed a semiconducting metal-organic framework (MOF) prepared explicitly through metal-carbodithioate "(-CS2)nM" linkage chemistry, entailing augmented metal-linker electronic communication. The stronger ligand field and higher covalent character of metal-carbodithioate linkages─when combined with spirofluorene-derived organic struts and nickel(II) ion-based nodes─provided a stable, semiconducting 3D-porous MOF, Spiro-CS2Ni. This MOF lacks long-range ordering and is defined by a flexible structure with non-aggregated building units, as suggested by reverse Monte Carlo simulations of the pair distribution function obtained from total scattering experiments. The solvent-removed "closed pore" material recorded a Brunauer-Emmett-Teller area of ∼400 m2/g, where the "open pore" form possesses 90 wt % solvent-accessible porosity. Electrochemical measurements suggest that Spiro-CS2Ni possesses a band gap of 1.57 eV (σ = 10-7 S/cm at -1.3 V bias potential), which can be further improved by manipulating the d-electron configuration through an axial coordination (ligand/substrate), the latter of which indicates usefulness as an electrocatalyst and/or a photoelectrocatalyst (upon substrate binding). Transient-absorption spectroscopy reveals a long-lived photo-generated charge-transfer state (τCR = 6.5 μs) capable of chemical transformation under a biased voltage. Spiro-CS2Ni can endure a compelling range of pH (1-12 for weeks) and hours of electrochemical and photoelectrochemical conditions in the presence of water and organic acids. We believe this work provides crucial design principles for low-density, porous, light-energy-conversion materials.
Collapse
Affiliation(s)
- Xinlin Li
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Ryther Anderson
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1601 Illinois Street, Golden, Colorado 80401, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Saied Md Pratik
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Taylor G Allen
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Jierui Yu
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Christopher J Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Garry Rumbles
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable and Sustainable Energy Institute, Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Diego A Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1601 Illinois Street, Golden, Colorado 80401, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
212
|
Zheng A, Yin K, Pan R, Zhu M, Xiong Y, Sun L. Research Progress on Metal-Organic Frameworks by Advanced Transmission Electron Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111742. [PMID: 37299645 DOI: 10.3390/nano13111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs), composed of metal nodes and inorganic linkers, are promising for a wide range of applications due to their unique periodic frameworks. Understanding structure-activity relationships can facilitate the development of new MOFs. Transmission electron microscopy (TEM) is a powerful technique to characterize the microstructures of MOFs at the atomic scale. In addition, it is possible to directly visualize the microstructural evolution of MOFs in real time under working conditions via in situ TEM setups. Although MOFs are sensitive to high-energy electron beams, much progress has been made due to the development of advanced TEM. In this review, we first introduce the main damage mechanisms for MOFs under electron-beam irradiation and two strategies to minimize these damages: low-dose TEM and cryo-TEM. Then we discuss three typical techniques to analyze the microstructure of MOFs, including three-dimensional electron diffraction, imaging using direct-detection electron-counting cameras, and iDPC-STEM. Groundbreaking milestones and research advances of MOFs structures obtained with these techniques are highlighted. In situ TEM studies are reviewed to provide insights into the dynamics of MOFs induced by various stimuli. Additionally, perspectives are analyzed for promising TEM techniques in the research of MOFs' structures.
Collapse
Affiliation(s)
- Anqi Zheng
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Rui Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Mingyun Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
213
|
Sindhu P, Ananthram KS, Jain A, Tarafder K, Ballav N. Insulator-to-metal-like transition in thin films of a biological metal-organic framework. Nat Commun 2023; 14:2857. [PMID: 37208325 DOI: 10.1038/s41467-023-38434-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Temperature-induced insulator-to-metal transitions (IMTs) where the electrical resistivity can be altered by over tens of orders of magnitude are most often accompanied by structural phase transition in the system. Here, we demonstrate an insulator-to-metal-like transition (IMLT) at 333 K in thin films of a biological metal-organic framework (bio-MOF) which was generated upon an extended coordination of the cystine (dimer of amino acid cysteine) ligand with cupric ion (spin-1/2 system) - without appreciable change in the structure. Bio-MOFs are crystalline porous solids and a subclass of conventional MOFs where physiological functionalities of bio-molecular ligands along with the structural diversity can primarily be utilized for various biomedical applications. MOFs are usually electrical insulators (so as our expectation with bio-MOFs) and can be bestowed with reasonable electrical conductivity by the design. This discovery of electronically driven IMLT opens new opportunities for bio-MOFs, to emerge as strongly correlated reticular materials with thin film device functionalities.
Collapse
Affiliation(s)
- Pooja Sindhu
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - K S Ananthram
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Anil Jain
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Kartick Tarafder
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|
214
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
215
|
Ciria-Ramos I, Tejedor I, Caparros L, Doñagueda B, Lacruz O, Urtizberea A, Roubeau O, Gascón I, Haro M. Evaluation of triphenylene-based MOF ultrathin films for lithium batteries. Dalton Trans 2023; 52:7196-7207. [PMID: 37162287 DOI: 10.1039/d3dt00876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal-organic frameworks (MOFs) are attractive candidates to meet the requirement of next-generation batteries, as functional materials with a high surface area, well-defined metal centers, and organic linkers through coordination bonds. Due to their great tunability, MOFs have been investigated as electrodes or electrolytes in lithium batteries and more recently as protective layers in anode-less batteries. Here, we synthesize a Ni3(HHTP)2 MOF directly at the air-liquid interface of a Langmuir trough and grow the electrode on a conductive substrate by the transference process. The characterization during Langmuir film formation shows that the addition of crystallization time during the compression process enhances the formation of 2D crystalline domains, as observed by in situ grazing-incidence X-ray diffraction. Next, the transferred Ni3(HHTP)2 ultrathin films were studied as working electrodes in Li batteries in a half-cell configuration and compared with bare copper. The results show that the Ni3(HHTP)2 film protects the Cu collector from oxidation, and the negative charge accumulates in the organic ligand during the lithiation process while NiII oxidizes to NiIII, unlike other triphenylene-based MOFs with CuII or CoII metal nodes. The galvanostatic plating-stripping cycles of the batteries show that the inclusion of the crystallization time improves the coulombic efficiency, especially significantly in the first cycles when the SEI is formed. This work shows the Langmuir technique as a useful tool to test MOF based materials for batteries with the advantages of using a low amount of raw materials and without the need to introduce additives (binder and electron conductor) in the electrodes. The electrochemical study of this type of electrode allows a first screening to synthesize electrodes based on MOFs and can be a tool for the preparation of protective coatings under optimized conditions.
Collapse
Affiliation(s)
- Isabel Ciria-Ramos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Inés Tejedor
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Lucía Caparros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Beatriz Doñagueda
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Oscar Lacruz
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Ainhoa Urtizberea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Ciencia y Tecnologia de Materiales y Fluidos, EINA, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | - Ignacio Gascón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Marta Haro
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| |
Collapse
|
216
|
Debela TT, Yang MC, Hendon CH. Ligand-Mediated Hydrogenic Defects in Two-Dimensional Electrically Conductive Metal-Organic Frameworks. J Am Chem Soc 2023; 145:11387-11391. [PMID: 37141540 DOI: 10.1021/jacs.3c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Compared to dense analogues, high-surface-area metals offer several key advantages in electrocatalysis and energy storage. Of the porous manifolds, metal-organic frameworks (MOFs) boast the highest known surface area of any material class, and a subset of known frameworks also conduct electricity. The premier conductive scaffolds, Ni3(HITP)2 and Ni3(HIB)2, are both predicted to be metallic, but experiments have yet to measure bulk metallicity. In this paper, we explore the thermodynamics of hydrogen vacancies and interstitials and demonstrate that interstitial hydrogen is a plausible and prevalent defect in the conductive MOF family. The existence of this defect is predicted to render both Ni3(HITP)2 and Ni3(HIB)2 as bulk semiconductors, not metals, and emphasizes that hydrogenic defects play a critical role in determining the bulk properties of conductive MOFs.
Collapse
Affiliation(s)
- Tekalign T Debela
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Min Chieh Yang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
217
|
Pramanik S, Jana S, Das K, Pathak S, Ortega-Castro J, Frontera A, Mukhopadhyay S. Crystallographic Aspects, Photophysical Properties, and Theoretical Survey of Tetrachlorometallates of Group 12 Metals [Zn(II), Cd(II), and Hg(II)] with a Triply Protonated 2,4,6-Tris(2-pyridyl)-1,3,5-triazine Ligand. Inorg Chem 2023; 62:7220-7234. [PMID: 37130352 DOI: 10.1021/acs.inorgchem.2c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zn(II) (complex 1), Cd(II) (complex 2), and Hg(II) (complex 3) complexes have been synthesized using a triply protonated tptz (H3tptz3+) ligand and characterized mainly by single-crystal X-ray analysis. The general formula of all of the complexes is (H3tptz)3+·Cl-·[MCl4]2-·nH2O (where n = 1, 1.5, and 1.5 for complexes 1, 2, and 3, respectively). The crystallographic analysis reveals that the anion···π, anion···π+, and several hydrogen bonding interactions play a fundamental role in the stabilization of the self-assembled architectures that in turn help to enhance the dimensionality of all of the complexes. In addition, Hirshfeld surfaces and fingerprint plots have been deployed here to visualize the similarities and differences in hydrogen bonding interactions in 1-3, which are very important in forming supramolecular architectures. A density functional theory (DFT) study has been used to analyze and rationalize the supramolecular interactions by using molecular electrostatic potential (MEP) surfaces and combined QTAIM/NCI plots. Then, the device parameters for the complexes (1-3) have been thoroughly investigated by fabricating a Schottky barrier diode (SBD) on an indium tin oxide (ITO) substrate. It has been observed that the device made from complex 2 is superior to those from complexes 1 and 3, which has been explained in terms of band gaps, differences in the electronegativities of the central metal atoms, and the better supramolecular interactions involved. Finally, theoretical calculations have also been performed to analyze the experimental differences in band gaps as well as electrical conductivities observed for all of the complexes. Henceforth, the present work combined supramolecular, photophysical, and theoretical studies regarding group 12 metals in a single frame.
Collapse
Affiliation(s)
- Samit Pramanik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sumanta Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Kinsuk Das
- Department of Chemistry, Chandernagore College, Hooghly, West Bengal 712136, India
| | - Sudipta Pathak
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal 721657, India
| | - Joaquin Ortega-Castro
- Department of Chemistry, Universitat de les IllesBalears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les IllesBalears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | | |
Collapse
|
218
|
Song K, Lin J, Song X, Yang B, Zhu J, Zang Y, Zhu D. Formation of covalent metal-carbon contacts assisted by Ag + for single molecule junctions. Chem Commun (Camb) 2023; 59:6207-6210. [PMID: 37129042 DOI: 10.1039/d3cc01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Covalent metal-carbon (M-C) contacts have long been pursued for constructing robust and high-performance molecular devices. Existing methods for creating such contacts usually rely on direct chemical reactions between metal electrodes and designed molecular ligands. An inherent limitation of this approach is that the commonly used metal electrodes (e.g., Au) are chemically inert, making it generally difficult to form covalent M-C bonds with molecules. Intriguingly, employing the scanning tunneling microscope-break junction technique, we find that simply adding Ag+ ions to molecular solution enables direct covalent bonding of terminal alkynes to Au electrodes. The bonding process is driven by Ag+ ion coupled in situ reactions and efficiently creates covalent Au/Ag-C interfaces in single molecule junctions. This metal ion assisted method avoids the need for complex synthesis of molecular ligands and works robustly for a wide range of alkyne-terminated molecules, offering a facile and versatile approach for precisely tuning the metal-molecule interface.
Collapse
Affiliation(s)
- Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuwei Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
219
|
Zhang JL, Gao S, Yang Y, Liang WB, Lu ML, Zhang XY, Xiao HX, Li Y, Yuan R, Xiao DR. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application. Biosens Bioelectron 2023; 227:115157. [PMID: 36841115 DOI: 10.1016/j.bios.2023.115157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Improving the electrochemiluminescence (ECL) performance of luminophores is an ongoing research hotspot in the ECL realm. Herein, a high-performance metal-organic framework (MOF)-based ECL material (Ru@Ni3(HITP)2, HITP = 2,3,6,7,10,11-hexaiminotriphenylene) with conductivity- and confinement-enhanced ECL was successfully constructed by using conductive MOF Ni3(HITP)2 as the carrier to graft Ru(bpydc)34- (H2bpydc = 2,2'-bipyridine-4,4'-dicarboxylic acid) into the channels of Ni3(HITP)2. Compared to Ru@Cu3(HITP)2 and Ru@Co3(HITP)2 with relatively low conductivity, the ECL intensity of Ru@Ni3(HITP)2 was prominently increased about 6.76 times and 18.8 times, respectively, which demonstrated that the increase in conductivity induced the ECL enhancement of the MOF-based ECL materials. What's more, the hydrophobic and porous Ni3(HITP)2 can not only effectively enrich the lipophilic tripropylamine (TPrA) coreactants in its channels to enhance the electrochemical oxidation efficiency of TPrA, but also provide a conductive reaction micro-environment to boost the ECL reaction between Ru(bpydc)33- intermediates and TPrA• in confined spaces, thus realizing a remarkable confinement-enhanced ECL. Considering the excellent ECL performance of Ru@Ni3(HITP)2, an ultrasensitive ECL biosensor was prepared based on the Ru@Ni3(HITP)2 ECL indicator combining an exonuclease I-aided target cycling amplification strategy for thrombin determination. The constructed ECL biosensor showcased a wide linear range from 1 fM to 1 nM with a low detection limit of 0.62 fM. Overall, the conductivity- and confinement-enhanced ECL based on Ru@Ni3(HITP)2 provided effective and feasible strategies to enhance ECL performance, which paved a promising avenue for exploring high-efficient MOF-based ECL materials and thus broadened the application scope of conductive MOFs.
Collapse
Affiliation(s)
- Jia-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shuzhen Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Mei-Ling Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xin-Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Han-Xiao Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
220
|
Zhong W, Zhang T, Chen D, Su N, Miao G, Guo J, Chen L, Wang Z, Wang W. Synthesizing Cr-Based Two-Dimensional Conjugated Metal-Organic Framework Through On-Surface Substitution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207877. [PMID: 36843315 DOI: 10.1002/smll.202207877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Indexed: 05/25/2023]
Abstract
A single-layer Cr3 (HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) conjugated metal-organic framework (c-MOF) is synthesized under ultrahigh vacuum conditions by substituting Cr for Ni in Ni3 (HITP)2 template. As revealed by low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy, while codeposition of Cr atoms and 2,3,6,7,10,11-hexaaminotriphenylene precursors produces irregular branches, crystalline Cr3 (HITP)2 frameworks are obtained by depositing Cr atoms to the Ni3 (HITP)2 templates. The density functional theory calculations reveal that the binding energy between Cr and HITP ligands is much higher than that for Ni, which hampers the growth of crystalline Cr3 (HITP)2 frameworks through direct coordination assembly but makes the substitution reaction energetically favorable. This work demonstrates a new strategy to prepare high-quality early-transition-metal-based c-MOFs under ultrahigh vacuum conditions.
Collapse
Affiliation(s)
- Weiliang Zhong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tingfeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Nuoyu Su
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guangyao Miao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Songshan Lake Material Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhengfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weihua Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Songshan Lake Material Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
221
|
Xu Y, Yu Z, Zhang Q, Luo F. Sulfonic-Pendent Vinylene-Linked Covalent Organic Frameworks Enabling Benchmark Potential in Advanced Energy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300408. [PMID: 36859764 PMCID: PMC10161031 DOI: 10.1002/advs.202300408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Both proton exchange membrane fuel cells and uranium-based nuclear techniques represent two green and advanced energies. However, both of them still face some intractable scientific and industrial problems. For the former, established proton-conduction materials always suffer one or another defect such as low proton conductivity, high activation energy, bad durability, or just small-scale product; while for the later, there still lacks available adsorbent to selectively recover of UO2 2+ from concentrated nitric acid (>1 M) during the spent fuel reprocessing due to the deactivation of the adsorption site or the decomposition of adsorbent under such rigorous conditions. It is found that the above two issues can be well solved by the construction of sulfonic-pendent vinylene-linked covalent organic frameworks (COFs), since these COFs contain abundant sulfonic units for both intrinsic proton conduction and UO2 2+ capture through strong coordination fixation and vinylene linkage that enhances the stability up to 12 M nitric acid (one of the best materials surviving in 12 M HNO3 ).
Collapse
Affiliation(s)
- Ying Xu
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhiwu Yu
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei, Anhui, 230031, China
| | - Qingyun Zhang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Feng Luo
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
222
|
Han S, Wang GE, Xu G, Luo J, Sun Z. Ferroelectric perovskite-type films with robust in-plane polarization toward efficient room-temperature chemiresistive sensing. FUNDAMENTAL RESEARCH 2023; 3:362-368. [PMID: 38933761 PMCID: PMC11197688 DOI: 10.1016/j.fmre.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022] Open
Abstract
Ferroelectric materials have become key components for versatile device applications, and their thin films are highly desirable for integrating the miniaturized devices. Despite substantial endeavors, it is still challenging to achieve effective chemiresistive sensing in the ferroelectric films. Here, for the first time, we have exploited ferroelectric thin films of 2D hybrid perovskite BA2EA2Pb3I10 (1), to fabricate the high-performance chemiresistor gas sensors. The spin-coated films of 1 exhibit high orientation and good crystallinity, thus preserving robust in-plane spontaneous polarization (P s ∼2.0 μC/cm2) and low electric coercivity. Notably, such ferroelectric film-based sensors after electric poling enable the dramatic room-temperature sensing responses to NO2 gas, including high sensitivity (0.05 ppm-1), extremely low detection limit (1 ppm) and fast responding rate (∼6 s). Besides, the chemiresistive responses are remarkably enhanced by threefold (up to 320%) through electric poling. It is proposed that this behavior closely involves with strong in-plane ferroelectric polarization of 1 that generates a built-in electric field inhibiting the recombination of charge carriers. As far as we know, this ferroelectric-based film chemiresisor is one of the best room-temperature sensors for NO2 gas among all the existing candidate materials. These findings highlight great potential of ferroelectrics toward effective chemiresistive performances, and also establish a bright direction to explore their future device applications.
Collapse
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, No.155 Yangqiao West Road, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100039, China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, No.155 Yangqiao West Road, Fuzhou 350002, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, No.155 Yangqiao West Road, Fuzhou 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, No.155 Yangqiao West Road, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100039, China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, No.155 Yangqiao West Road, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100039, China
| |
Collapse
|
223
|
He XL, Shao B, Huang RK, Dong M, Tong YQ, Luo Y, Meng T, Yang FJ, Zhang Z, Huang J. A Mixed Protonic-Electronic Conductor Base on the Host-Guest Architecture of 2D Metal-Organic Layers and Inorganic Layers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205944. [PMID: 37076939 DOI: 10.1002/advs.202205944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The key to designing and fabricating highly efficient mixed protonic-electronic conductors materials (MPECs) is to integrate the mixed conductive active sites into a single structure, to break through the shortcomings of traditional physical blending. Herein, based on the host-guest interaction, an MPEC is consisted of 2D metal-organic layers and hydrogen-bonded inorganic layers by the assembly methods of layered intercalation. Noticeably, the 2D intercalated materials (≈1.3 nm) exhibit the proton conductivity and electron conductivity, which are 2.02 × 10-5 and 3.84 × 10-4 S cm-1 at 100 °C and 99% relative humidity, much higher than these of pure 2D metal-organic layers (>>1.0 × 10-10 and 2.01×10-8 S cm-1 ), respectively. Furthermore, combining accurate structural information and theoretical calculations reveals that the inserted hydrogen-bonded inorganic layers provide the proton source and a networks of hydrogen-bonds leading to efficient proton transport, meanwhile reducing the bandgap of hybrid architecture and increasing the band electron delocalization of the metal-organic layer to greatly elevate the electron transport of intrinsic 2D metal-organic frameworks.
Collapse
Affiliation(s)
- Xing-Lu He
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Bing Shao
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Rui-Kang Huang
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Min Dong
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yan Luo
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Ting Meng
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Fu-Jie Yang
- College Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510275, P. R. China
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jin Huang
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| |
Collapse
|
224
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
225
|
Hutskalov I, Linden A, Čorić I. Directional Ionic Bonds. J Am Chem Soc 2023; 145:8291-8298. [PMID: 37027000 PMCID: PMC10119990 DOI: 10.1021/jacs.3c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Covalent and ionic bonds represent two fundamental forms of bonding between atoms. In contrast to bonds with significant covalent character, ionic bonds are of limited use for the spatial structuring of matter because of the lack of directionality of the electric field around simple ions. We describe a predictable directional orientation of ionic bonds that contain concave nonpolar shields around the charged sites. Such directional ionic bonds offer an alternative to hydrogen bonds and other directional noncovalent interactions for the structuring of organic molecules and materials.
Collapse
Affiliation(s)
- Illia Hutskalov
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
226
|
Wang L, Sarkar A, Grocke GL, Laorenza DW, Cheng B, Ritchhart A, Filatov AS, Patel SN, Gagliardi L, Anderson JS. Broad Electronic Modulation of Two-Dimensional Metal-Organic Frameworks over Four Distinct Redox States. J Am Chem Soc 2023. [PMID: 37018716 DOI: 10.1021/jacs.3c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Two-dimensional (2D) inorganic materials have emerged as exciting platforms for (opto)electronic, thermoelectric, magnetic, and energy storage applications. However, electronic redox tuning of these materials can be difficult. Instead, 2D metal-organic frameworks (MOFs) offer the possibility of electronic tuning through stoichiometric redox changes, with several examples featuring one to two redox events per formula unit. Here, we demonstrate that this principle can be extended over a far greater span with the isolation of four discrete redox states in the 2D MOFs LixFe3(THT)2 (x = 0-3, THT = triphenylenehexathiol). This redox modulation results in 10,000-fold greater conductivity, p- to n-type carrier switching, and modulation of antiferromagnetic coupling. Physical characterization suggests that changes in carrier density drive these trends with relatively constant charge transport activation energies and mobilities. This series illustrates that 2D MOFs are uniquely redox flexible, making them an ideal materials platform for tunable and switchable applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arup Sarkar
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel William Laorenza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Baorui Cheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew Ritchhart
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
227
|
Mariella Babu A, Varghese A. Electrochemical Deposition for Metal Organic Frameworks: Advanced Energy, Catalysis, Sensing and Separation Applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
228
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
229
|
Liu D, Yang X, Chen P, Zhang X, Chen G, Guo Q, Hou H, Li Y. Rational Design of PDI-Based Linear Conjugated Polymers for Highly Effective and Long-Term Photocatalytic Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300655. [PMID: 37000924 DOI: 10.1002/adma.202300655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Constructed through relatively weak noncovalent forces, the stability of organic supramolecular materials has shown to be a challenge. Herein, the designing of a linear conjugated polymer is proposed through creating a chain polymer connected via bridging covalent bonds in one direction and retaining π-stacked aromatic columns in its orthogonal direction. Specifically, three analogs of linear conjugated polymers through tuning the aromatic core and its covalently linked moiety (bridging group) within the building block monomer are prepared. Cooperatively supported by strong π-π stacking interactions from the extended aromatic core of perylene and favorable dipole-dipole interactions from the bridging group, the as-expected high crystallinity, wide light absorption, and increased stability are successfully achieved for Oxamide-PDI (perylene diimide) through ordered molecular arrangement, and present a remarkable full-spectrum oxygen evolution rate of 5110.25 µmol g-1 h-1 without any cocatalyst. Notably, experimental and theoretical studies reveal that large internal dipole moments within Oxamide-PDI together with its ordered crystalline structure enable a robust built-in electric field for efficient charge carrier migration and separation. Moreover, density functional theory (DFT) calculations also reveal oxidative sites located at carbon atoms next to imide bonds and inner bay positions based on proven spatially separated photogenerated electrons and holes, thus resulting in highly efficient water photolysis into oxygen.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Xuan Yang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xinling Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - GaoYuan Chen
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Qiwei Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Huan Hou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Yi Li
- Future Science Research Institute, Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310013, P. R. China
| |
Collapse
|
230
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
231
|
Zhang P, Wang M, Liu Y, Fu Y, Gao M, Wang G, Wang F, Wang Z, Chen G, Yang S, Liu Y, Dong R, Yu M, Lu X, Feng X. Largely Pseudocapacitive Two-Dimensional Conjugated Metal-Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages. J Am Chem Soc 2023; 145:6247-6256. [PMID: 36893495 DOI: 10.1021/jacs.2c12684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Although two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g-1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg-1, and ultralong stability over 5000 cycles.
Collapse
Affiliation(s)
- Panpan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Mingming Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Gang Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Sheng Yang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| |
Collapse
|
232
|
Huang J, Marshall CR, Ojha K, Shen M, Golledge S, Kadota K, McKenzie J, Fabrizio K, Mitchell JB, Khaliq F, Davenport AM, LeRoy MA, Mapile AN, Debela TT, Twight LP, Hendon CH, Brozek CK. Giant Redox Entropy in the Intercalation vs Surface Chemistry of Nanocrystal Frameworks with Confined Pores. J Am Chem Soc 2023; 145:6257-6269. [PMID: 36893341 DOI: 10.1021/jacs.2c12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Redox intercalation involves coupled ion-electron motion within host materials, finding extensive application in energy storage, electrocatalysis, sensing, and optoelectronics. Monodisperse MOF nanocrystals, compared to their bulk phases, exhibit accelerated mass transport kinetics that promote redox intercalation inside nanoconfined pores. However, nanosizing MOFs significantly increases their external surface-to-volume ratios, making the intercalation redox chemistry into MOF nanocrystals difficult to understand due to the challenge of differentiating redox sites at the exterior of MOF particles from the internal nanoconfined pores. Here, we report that Fe(1,2,3-triazolate)2 possesses an intercalation-based redox process shifted ca. 1.2 V from redox at the particle surface. Such distinct chemical environments do not appear in idealized MOF crystal structures but become magnified in MOF nanoparticles. Quartz crystal microbalance and time-of-flight secondary ion mass spectrometry combined with electrochemical studies identify the existence of a distinct and highly reversible Fe2+/Fe3+ redox event occurring within the MOF interior. Systematic manipulation of experimental parameters (e.g., film thickness, electrolyte species, solvent, and reaction temperature) reveals that this feature arises from the nanoconfined (4.54 Å) pores gating the entry of charge-compensating anions. Due to the requirement for full desolvation and reorganization of electrolyte outside the MOF particle, the anion-coupled oxidation of internal Fe2+ sites involves a giant redox entropy change (i.e., 164 J K-1 mol-1). Taken together, this study establishes a microscopic picture of ion-intercalation redox chemistry in nanoconfined environments and demonstrates the synthetic possibility of tuning electrode potentials by over a volt, with profound implications for energy capture and storage technologies.
Collapse
Affiliation(s)
- Jiawei Huang
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kasinath Ojha
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Meikun Shen
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Stephen Golledge
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kentaro Kadota
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jacob McKenzie
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - James B Mitchell
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Faiqa Khaliq
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael A LeRoy
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Ashley N Mapile
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Tekalign T Debela
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Liam P Twight
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
233
|
Ohata T, Tachimoto K, Takeno KJ, Nomoto A, Watanabe T, Hirosawa I, Makiura R. Influence of the Solvent on the Assembly of Ni 3(hexaiminotriphenylene) 2 Metal–Organic Framework Nanosheets at the Air/Liquid Interface. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Takashi Ohata
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kazuaki Tachimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kanokwan Jumtee Takeno
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ichiro Hirosawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Rie Makiura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
234
|
Shieh M, Li Y, Hsu M. Structure–property relationship of dipyridyl−Cu polymers containing inorganic clusters Te/
SeFe
3
(
CO
)
9. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Minghuey Shieh
- Department of Chemistry National Taiwan Normal University Taipei Taiwan, Republic of China
| | - Yu‐Huei Li
- Department of Chemistry National Taiwan Normal University Taipei Taiwan, Republic of China
| | - Ming‐Chi Hsu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan, Republic of China
| |
Collapse
|
235
|
Okada K, Mashita R, Fukatsu A, Takahashi M. Polarization-dependent plasmonic heating in epitaxially grown multilayered metal-organic framework thin films embedded with Ag nanoparticles. NANOSCALE ADVANCES 2023; 5:1795-1801. [PMID: 36926578 PMCID: PMC10012874 DOI: 10.1039/d2na00882c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of metal-organic framework (MOF) thin films with various functionalities has paved the way for research into a wide variety of applications. MOF-oriented thin films can exhibit anisotropic functionality in the not only out-of-plane but also in-plane directions, making it possible to utilize MOF thin films for more sophisticated applications. However, the functionality of oriented MOF thin films has not been fully exploited, and finding novel anisotropic functionality in oriented MOF thin films should be cultivated. In the present study, we report the first demonstration of polarization-dependent plasmonic heating in a MOF oriented film embedded with Ag nanoparticles (AgNPs), pioneering an anisotropic optical functionality in MOF thin films. Spherical AgNPs exhibit polarization-dependent plasmon-resonance absorption (anisotropic plasmon damping) when incorporated into an anisotropic lattice of MOFs. The anisotropic plasmon resonance results in a polarization-dependent plasmonic heating behavior; the highest elevated temperature was observed in case the polarization of incident light is parallel to the crystallographic axis of the host MOF lattice favorable for the larger plasmon resonance, resulting in polarization-controlled temperature regulation. Such spatially and polarization selective plasmonic heating offered by the use of oriented MOF thin films as a host can pave the way for applications such as efficient reactivation in MOF thin film sensors, partial catalytic reactions in MOF thin film devices, and soft microrobotics in composites with thermo-responsive materials.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Risa Mashita
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| |
Collapse
|
236
|
Ezhov R, Ravari AK, Palenik M, Loomis A, Meira DM, Savikhin S, Pushkar Y. Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present. CHEMSUSCHEM 2023; 16:e202202124. [PMID: 36479638 DOI: 10.1002/cssc.202202124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Artificial photosynthesis strives to convert the energy of sunlight into sustainable, eco-friendly solar fuels. However, systems with light-driven water oxidation reaction (WOR) at pH=1 are rare. Broadly used [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) photosensitizer has a fixed +1.23 V potential which is insufficient to drive most water oxidation catalysts (WOCs) in acid, while Fe2 O3 , featuring the highly oxidizing holes, is not stable at low pH. Here, the key examples of Fe-based metal-organic framework (MOF) water oxidation photoelectrocatalysts active at pH=1 are presented. Fe-MIL-126 and Fe MOF-dcbpy structures were formed with 4,4'-biphenyl dicarboxylate (bpdc), 2,2'-bipyridine-5,5'-dicarboxylate (dcbpy) linkers and their mixtures. Presence of dcbpy linkers allows integration of metal-based catalysts via coordination to 2,2'-bipyridine fragments. Fe-based MOFs were doped with Ru-based precursors to achieve highly active MOFs bearing [Ru(bpy)(dcbpy)(H2 O)2 ]2+ WOC. Materials were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) spectroscopy, resonance Raman, X-ray absorption spectroscopy, fs optical pump-probe, electron paramagnetic resonance (EPR), diffuse reflectance and electric conductivity measurements and were modeled by band structure calculations. It is shown that under reaction conditions, FeIII and RuIII oxidation states are present, indicating rate-limiting electron transfer in MOF. Fe3 O nodes emerge as photosensitizers able to drive prolonged O2 evolution in acid. Further developments are possible via MOF's linker modification for enhanced light absorption, electrical conductivity, reduced MOF solubility in acid, Ru-WOC modification for faster WOC catalysis, or Ru-WOC substitution to 3d metal-based systems. The findings give further insight for development of light-driven water splitting systems based on Earth-abundant metals.
Collapse
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Alireza K Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Mark Palenik
- US Naval Research Laboratory, Washington, 20375, USA
| | - Alexander Loomis
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | | | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| |
Collapse
|
237
|
Wang T, Chu Y, Li X, Liu Y, Luo H, Zhou D, Deng F, Song X, Lu G, Yu J. Zeolites as a Class of Semiconductors for High-Performance Electrically Transduced Sensing. J Am Chem Soc 2023; 145:5342-5352. [PMID: 36812430 DOI: 10.1021/jacs.2c13160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Zeolites are widely used as catalysts and adsorbents in the chemical industry, but their potential for electronic devices has been stunted to date, as they are commonly recognized as electronic insulators. Here, we have for the first time demonstrated that Na-type ZSM-5 zeolites are ultrawide-direct-band-gap semiconductors based on optical spectroscopy, variable-temperature current-voltage characteristics, and photoelectric effect as well as electronic structure theoretical calculations and further unraveled the band-like charge transport mechanism in electrically conductive zeolites. The increase in charge-compensating Na+ cations in Na-ZSM-5 decreases the band gap and affects its density of states, shifting the Fermi level close to the conduction band. Remarkably, the semiconducting Na-ZSM-5 zeolites have been first applied for constructing electrically transduced sensors that can sense trace-level (77 ppb) ammonia with unprecedentedly high sensitivity, negligible cross-sensitivity, and high stability under moisture ambient conditions compared with conventional semiconducting materials and conductive metal-organic frameworks (MOFs). The charge density difference shows that the massive electron transfer between NH3 molecules and Na+ cations ascribed to Lewis acid sites enables electrically transduced chemical sensing. This work opens a new era of zeolites in applications of sensing, optics, and electronics.
Collapse
Affiliation(s)
- Tianshuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China.,International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yinghao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Hao Luo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Donglei Zhou
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Geyu Lu
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China.,International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
238
|
Zhao J, Zhang T, Ren J, Zhao Z, Su X, Chen W, Chen L. A tribenzocoronene-based 2D conductive metal-organic framework for efficient energy storage. Chem Commun (Camb) 2023; 59:2978-2981. [PMID: 36806833 DOI: 10.1039/d2cc07081b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We have developed a new 2D c-MOF (Cu-TBC) via coordination polymerization of a highly conjugated tribenzocoronene-type organic ligand (6OH-TBC) and Cu2+, which exhibits excellent stability and performance as the electrode for a supercapacitor.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Ting Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Junyu Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ziqiang Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Xi Su
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan 450001, China.
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China. .,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
239
|
Xu H, Zheng R, Du D, Ren L, Wen X, Wang X, Tian G, Shu C. Adjusting the 3d Orbital Occupation of Ti in Ti 3 C 2 MXene via Nitrogen Doping to Boost Oxygen Electrode Reactions in Li-O 2 Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206611. [PMID: 36519665 DOI: 10.1002/smll.202206611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Rationally designing efficient catalysts is the key to promote the kinetics of oxygen electrode reactions in lithium-oxygen (Li-O2 ) battery. Herein, nitrogen-doped Ti3 C2 MXene prepared via hydrothermal method (N-Ti3 C2 (H)) is studied as the efficient Li-O2 battery catalyst. The nitrogen doping increases the disorder degree of N-Ti3 C2 (H) and provides abundant active sites, which is conducive to the uniform formation and decomposition of discharge product Li2 O2 . Besides, density functional theory calculations confirm that the introduction of nitrogen can effectively modulate the 3d orbital occupation of Ti in N-Ti3 C2 (H), promote the electron exchange between Ti 3d orbital and O 2p orbital, and accelerate oxygen electrode reactions. Specifically, the N-Ti3 C2 (H) based Li-O2 battery delivers large discharge capacity (11 679.8 mAh g-1 ) and extended stability (372 cycles). This work provides a valuable strategy for regulating 3d orbital occupancy of transition metal in MXene to improve the catalytic activity of oxygen electrode reactions in Li-O2 battery.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Ruixin Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Longfei Ren
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| |
Collapse
|
240
|
Choi JY, Wang M, Check B, Stodolka M, Tayman K, Sharma S, Park J. Linker-Based Bandgap Tuning in Conductive MOF Solid Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206988. [PMID: 36642807 DOI: 10.1002/smll.202206988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Herein, the synthesis of Cu3 (HAB)x (TATHB)2-x (HAB: hexaaminobenzene, TATHB: triaminotrihydroxybenzene) is reported. Synthetic improvement of Cu3 (TATHB)2 leads to a more crystalline framework with higher electrical conductivity value than previously reported. The improved crystallinity and analogous structure between TATHB and HAB enable the synthesis of Cu3 (HAB)x (TATHB)2-x with ligand compositions precisely controlled by precursor ratios. The electrical conductivity is tuned from 4.2 × 10-8 to 2.9 × 10-5 S cm-1 by simply increasing the nitrogen content in the crystal lattice. Furthermore, computational calculation supports that the solid solution facilitates the band structure tuning. It is envisioned that the findings not only shed light on the ligand-dependent structure-property relationship but create new prospects in synthesizing multicomponent electrically conductive metal-organic frameworks (MOFs) for tailoring optoelectronic device applications.
Collapse
Affiliation(s)
- Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Minyan Wang
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Brianna Check
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Kyle Tayman
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
241
|
Zhou P, Lv J, Huang X, Lu Y, Wang G. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
242
|
Salvador FE, Barajas JO, Gao WY. Mechanochemical Access to Catechol-Derived Metal-Organic Frameworks. Inorg Chem 2023; 62:3333-3337. [PMID: 36790323 DOI: 10.1021/acs.inorgchem.2c04019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Mechanochemistry, a resurging synthetic approach, has been developed into an effective and controllable method to access a family of crystalline porous catechol-derived metal-organic frameworks (MOFs) for the first time. We have identified that the obtained crystalline phase is readily tunable by precursors and the addition of solvents or drying agents. The described mechanochemistry allows us to synthesize these materials in a highly sustainable manner. Thus, mechanochemistry is expected to pave a promising avenue to access a broader class of MOF materials, in addition to those based on the motifs of carboxylic acid or imidazole.
Collapse
Affiliation(s)
- Fillipp Edvard Salvador
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Jesus O Barajas
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Wen-Yang Gao
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
243
|
Saha S, Das KS, Pal P, Hazra S, Ghosh A, Bala S, Ghosh A, Das AK, Mondal R. A Silver-Based Integrated System Showing Mutually Inclusive Super Protonic Conductivity and Photoswitching Behavior. Inorg Chem 2023; 62:3485-3497. [PMID: 36780226 DOI: 10.1021/acs.inorgchem.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Pulak Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| |
Collapse
|
244
|
Paul J, Moniruzzaman M, Kim J. Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine. BIOSENSORS 2023; 13:308. [PMID: 36979520 PMCID: PMC10046453 DOI: 10.3390/bios13030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/01/2023]
Abstract
Dopamine (DA), an organic biomolecule that acts as both a hormone and a neurotransmitter, is essential in regulating emotions and metabolism in living organisms. The accurate determination of DA is important because it indicates early signs of serious neurological disorders. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have received considerable attention in recent years as promising porous materials with an unrivaled degree of tunability for electrochemical biosensing applications. This study adopted a solvothermal strategy for the synthesis of a conjugated microporous poly(arylene ethynylene)-4 (CMP-4) network using the Sonagashira-Hagihara cross-coupling reaction. To increase the crystallinity and electrical conductivity of the material, CMP-4 was enveloped around carbon nanotubes (CNTs), followed by iodine doping. When used as an electrochemical probe, the as-synthesized material (I2-CMP-CNT-4) exhibited excellent selectivity and sensitivity to dopamine in the phosphate-buffered solution. The detection limits of the electrochemical sensor were 1 and 1.7 μM based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
Collapse
Affiliation(s)
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
245
|
Peng Y, Sanati S, Morsali A, García H. Metal-Organic Frameworks as Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202214707. [PMID: 36468543 DOI: 10.1002/anie.202214707] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal-organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.
Collapse
Affiliation(s)
- Yong Peng
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße29a, 18059, Rostock, Germany
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Hermenegildo García
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
246
|
Sang Z, Liu J, Zhang X, Yin L, Hou F, Liang J. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. ACS NANO 2023; 17:3077-3087. [PMID: 36688450 DOI: 10.1021/acsnano.2c11974] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aqueous Zn-based batteries (ZIBs) possess huge advantages in terms of high safety, low cost, and environmental friendliness. However, the lack of suitable cathodes with high-capacity, long-cycling, and high-rate capability limits their practical application. Herein, we present a highly crystalline one-dimensional π-d conjugated conductive metal-organic framework by coordinating ultrasmall 1,2,4,5-benzenetetramine (BTA) linkers with copper ions (Cu-BTA-H), as a cathode for ZIBs. The large ratio of active sites and dual redox mechanism of Cu-BTA-H, including the one-electron-redox reaction over copper ions (via Cu2+/Cu+) and the two-electron-redox reaction over organic ligands (via C═N/C-N), effectively enhance its reversible capacity. Meanwhile, the abundant porosity, small band gap, high crystallinity, and stable coordination structure of Cu-BTA-H endow it with fast ion/electron transport and effectively hinder the dissolution of organic ligands during cycling, respectively. Consequently, Cu-BTA-H possesses a high reversible capacity of 330 mAh g-1 at 200 mA g-1 and excellent rate performance and long-cycle stability, with a high capacity of 106.1 mAh g-1 at 2.0 A g-1 after 500 cycles and a high Coulombic efficiency of ∼100%. The proposed conductive MOFs with dual redox-active sites provide an efficient approach for constructing fast, stable, and high-capacity energy storage devices.
Collapse
Affiliation(s)
- Zhiyuan Sang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, People's Republic of China
| | - Jiaxin Liu
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, People's Republic of China
| | - Xueqi Zhang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, People's Republic of China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang110016, People's Republic of China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, People's Republic of China
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, People's Republic of China
| |
Collapse
|
247
|
Qi M, Zhou Y, Lv Y, Chen W, Su X, Zhang T, Xing G, Xu G, Terasaki O, Chen L. Direct Construction of 2D Conductive Metal-Organic Frameworks from a Nonplanar Ligand: In Situ Scholl Reaction and Topological Modulation. J Am Chem Soc 2023; 145:2739-2744. [PMID: 36515969 DOI: 10.1021/jacs.2c10717] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two-dimensional conductive metal-organic frameworks (2D c-MOFs) are an emerging class of promising porous materials with high crystallinity, tunable structures, and diverse functions. However, the limited topologies and difficulties in synthesizing suitable organic linkers remain a great challenge for 2D c-MOFs synthesis and applications. Herein, two layered 2D c-MOF polymorphs with either a rhombus structure (sql-TBA-MOF) or kagome structure (kgm-TBA-MOF) were directly constructed via in situ Scholl reaction and coordination chemistry from a flexible and nonplanar tetraphenylbenzene-based ligand (8OH-TPB) in a one-pot manner. Interestingly, the kgm-TBA-MOF comprising hexagonal and triangular dual pores exhibit higher conductivities of 1.65 × 10-3 S/cm at 298 K and 3.33 × 10-2 S/cm at 353 K than that of sql-TBA-MOF (4.48 × 10-4 and 2.90 × 10-3 S/cm, respectively). Moreover, the morphology and topology can be modulated via the addition of ammonium hydroxide as modulator. The present work provides a new pathway for design, synthesis, and topological regulation of 2D c-MOFs.
Collapse
Affiliation(s)
- Meiling Qi
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yi Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yongkang Lv
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Xi Su
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Ting Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Guolong Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Gang Xu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Osamu Terasaki
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
248
|
Cao Z, Magar R, Wang Y, Barati Farimani A. MOFormer: Self-Supervised Transformer Model for Metal-Organic Framework Property Prediction. J Am Chem Soc 2023; 145:2958-2967. [PMID: 36706365 PMCID: PMC10041520 DOI: 10.1021/jacs.2c11420] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 01/28/2023]
Abstract
Metal-organic frameworks (MOFs) are materials with a high degree of porosity that can be used for many applications. However, the chemical space of MOFs is enormous due to the large variety of possible combinations of building blocks and topology. Discovering the optimal MOFs for specific applications requires an efficient and accurate search over countless potential candidates. Previous high-throughput screening methods using computational simulations like DFT can be time-consuming. Such methods also require the 3D atomic structures of MOFs, which adds one extra step when evaluating hypothetical MOFs. In this work, we propose a structure-agnostic deep learning method based on the Transformer model, named as MOFormer, for property predictions of MOFs. MOFormer takes a text string representation of MOF (MOFid) as input, thus circumventing the need of obtaining the 3D structure of a hypothetical MOF and accelerating the screening process. By comparing to other descriptors such as Stoichiometric-120 and revised autocorrelations, we demonstrate that MOFormer can achieve state-of-the-art structure-agnostic prediction accuracy on all benchmarks. Furthermore, we introduce a self-supervised learning framework that pretrains the MOFormer via maximizing the cross-correlation between its structure-agnostic representations and structure-based representations of the crystal graph convolutional neural network (CGCNN) on >400k publicly available MOF data. Benchmarks show that pretraining improves the prediction accuracy of both models on various downstream prediction tasks. Furthermore, we revealed that MOFormer can be more data-efficient on quantum-chemical property prediction than structure-based CGCNN when training data is limited. Overall, MOFormer provides a novel perspective on efficient MOF property prediction using deep learning.
Collapse
Affiliation(s)
- Zhonglin Cao
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
| | - Rishikesh Magar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
| | - Yuyang Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
| | - Amir Barati Farimani
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
- Machine
Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
249
|
Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. Chem Commun (Camb) 2023; 59:1569-1588. [PMID: 36655919 DOI: 10.1039/d2cc05522h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs, also known as porous coordination polymers or PCPs) are a novel class of crystalline porous material. The tailorable porous structure, in terms of size, geometry and function, has attracted the attention of researchers across all disciplines of materials science. One of the many exciting aspects of MOFs is that through directional and reversible coordination bonding, organic linkers (chromophores with metal-coordinating functional groups) and metal ions (and clusters) can be spatially organized in a preconceived geometry. The well-defined spatial geometry of the metals and linkers is very advantageous for optoelectronic functions (solar cells, light-emitting diodes, photocatalysts) of the materials. This feature article evaluates the scope of charge transfer (CT) interactions in MOFs, involving the organic linkers and metal ion or cluster components. Irrespective of the type (size, shape, electronic property) of organic chromophores involved, MOFs provide an insightful path to design and make the CT process efficient. The selected examples of MOFs with CT characteristics do not only illustrate the design principles but render a pathway towards understanding the complex photophysical processes and implementing those for future optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Ritesh Haldar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Hyderabad 500046, India.
| | - Adrija Ghosh
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. .,Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
250
|
Solano F, Auban-Senzier P, Olejniczak I, Barszcz B, Runka T, Alemany P, Canadell E, Avarvari N, Zigon N. Bis(Vinylenedithio)-Tetrathiafulvalene-Based Coordination Networks. Chemistry 2023; 29:e202203138. [PMID: 36349992 DOI: 10.1002/chem.202203138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Novel coordination polymers embedding electroactive moieties present a high interest in the development of porous conducting materials. While tetrathiafulvalene (TTF) based metal-organic frameworks were reported to yield through-space conducting frameworks, the use of S-enriched scaffolds remains elusive in this field. Herein is reported the employment of bis(vinylenedithio)-tetrathiafulvalene (BVDT-TTF) functionalized with pyridine coordinating moieties in coordination polymers. Its combination with various transition metals yielded four isostructural networks, whose conductivity increased upon chemical oxidation with iodine. The oxidation was confirmed in a single-crystal to single-crystal X-ray diffraction experiment for the Cd(II) coordination polymer. Raman spectroscopy measurements and DFT calculations confirmed the oxidation state of the bulk materials, and band structure calculations assessed the ground state as an electronically localized antiferromagnetic state, while the conduction occurs in a 2D manner. These results are shedding light to comprehend how to improve through-space conductivity thanks to sulfur enriched ligands.
Collapse
Affiliation(s)
- Federica Solano
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France
| | - Pascale Auban-Senzier
- Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Iwona Olejniczak
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Bolesław Barszcz
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Tomasz Runka
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznań, Poland
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física and, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Enric Canadell
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain.,Royal Academy of Sciences and Arts of Barcelona, Chemistry Section, La Rambla 115, 08002, Barcelona, Spain
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France
| | - Nicolas Zigon
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France
| |
Collapse
|