201
|
Li G, Pidko EA. The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801493] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guanna Li
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Evgeny A. Pidko
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
- ITMO University Lomonosova str. 9 St. Petersburg 191002 Russia
| |
Collapse
|
202
|
Kumar A, Song K, Liu L, Han Y, Bhan A. Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non‐oxidative Methane Dehydroaromatization on Mo/H‐ZSM‐5 Catalysts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anurag Kumar
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis MN 55455 USA
| | - Kepeng Song
- Advanced Membranes and Porous Materials CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Lingmei Liu
- Advanced Membranes and Porous Materials CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aditya Bhan
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
203
|
Kumar A, Song K, Liu L, Han Y, Bhan A. Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non‐oxidative Methane Dehydroaromatization on Mo/H‐ZSM‐5 Catalysts. Angew Chem Int Ed Engl 2018; 57:15577-15582. [DOI: 10.1002/anie.201809433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Anurag Kumar
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis MN 55455 USA
| | - Kepeng Song
- Advanced Membranes and Porous Materials CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Lingmei Liu
- Advanced Membranes and Porous Materials CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aditya Bhan
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
204
|
Chen YM, Wang LN, Chen JJ, Chen Q, Jiang LX, Zhao YX, Ding XL, He SG. Mechanistic Variants in Methane Activation Mediated by Gold(I) Supported on Silicon Oxide Clusters. Chemistry 2018; 24:17506-17512. [DOI: 10.1002/chem.201803432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yi-Ming Chen
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Department of Mathematics and Physics; North China Electric Power University; Beinong Road 2, Huilongguan Beijing 102206 P. R. China
| | - Li-Na Wang
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS; Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS; Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Qiang Chen
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS; Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS; Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS; Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Xun-Lei Ding
- Department of Mathematics and Physics; North China Electric Power University; Beinong Road 2, Huilongguan Beijing 102206 P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry, of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS; Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| |
Collapse
|
205
|
Trincado M, Vogt M. CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
New strategies for the reforming of methanol under mild conditions on the basis of heterogeneous and molecular catalysts have raised the hopes and expectations on this fuel. This contribution will focus on the progress achieved in the production of hydrogen from aqueous and anhydrous methanol with molecular and heterogeneous catalysts. The report entails thermal approaches, as well as light-triggered dehydrogenation reactions. A comparison of the efficiency and mechanistic aspects will be made and principles of catalytic pathways operating in biological systems will be also addressed.
Collapse
|
206
|
Bols ML, Hallaert SD, Snyder BER, Devos J, Plessers D, Rhoda HM, Dusselier M, Schoonheydt RA, Pierloot K, Solomon EI, Sels BF. Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C-H Bond. J Am Chem Soc 2018; 140:12021-12032. [PMID: 30169036 DOI: 10.1021/jacs.8b05877] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of single-site α-Fe in the CHA zeolite topology is demonstrated. The site is shown to be active in oxygen atom abstraction from N2O to form a highly reactive α-O, capable of methane activation at room temperature to form methanol. The methanol product can subsequently be desorbed by online steaming at 200 °C. For the intermediate steps of the reaction cycle, the evolution of the Fe active site is monitored by UV-vis-NIR and Mössbauer spectroscopy. A B3LYP-DFT model of the α-Fe site in CHA is constructed, and the ligand field transitions are calculated by CASPT2. The model is experimentally substantiated by the preferential formation of α-Fe over other Fe species, the requirement of paired framework aluminum and a MeOH/Fe ratio indicating a mononuclear active site. The simple CHA topology is shown to mitigate the heterogeneity of iron speciation found on other Fe-zeolites, with Fe2O3 being the only identifiable phase other than α-Fe formed in Fe-CHA. The α-Fe site is formed in the d6r composite building unit, which occurs frequently across synthetic and natural zeolites. Finally, through a comparison between α-Fe in Fe-CHA and Fe-*BEA, the topology's 6MR geometry is found to influence the structure, the ligand field, and consequently the spectroscopy of the α-Fe site in a predictable manner. Variations in zeolite topology can thus be used to rationally tune the active site properties.
Collapse
Affiliation(s)
- Max L Bols
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Simon D Hallaert
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Benjamin E R Snyder
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Julien Devos
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Hannah M Rhoda
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Michiel Dusselier
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States.,Photon Science, SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| |
Collapse
|
207
|
Szécsényi Á, Li G, Gascon J, Pidko EA. Unraveling reaction networks behind the catalytic oxidation of methane with H 2O 2 over a mixed-metal MIL-53(Al,Fe) MOF catalyst. Chem Sci 2018; 9:6765-6773. [PMID: 30310609 PMCID: PMC6113888 DOI: 10.1039/c8sc02376j] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Reaction paths underlying the catalytic oxidation of methane with H2O2 over an Fe containing MIL-53(Al) metal-organic framework were studied by periodic DFT calculations. Not only the activation of methane, but the full reaction network was considered, which includes the formation of the active site, the overoxidation of methane to CO2 and the decomposition of H2O2 to H2O and O2. Calculations indicate that the activation barrier for the initial activation of the Fe sites upon reaction with H2O2 is comparable to that of the subsequent C-H activation and also of the reaction steps involved in the undesirable overoxidation processes. The pronounced selectivity of the oxidation reaction over MIL-53(Al,Fe) towards the target mono-oxygenated CH3OH and CH3OOH products is attributed to the limited coordination freedom of the Fe species encapsulated in the extended octahedral [AlO6] structure-forming chains, which effectively prevents the direct overoxidation paths prior to product desorption from the active sites. Importantly, our computational analysis reveals that the active sites for the desired methane oxidation are able to much more efficiently promote the direct catalytic H2O2 decomposition reaction, rendering thus the current combination of the active site and the reactants undesirable for the prospective methane valorization process.
Collapse
Affiliation(s)
- Ágnes Szécsényi
- Inorganic Systems Engineering Group , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands . ; Tel: +31 1527 81938
- Catalysis Engineering , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , the Netherlands
| | - Guanna Li
- Inorganic Systems Engineering Group , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands . ; Tel: +31 1527 81938
- Catalysis Engineering , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , the Netherlands
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands . ; Tel: +31 1527 81938
| |
Collapse
|
208
|
Nakamura K, Okuda A, Ohta K, Matsubara H, Okumura K, Yamamoto K, Itagaki R, Suganuma S, Tsuji E, Katada N. Direct Methylation of Benzene with Methane Catalyzed by Co/MFI Zeolite. ChemCatChem 2018; 10:3806-3812. [PMID: 30546494 PMCID: PMC6282706 DOI: 10.1002/cctc.201800724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/18/2022]
Abstract
Cobalt-loaded MFI zeolite showed distinct activity for direct methylation of benzene with methane into toluene. High activity was found at around 0.6 of Co/Al molar ratio. Incorporation of carbon from methane into the methyl group of toluene was confirmed with isotope tracer experiments and mass spectroscopy. Ammonia infrared-mass spectroscopy temperature-programmed desorption, transmission electron microscopy, X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure indicated that Lewis acidic divalent (+II of oxidation state) Co species mono-atomically dispersed on the ion exchange site of MFI zeolite was the active species.
Collapse
Affiliation(s)
- Koshiro Nakamura
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Akihito Okuda
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Kiyotaka Ohta
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Hitoshi Matsubara
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Kazu Okumura
- Applied ChemistryKogakuin University2665-1Nakano-cho, Hachioji, Tokyo192-0015Japan
| | - Kana Yamamoto
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Ryosuke Itagaki
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Satoshi Suganuma
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Etsushi Tsuji
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| | - Naonobu Katada
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-cho MinamiTottori680-8552Japan
| |
Collapse
|
209
|
Szécsényi Á, Li G, Gascon J, Pidko EA. Mechanistic Complexity of Methane Oxidation with H 2O 2 by Single-Site Fe/ZSM-5 Catalyst. ACS Catal 2018; 8:7961-7972. [PMID: 30221027 PMCID: PMC6135593 DOI: 10.1021/acscatal.8b01672] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/10/2018] [Indexed: 12/28/2022]
Abstract
Periodic density functional theory (DFT) calculations were carried out to investigate the mechanism of methane oxidation with H2O2 over the defined Fe sites in Fe/ZSM-5 zeolite. The initial Fe site is modeled as a [(H2O)2-Fe(III)-(μO)2-Fe(III)-(H2O)2]2+ extraframework cluster deposited in the zeolite pore and charge-compensated by two anionic lattice sites. The activation of this cluster with H2O2 gives rise to the formation of a variety of Fe(III)-oxo and Fe(IV)-oxo complexes potentially reactive toward methane dissociation. These sites are all able to promote the first C-H bond cleavage in methane by following three possible reaction mechanisms: namely, (a) heterolytic and (b) homolytic methane dissociation as well as (c) Fenton-type reaction involving free OH radicals as the catalytic species. The C-H activation step is followed by formation of MeOH and MeOOH and regeneration of the active site. The Fenton-type path is found to proceed with the lowest activation barrier. Although the barriers for the alternative heterolytic and homolytic pathways are found to be somewhat higher, they are still quite favorable and are expected to be feasible under reaction conditions, resulting ultimately in MeOH and MeOOH products. H2O2 oxidant competes with CH4 substrate for the same sites. Since the oxidation of H2O2 to O2 and two [H+] is energetically more favorable than the C-H oxofunctionalization, the overall efficiency of the latter target process remains low.
Collapse
Affiliation(s)
- Ágnes Szécsényi
- Catalysis
Engineering Group, Chemical Engineering Department, and Inorganic Systems
Engineering Group, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Catalysis
Center, Advanced Catalytic Materials, King
Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Guanna Li
- Catalysis
Engineering Group, Chemical Engineering Department, and Inorganic Systems
Engineering Group, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jorge Gascon
- Catalysis
Center, Advanced Catalytic Materials, King
Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Evgeny A. Pidko
- Catalysis
Engineering Group, Chemical Engineering Department, and Inorganic Systems
Engineering Group, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- TheoMAT
Group, ITMO University, Lomonosova Street 9, St.
Petersburg 191002, Russia
| |
Collapse
|
210
|
Newton MA, Knorpp AJ, Pinar AB, Sushkevich VL, Palagin D, van Bokhoven JA. On the Mechanism Underlying the Direct Conversion of Methane to Methanol by Copper Hosted in Zeolites; Braiding Cu K-Edge XANES and Reactivity Studies. J Am Chem Soc 2018; 140:10090-10093. [DOI: 10.1021/jacs.8b05139] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark A. Newton
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Amy J. Knorpp
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Ana B. Pinar
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
211
|
Pellizzeri S, Barona M, Bernales V, Miró P, Liao P, Gagliardi L, Snurr RQ, Getman RB. Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butene. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
212
|
Vollmer I, Yarulina I, Kapteijn F, Gascon J. Progress in Developing a Structure‐Activity Relationship for the Direct Aromatization of Methane. ChemCatChem 2018. [DOI: 10.1002/cctc.201800880] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ina Vollmer
- Catalysis Engineering Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Irina Yarulina
- King Abdullah University of Science and TechnologyKAUST Catalysis Center, Advanced Catalytic Materials Thuwal 23955 Saudi Arabia
| | - Freek Kapteijn
- Catalysis Engineering Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Jorge Gascon
- Catalysis Engineering Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
- King Abdullah University of Science and TechnologyKAUST Catalysis Center, Advanced Catalytic Materials Thuwal 23955 Saudi Arabia
| |
Collapse
|
213
|
Le HV, Parishan S, Sagaltchik A, Ahi H, Trunschke A, Schomäcker R, Thomas A. Stepwise Methane-to-Methanol Conversion on CuO/SBA-15. Chemistry 2018; 24:12592-12599. [DOI: 10.1002/chem.201801135] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ha V. Le
- Institute of Chemistry-Functional Materials; BA2; Technische Universität Berlin; Hardenbergstrasse 40 10623 Berlin Germany
| | - Samira Parishan
- Institute of Chemistry-Technical Chemistry; TC8; Technische Universität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Anton Sagaltchik
- BasCat-UniCat BASF Joint Lab; Technische Universität Berlin; EW K 01; Hardenbergstrasse 36 10623 Berlin Germany
| | - Hamideh Ahi
- BasCat-UniCat BASF Joint Lab; Technische Universität Berlin; EW K 01; Hardenbergstrasse 36 10623 Berlin Germany
- Department of Inorganic Chemistry; Fritz Haber Institute of the Max Planck Society; Faradayweg 4-6 14195 Berlin Germany
| | - Annette Trunschke
- Department of Inorganic Chemistry; Fritz Haber Institute of the Max Planck Society; Faradayweg 4-6 14195 Berlin Germany
| | - Reinhard Schomäcker
- Institute of Chemistry-Technical Chemistry; TC8; Technische Universität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Arne Thomas
- Institute of Chemistry-Functional Materials; BA2; Technische Universität Berlin; Hardenbergstrasse 40 10623 Berlin Germany
| |
Collapse
|
214
|
Song H, Meng X, Wang ZJ, Wang Z, Chen H, Weng Y, Ichihara F, Oshikiri M, Kako T, Ye J. Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO2 Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01787] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hui Song
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xianguang Meng
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Zhou-jun Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China
| | - Zhuan Wang
- Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hailong Chen
- Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuxiang Weng
- Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fumihiko Ichihara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mitsutake Oshikiri
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tetsuya Kako
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jinhua Ye
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
215
|
Paunović V, Artusi M, Verel R, Krumeich F, Hauert R, Pérez-Ramírez J. Lanthanum vanadate catalysts for selective and stable methane oxybromination. J Catal 2018. [DOI: 10.1016/j.jcat.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
216
|
Pratt C, Tate K. Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6084-6097. [PMID: 29719145 DOI: 10.1021/acs.est.7b04711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Methane (CH4) is the second greatest contributor to anthropogenic climate change. Emissions have tripled since preindustrial times and continue to rise rapidly, given the fact that the key sources of food production, energy generation and waste management, are inexorably tied to population growth. Until recently, the pursuit of CH4 mitigation approaches has tended to align with opportunities for easy energy recovery through gas capture and flaring. Consequently, effective abatement has been largely restricted to confined high-concentration sources such as landfills and anaerobic digesters, which do not represent a major share of CH4's emission profile. However, in more recent years we have witnessed a quantum leap in the sophistication, diversity and affordability of CH4 mitigation technologies on the back of rapid advances in molecular analytical techniques, developments in material sciences and increasingly efficient engineering processes. Here, we present some of the latest concepts, designs and applications in CH4 mitigation, identifying a number of abatement synergies across multiple industries and sectors. We also propose novel ways to manipulate cutting-edge technology approaches for even more effective mitigation potential. The goal of this review is to stimulate the ongoing quest for and uptake of practicable CH4 mitigation options; supplementing established and proven approaches with immature yet potentially high-impact technologies. There has arguably never been, and if we do not act soon nor will there be, a better opportunity to combat climate change's second most significant greenhouse gas.
Collapse
Affiliation(s)
- Chris Pratt
- School of Environment and Science/Australian Rivers Institute , Griffith University , 170 Kessels Road , Nathan , Queensland 4111 , Australia
| | - Kevin Tate
- Landcare Research-Manaaki Whenua , Massey University , Riddet Road , Palmerston North 4442 , New Zealand
| |
Collapse
|
217
|
Lustemberg PG, Palomino RM, Gutiérrez RA, Grinter DC, Vorokhta M, Liu Z, Ramírez PJ, Matolín V, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal–Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. J Am Chem Soc 2018; 140:7681-7687. [DOI: 10.1021/jacs.8b03809] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pablo G. Lustemberg
- Instituto de Fisica
Rosario (IFIR), CONICET-UNR, , Bv. 27 de Febrero 210bis, S2000EZP Rosario, Santa Fe, Argentina
| | - Robert M. Palomino
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ramón A. Gutiérrez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - David C. Grinter
- Surfaces and Interfaces,
Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Mykhailo Vorokhta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Zongyuan Liu
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - Vladimír Matolín
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | - Sanjaya D. Senanayake
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
218
|
Kosinov N, Liu C, Hensen EJM, Pidko EA. Engineering of Transition Metal Catalysts Confined in Zeolites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3177-3198. [PMID: 29861546 PMCID: PMC5973782 DOI: 10.1021/acs.chemmater.8b01311] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Indexed: 05/09/2023]
Abstract
Transition metal-zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal-zeolite catalysts.
Collapse
Affiliation(s)
- Nikolay Kosinov
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail: (N.K.)
| | - Chong Liu
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Emiel J. M. Hensen
- Schuit
Institute of Catalysis, Laboratory of Inorganic Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail: (E.J.M.H.)
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- TheoMAT
group, ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia
- E-mail: (E.A.P.)
| |
Collapse
|
219
|
Zhao Y, Hu JC, Cui JT, Xu LL, Ma JB. Fe 2 O + Cation Mediated Propane Oxidation by Dioxygen in the Gas Phase. Chemistry 2018; 24:5920-5926. [PMID: 29424048 DOI: 10.1002/chem.201705997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/11/2022]
Abstract
The mass-selected Fe2 O+ cation mediated propane oxidation by O2 was investigated by mass spectrometry and density functional theory calculations. In the reaction of Fe2 O+ with C3 H8 , H2 was liberated by C-H bond activation to give Fe2 OC3 H6+ . Interestingly, when a mixture of C3 H8 /O2 was introduced into the reactor, an intense signal that corresponded to the Fe2 O2+ cation was present; the experiments indicated that O2 was activated in its reaction with Fe2 O(C3 H6 )+ to give Fe2 O2+ and C3 H6 O (acetone or propanal). A Langmuir-Hinshelwood-like mechanism was adopted in the propane oxidation reaction by O2 on gas-phase Fe2 O+ cations. In comparison with the absence of Fe2 O2+ in the reaction of Fe2 O+ with O2 , the ligand effect of C3 H6 on Fe2 OC3 H6+ is important in the oxygen activation reaction. The theoretical results are consistent with the experimental observations. The propane oxidation by O2 in the presence of Fe2 O+ might be applied as a model for alkane and O2 activations over iron oxide catalysts, and the mechanisms and kinetic data are useful for understanding corresponding heterogeneous reactions.
Collapse
Affiliation(s)
- Yue Zhao
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Ji-Chuang Hu
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Jia-Tong Cui
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Lin-Lin Xu
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Jia-Bi Ma
- The Institute for Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| |
Collapse
|
220
|
Gambo Y, Jalil A, Triwahyono S, Abdulrasheed A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
221
|
Yue L, Zhou S, Sun X, Schlangen M, Schwarz H. Direkte Umwandlung von Methan zu protoniertem Formaldehyd bei Raumtemperatur in der Gasphase: Zur Rolle von Quecksilber unter den Oxidkationen der Zinktriade. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou V.R. China
| | - Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
222
|
Yue L, Zhou S, Sun X, Schlangen M, Schwarz H. Direct Room-Temperature Conversion of Methane into Protonated Formaldehyde: The Gas-Phase Chemistry of Mercury among the Zinc Triad Oxide Cations. Angew Chem Int Ed Engl 2018; 57:3251-3255. [DOI: 10.1002/anie.201712405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
223
|
Fukuzumi S, Lee Y, Nam W. Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201701786] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
224
|
Li HF, Jiang LX, Zhao YX, Liu QY, Zhang T, He SG. Formation of Acetylene in the Reaction of Methane with Iron Carbide Cluster Anions FeC 3- under High-Temperature Conditions. Angew Chem Int Ed Engl 2018; 57:2662-2666. [PMID: 29359384 DOI: 10.1002/anie.201712463] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/12/2018] [Indexed: 12/14/2022]
Abstract
The underlying mechanism for non-oxidative methane aromatization remains controversial owing to the lack of experimental evidence for the formation of the first C-C bond. For the first time, the elementary reaction of methane with atomic clusters (FeC3- ) under high-temperature conditions to produce C-C coupling products has been characterized by mass spectrometry. With the elevation of temperature from 300 K to 610 K, the production of acetylene, the important intermediate proposed in a monofunctional mechanism of methane aromatization, was significantly enhanced, which can be well-rationalized by quantum chemistry calculations. This study narrows the gap between gas-phase and condensed-phase studies on methane conversion and suggests that the monofunctional mechanism probably operates in non-oxidative methane aromatization.
Collapse
Affiliation(s)
- Hai-Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing, 100190, P.R. China.,Present address: Department of Precision Instrument, Tsinghua University, Beijing, 100084, P.R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Ting Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center of Excellence in Molecular Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
225
|
Li HF, Jiang LX, Zhao YX, Liu QY, Zhang T, He SG. Formation of Acetylene in the Reaction of Methane with Iron Carbide Cluster Anions FeC3
−
under High-Temperature Conditions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hai-Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/ Education Center of Excellence in Molecular Sciences; Beijing 100190 P.R. China
- Present address: Department of Precision Instrument; Tsinghua University; Beijing 100084 P.R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/ Education Center of Excellence in Molecular Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/ Education Center of Excellence in Molecular Sciences; Beijing 100190 P.R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/ Education Center of Excellence in Molecular Sciences; Beijing 100190 P.R. China
| | - Ting Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/ Education Center of Excellence in Molecular Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/ Education Center of Excellence in Molecular Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
226
|
Kosinov N, Wijpkema ASG, Uslamin E, Rohling R, Coumans FJAG, Mezari B, Parastaev A, Poryvaev AS, Fedin MV, Pidko EA, Hensen EJM. Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM-5. Angew Chem Int Ed Engl 2018; 57:1016-1020. [PMID: 29181863 PMCID: PMC5820752 DOI: 10.1002/anie.201711098] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/25/2017] [Indexed: 11/10/2022]
Abstract
Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM-5 are partially reduced single-atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.
Collapse
Affiliation(s)
- Nikolay Kosinov
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Alexandra S. G. Wijpkema
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Evgeny Uslamin
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Roderigh Rohling
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Ferdy J. A. G. Coumans
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Artem S. Poryvaev
- International Tomography Center SB RAS andNovosibirsk State UniversityNovosibirsk630090Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS andNovosibirsk State UniversityNovosibirsk630090Russia
| | - Evgeny A. Pidko
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials ChemistryEindhoven University of TechnologyPO Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|
227
|
Chow YK, Dummer NF, Carter JH, Meyer RJ, Armstrong RD, Williams C, Shaw G, Yacob S, Bhasin MM, Willock DJ, Taylor SH, Hutchings GJ. A Kinetic Study of Methane Partial Oxidation over Fe-ZSM-5 Using N2
O as an Oxidant. Chemphyschem 2018; 19:402-411. [DOI: 10.1002/cphc.201701202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/18/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Kit Chow
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Nicholas F. Dummer
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - James H. Carter
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Corporate Strategic Research; Annandale NJ 08801 USA
| | - Robert D. Armstrong
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Christopher Williams
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Greg Shaw
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Sara Yacob
- ExxonMobil Research and Engineering, Corporate Strategic Research; Annandale NJ 08801 USA
| | - Madan M. Bhasin
- Innovative Catalytic Solutions, LLC; Charleston WV 25314 USA
| | - David J. Willock
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Stuart H. Taylor
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Graham J. Hutchings
- Cardiff Catalysis Institute, School of chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
228
|
Wang G, Huang L, Chen W, Zhou J, Zheng A. Rationally designing mixed Cu–(μ-O)–M (M = Cu, Ag, Zn, Au) centers over zeolite materials with high catalytic activity towards methane activation. Phys Chem Chem Phys 2018; 20:26522-26531. [DOI: 10.1039/c8cp04872j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The direct conversion of methane to methanol on [Cu(μ-O)M]2+ (M = Cu, Ag, Zn, Au) bimetal centers in ZSM-5 zeolite is investigated using periodic DFT for the first time.
Collapse
Affiliation(s)
- Guiru Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Ling Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Jian Zhou
- Shanghai Research Institute of Petrochemical Technology
- SINOPEC
- Shanghai 201208
- P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| |
Collapse
|
229
|
Albrecht M, Rodemerck U, Linke D, Kondratenko EV. Oxidative coupling of methane at elevated pressures: reactor concept and its validation. REACT CHEM ENG 2018. [DOI: 10.1039/c7re00208d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel quartz reactor has been developed for heterogeneously catalysed reactions at high pressures and temperatures.
Collapse
Affiliation(s)
- M. Albrecht
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| | - U. Rodemerck
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| | - D. Linke
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| | - E. V. Kondratenko
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- D-18059 Rostock
- Germany
| |
Collapse
|
230
|
Hoffman AS, Azzam S, Zhang K, Xu Y, Liu Y, Bare SR, Simonetti DA. Direct observation of the kinetics of gas–solid reactions using in situ kinetic and spectroscopic techniques. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00020d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In situ spectroscopic techniques provide kinetic and chemical structure data for elucidation of reaction mechanisms and pathways during reactive separations.
Collapse
Affiliation(s)
- Adam S. Hoffman
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
| | - Sara Azzam
- Chemical and Biomolecular Engineering Department
- University of California-Los Angeles
- Los Angeles
- USA
| | - Kai Zhang
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
- Beijing Synchrotron Radiation Facility
| | - Yahong Xu
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
| | - Dante A. Simonetti
- Chemical and Biomolecular Engineering Department
- University of California-Los Angeles
- Los Angeles
- USA
| |
Collapse
|
231
|
Oord R, Schmidt JE, Weckhuysen BM. Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02461d] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using in situ FT-IR and operando UV-vis-NIR DRS, performed on a series of different Cu–ion-exchanged SSZ-13 zeolites, both a mono-nuclear site or a dimeric copper active site are consistent for methane-to-methanol activation.
Collapse
Affiliation(s)
- Ramon Oord
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Joel E. Schmidt
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
232
|
Xiang Y, Wang H, Cheng J, Matsubu J. Progress and prospects in catalytic ethane aromatization. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01878a] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimal ethane-to-aromatics catalyst design requires carefully tuning metal and zeolite catalytic sites to work in conjunction.
Collapse
Affiliation(s)
- Yizhi Xiang
- NICE America Research, Inc
- A Shenhua Company
- Mountain View
- USA
- Dave C. Swalm School of Chemical Engineering
| | - Hui Wang
- NICE America Research, Inc
- A Shenhua Company
- Mountain View
- USA
| | - Jihong Cheng
- NICE America Research, Inc
- A Shenhua Company
- Mountain View
- USA
| | - John Matsubu
- NICE America Research, Inc
- A Shenhua Company
- Mountain View
- USA
| |
Collapse
|
233
|
Sushkevich VL, van Bokhoven JA. Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01055b] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct conversion of methane into methanol was studied in a stepwise process over copper-exchanged mordenite.
Collapse
Affiliation(s)
- Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institut
- 5232 Villigen PSI
- Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institut
- 5232 Villigen PSI
- Switzerland
- Institute for Chemistry and Bioengineering
| |
Collapse
|
234
|
Chow YK, Dummer NF, Carter JH, Williams C, Shaw G, Willock DJ, Taylor SH, Yacob S, Meyer RJ, Bhasin MM, Hutchings GJ. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01769c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane oxidation using N2O was carried out with Fe–MFI zeolite catalysts at 300 °C.
Collapse
Affiliation(s)
- Ying Kit Chow
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Nicholas F. Dummer
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - James H. Carter
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Christopher Williams
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Greg Shaw
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - David J. Willock
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Stuart H. Taylor
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Sara Yacob
- ExxonMobil Research and Engineering
- Annandale
- USA
| | | | | | - Graham J. Hutchings
- Cardiff Catalysis Institute
- School of chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| |
Collapse
|
235
|
Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F. Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01229b] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of an ideal methane activation catalyst presents a trade-off between stability and reactivity of the active site that can be achieved by tuning the transition metal cation, active site motif and the zeolite topology.
Collapse
Affiliation(s)
- Ambarish R. Kulkarni
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- California 94305
- USA
| | - Zhi-Jian Zhao
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- California 94305
- USA
| | - Samira Siahrostami
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- California 94305
- USA
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- California 94305
- USA
| | - Felix Studt
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|
236
|
Samantaray MK, Pump E, Bendjeriou-Sedjerari A, D’Elia V, Pelletier JDA, Guidotti M, Psaro R, Basset JM. Surface organometallic chemistry in heterogeneous catalysis. Chem Soc Rev 2018; 47:8403-8437. [DOI: 10.1039/c8cs00356d] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface organometallic chemistry has been reviewed with a special focus on environmentally relevant transformations (C–H activation, CO2conversion, oxidation).
Collapse
Affiliation(s)
- Manoja K. Samantaray
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| | | | - Valerio D’Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology
- WangChan
- Thailand
| | - Jérémie D. A. Pelletier
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| | - Matteo Guidotti
- CNR – Institute of Molecular Sciences and Technologies
- 20133 Milano
- Italy
| | - Rinaldo Psaro
- CNR – Institute of Molecular Sciences and Technologies
- 20133 Milano
- Italy
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| |
Collapse
|
237
|
Kosinov N, Wijpkema ASG, Uslamin E, Rohling R, Coumans FJAG, Mezari B, Parastaev A, Poryvaev AS, Fedin MV, Pidko EA, Hensen EJM. Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM-5. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nikolay Kosinov
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Alexandra S. G. Wijpkema
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Evgeny Uslamin
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Roderigh Rohling
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Ferdy J. A. G. Coumans
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Artem S. Poryvaev
- International Tomography Center SB RAS and; Novosibirsk State University; Novosibirsk 630090 Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS and; Novosibirsk State University; Novosibirsk 630090 Russia
| | - Evgeny A. Pidko
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| |
Collapse
|
238
|
Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem Rev 2017; 118:2718-2768. [DOI: 10.1021/acs.chemrev.7b00344] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin E. R. Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max L. Bols
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A. Schoonheydt
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F. Sels
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
239
|
Calvo B, Braun T, Kemnitz E. Hydrogen/Deuterium-Exchange Reactions of Methane with Aromatics and Cyclohexane Catalyzed by a Nanoscopic Aluminum Chlorofluoride. ChemCatChem 2017. [DOI: 10.1002/cctc.201701327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beatriz Calvo
- Humboldt-Universität zu Berlin; Book-Taylor-Straße2 12489 Berlin Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin; Book-Taylor-Straße2 12489 Berlin Germany
| | - Erhard Kemnitz
- Humboldt-Universität zu Berlin; Book-Taylor-Straße2 12489 Berlin Germany
| |
Collapse
|
240
|
López-Martín Á, Caballero A, Colón G. Photochemical methane partial oxidation to methanol assisted by H2O2. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
241
|
Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017; 551:605-608. [DOI: 10.1038/nature24640] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
|
242
|
Kwon Y, Kim TY, Kwon G, Yi J, Lee H. Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. J Am Chem Soc 2017; 139:17694-17699. [DOI: 10.1021/jacs.7b11010] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yongwoo Kwon
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yong Kim
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gihun Kwon
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongheop Yi
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjoo Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
243
|
Schwarz H, Shaik S, Li J. Electronic Effects on Room-Temperature, Gas-Phase C-H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge. J Am Chem Soc 2017; 139:17201-17212. [PMID: 29112810 DOI: 10.1021/jacs.7b10139] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O•). Whenever the radical is delocalized, e.g., in [MgO]n•+ the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga2O3) to [MgO]2•+ localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [Al2O2]•+ the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH3 moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO]2•+ by Al2O3 enables HAT and PCET to compete. Similarly, [ZnO]•+ activates methane by PCET generating many products. Adding a CH3CN ligand to form [(CH3CN)ZnO]•+ leads to a single HAT product. The CH3CN dipole acts as an OEF that switches off PCET. [MC]+ cations (M = Au, Cu) act by different mechanisms, dictated by the M+-C bond covalence. For example, Cu+, which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu+.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Jilai Li
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany.,Institute of Theoretical Chemistry, Jilin University , Changchun 130023, P.R. China
| |
Collapse
|
244
|
Shetty S, Sivakumar S, Jana SK, Sreenivasarao G. Investigation of CHx (x = 2–4) Adsorption on Mo2C and Mo4C2 Sites Incorporated in ZSM-5 Zeolite Using Periodic-DFT Approach. Catal Letters 2017. [DOI: 10.1007/s10562-017-2199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
245
|
Vogiatzis KD, Li G, Hensen EJM, Gagliardi L, Pidko EA. Electronic Structure of the [Cu 3(μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:22295-22302. [PMID: 29051794 PMCID: PMC5641944 DOI: 10.1021/acs.jpcc.7b08714] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 05/25/2023]
Abstract
Identifying Cu-exchanged zeolites able to activate C-H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu3(μ-O)3]2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu3(μ-O)3]2+ site using multiconfigurational wave-function-based methods and density functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C-H activation of methane by [Cu3(μ-O)3]2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.
Collapse
Affiliation(s)
| | - Guanna Li
- Inorganic
Materials Chemistry Group, Eindhoven University
of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Catalysis
Engineering, Department of Chemical Engineering, Delft University of Technology, Van Oder Massage 9, 2629 HZ Delft, The Netherlands
| | - Emiel J. M. Hensen
- Inorganic
Materials Chemistry Group, Eindhoven University
of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Laura Gagliardi
- Department
of Chemistry, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Evgeny A. Pidko
- Inorganic
Materials Chemistry Group, Eindhoven University
of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Theoretical
Chemistry Group, ITMO University, Kronverkskiy pr., 49, St. Petersburg 197101, Russia
| |
Collapse
|
246
|
Wang S, Cong L, Zhao C, Li Y, Pang Y, Zhao Y, Li S, Sun Y. First principles studies of CO 2 and O 2 chemisorption on La 2O 3 surfaces. Phys Chem Chem Phys 2017; 19:26799-26811. [PMID: 28948989 DOI: 10.1039/c7cp05471h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Periodic density functional theory calculations were performed to study the surface structures and stabilities of the La2O3 catalyst in CO2 and O2 environments, relevant to the conditions of the oxidative coupling of methane (OCM) reaction. Thermodynamic stabilities of the clean surfaces were predicted to follow the order of (001) ≥ (011) ≫ (110) > (111) > (101) > (100), with their direct band gaps at the Γ point following the similar order of (001) > (011) > (110) > (111) > (100) > (101). Hubbard U corrections to the La 4f and 5d orbitals do not qualitatively change the predictions of surface energies and band gaps. For the most stable (001) surface, CO2 chemisorption to form carbonate species is exothermic by -0.60 eV with a negligible energy barrier of 0.07 eV, whereas O2 chemisorption to form peroxide species is endothermic by 0.64 eV with a considerable energy barrier of 1.29 eV. For the slightly less stable (011) surface, both CO2 and O2 chemisorption can occur at different surface sites, and the same applies to the other studied surfaces. Dissociation temperatures of surface carbonate species range from 300 to 1000 K at pCO2 of 1 bar, which follow the order of (101) ≈ (110) > (111) ≈ (100) ≈ (011) ≫ (001), showing their strong sensitivity to the surface structure. Dissociation temperatures of surface peroxide species are mostly lower than the room temperature except for those of the (011) and (111) surfaces, although the significant kinetic barriers predicted should prevent their facile dissociation. Insights into the temperature-programmed desorption experiments and the methane reactivity of La2O3 in the OCM reaction were also given based on the results of our calculations.
Collapse
Affiliation(s)
- Shibin Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Montejo-Valencia BD, Pagán-Torres YJ, Martínez-Iñesta MM, Curet-Arana MC. Density Functional Theory (DFT) Study To Unravel the Catalytic Properties of M-Exchanged MFI, (M = Be, Co, Cu, Mg, Mn, Zn) for the Conversion of Methane and Carbon Dioxide to Acetic Acid. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00844] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian D. Montejo-Valencia
- Department of Chemical Engineering, University of Puerto Rico−Mayaguez Campus, Road 108 km 1.1, Mayaguez, Puerto Rico 00681-9000, United States
| | - Yomaira J. Pagán-Torres
- Department of Chemical Engineering, University of Puerto Rico−Mayaguez Campus, Road 108 km 1.1, Mayaguez, Puerto Rico 00681-9000, United States
| | - María M. Martínez-Iñesta
- Department of Chemical Engineering, University of Puerto Rico−Mayaguez Campus, Road 108 km 1.1, Mayaguez, Puerto Rico 00681-9000, United States
| | - María C. Curet-Arana
- Department of Chemical Engineering, University of Puerto Rico−Mayaguez Campus, Road 108 km 1.1, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
248
|
Pahls DR, Ortuño MA, Winegar PH, Cramer CJ, Gagliardi L. Computational Screening of Bimetal-Functionalized Zr6O8 MOF Nodes for Methane C–H Bond Activation. Inorg Chem 2017; 56:8739-8743. [DOI: 10.1021/acs.inorgchem.7b01334] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dale R. Pahls
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Manuel A. Ortuño
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter H. Winegar
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, Michigan Technical University, Michigan 49331, United States
| | - Christopher J. Cramer
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
249
|
Yue L, Li J, Zhou S, Sun X, Schlangen M, Shaik S, Schwarz H. Steuerung der Produktverteilung und der Mechanismen der thermischen Aktivierung von Methan durch Ligandeneffekte und elektrische Felder. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 Volksrepublik China
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
250
|
Yue L, Li J, Zhou S, Sun X, Schlangen M, Shaik S, Schwarz H. Control of Product Distribution and Mechanism by Ligation and Electric Field in the Thermal Activation of Methane. Angew Chem Int Ed Engl 2017; 56:10219-10223. [DOI: 10.1002/anie.201703485] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Yue
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 People's Republic of China
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|