201
|
Wang J, Zhou H, Guo G, Tan J, Wang Q, Tang J, Liu W, Shen H, Li J, Zhang X. Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33609-33623. [PMID: 28884578 DOI: 10.1021/acsami.7b08864] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing prevalence of implant-associated infections (IAIs) imposes a heavy burden on patients and medical providers. Bacterial biofilms are recalcitrant to antiseptic drugs and local immune defense and can attenuate host proinflammatory response to interfere with bacterial clearance. Zinc oxide nanoparticles (ZnO NPs) play a dual role in antibacterial and immunomodulatory activities but compromise the cytocompatibility because of their intracellular uptake. Here, ZnO NPs were immobilized on titanium to form homogeneous nanofilms (from discontinuous to continuous) through magnetron sputtering, and the possible antimicrobial activity and immunomodulatory effect of nano-ZnO films were investigated. Nano-ZnO films were found to prohibit sessile bacteria more than planktonic bacteria in vitro, and the antibacterial effect occurred in a dose-dependent manner. Using a novel mouse soft tissue IAI model, the in vivo results revealed that nano-ZnO films possessed outstanding antimicrobial efficacy, which could not be ascribed solely to the intrinsic anti-infective activity of nano-ZnO films observed in vitro. Macrophages and polymorphonuclear leukocytes (PMNs), two important factors in innate immune response, were cocultured with nano-ZnO and bacteria/lipopolysaccharide in vitro, and the nano-ZnO films could enhance the antimicrobial efficacy of macrophages and PMNs through promoting phagocytosis and secretion of inflammatory cytokines. This study provides insights into the anti-infective activity and mechanism of ZnO and consolidates the theoretical basis for future clinical applications of ZnO.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jiaqi Tan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| |
Collapse
|
202
|
Guldiren D, Aydın S. Antimicrobial property of silver, silver-zinc and silver-copper incorporated soda lime glass prepared by ion exchange. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:826-832. [DOI: 10.1016/j.msec.2017.04.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
|
203
|
Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses. Anal Bioanal Chem 2017; 409:5933-5941. [DOI: 10.1007/s00216-017-0535-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022]
|
204
|
Gao T, Fan H, Wang X, Gao Y, Liu W, Chen W, Dong A, Wang YJ. Povidone-Iodine-Based Polymeric Nanoparticles for Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25738-25746. [PMID: 28707872 DOI: 10.1021/acsami.7b05622] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As microbial contamination is becoming more and more serious, antibacterial agents play an important role in preventing and removing bacterial pathogens from microbial pollution in our daily life. To solve the issues with water solubility and antibacterial stability of PVP-I2 (povidone-iodine) as a strong antibacterial agent, we successfully obtain hydrophobic povidone-iodine nanoparticles (povidone-iodine NPs) by a two-step method related to the advantage of nanotechnology. First, the synthesis of poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate) nanoparticles, i.e., P(NVP-MMA) NPs, was controlled by tuning a feed ratio of NVP to MMA. Then, the products P(NVP-MMA) NPs were allowed to undergo a complexation reaction with iodine, resulting in the formation of a water-insoluble antibacterial material, povidone-iodine NPs. It is found that the feed ratio of NVP to MMA has an active effect on morphology, chemical composition, molecular weight, and hydrophilic-hydrophobic properties of the P(NVP-MMA) copolymer after some technologies, such as SEM, DLS, elemental analysis, 1H NMR, GPC, and the contact angle test, were used in the characterizations. The antibacterial property of povidone-iodine NPs was investigated by using Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) as model bacteria with the colony count method. Interestingly, three products, such as glue, ink, and dye, after the incorporation of povidone-iodine NPs, show significant antibacterial properties. It is believed that, with the advantage of nanoscale morphology, the final povidone-iodine NPs should have great potential for utilization in various fields where antifouling and antibacterial properties are highly required.
Collapse
Affiliation(s)
- Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Hongbo Fan
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Xinjie Wang
- Jiujiang Sixth People's Hospital , 145 Qianjin East Road, Lianxi District, Jiujiang, Jiangxi Province 332005, People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wanjun Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yan-Jie Wang
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
- Department of Chemical and Biological Engineering, University of British Columbia , 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
205
|
Yi J, Cheng J. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:639-647. [PMID: 28378128 DOI: 10.1007/s10646-017-1796-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jinping Cheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
- Environmental Science Programs, School of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong.
| |
Collapse
|
206
|
Peng Z, Wu D, Wang W, Tan F, Wang X, Chen J, Qiao X. Effect of metal ion doping on ZnO nanopowders for bacterial inactivation under visible-light irradiation. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.03.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
207
|
Dong WH, Wu DD, Luo JM, Xing QJ, Liu H, Zou JP, Luo XB, Min XB, Liu HL, Luo SL, Au CT. Coupling of photodegradation of RhB with photoreduction of CO 2 over rGO/SrTi 0.95 Fe 0.05 O 3− δ catalyst: A strategy for one-pot conversion of organic pollutants to methanol and ethanol. J Catal 2017. [DOI: 10.1016/j.jcat.2017.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
208
|
Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:568-581. [DOI: 10.1016/j.msec.2016.12.125] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
|
209
|
Pervaiz E, Liu H, Yang M. Facile synthesis and enhanced photocatalytic activity of single-crystalline nanohybrids for the removal of organic pollutants. NANOTECHNOLOGY 2017; 28:105701. [PMID: 28055985 DOI: 10.1088/1361-6528/aa5717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study focused on the synthesis of α-MoO3/rGO (rGO, reduced graphene oxide). One-dimensional nanohybrids under mild conditions and a low temperature wet chemical route produced highly pure single-crystalline orthorhombic α-MoO3 on GO sheets. Four nanohybrids, labeled as GMO-0, GMO-1, GMO-2 and GMO-3, were synthesized with different mass chargings of GO (0 mg, 40 mg, 60 mg and 100 mg, respectively). The photocatalytic performance for reduction of organic pollutants was analyzed. The presence of different amounts of GO in the prepared metal oxide hybrids altered the performance of the material as elaborated by the Brunauer-Emmett-Teller surface area, UV-visible diffuse reflectance spectra and the resulting reduction of organic dyes depicted by photocatalytic experiments. GO as a support material and active co-catalyst decreased the band gap of α-MoO3 (2.82 eV) to lower values (2.51 eV), rendering the prepared hybrids usable for visible-light-induced photocatalysis. The large specific surface area (72 m2 g-1) of the mesoporous α-MoO3/rGO nanohybrid made it an efficient photocatalyst for the elimination of azo dyes. Very fast reduction (100%) of Rhodamine B was observed in a few minutes, while Congo Red was degraded by 76% in 10 min, leading to the formation of stable intermediates that were completely neutralized in 12-14 h under light irradiation. The amount of GO loaded in the samples was limited to a point to achieve better results. After that, increasing the amount of GO decreased the extent of degradation due to the presence of a higher electron acceptor. Photocatalytic experiments revealed the synergistic effect, high selectivity of the prepared nanohybrids and degradation of azo dyes. The kinetics of the degradation reaction were studied and found to follow a pseudo first-order reaction.
Collapse
Affiliation(s)
- Erum Pervaiz
- Dalian Institute of Chemical Physics (DICP), Dalian National Laboratory for Clean Energy (DNL), 457 Zhongshan Road, Dalian, 116023, People's Republic of China. School of Chemical and Materials Engineering (SCME), Department of Chemical Engineering, National University of Sciences and Technology (NUST), Sector H-12 Islamabad, 44000, Pakistan
| | | | | |
Collapse
|
210
|
Zhang J, Zhang B, Chen X, Mi B, Wei P, Fei B, Mu X. Antimicrobial Bamboo Materials Functionalized with ZnO and Graphene Oxide Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E239. [PMID: 28772597 PMCID: PMC5503375 DOI: 10.3390/ma10030239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022]
Abstract
Bamboo materials with improved antibacterial performance based on ZnO and graphene oxide (GO) were fabricated by vacuum impregnation and hydrothermal strategies. The Zn2+ ions and GO nanosheets were firstly infiltrated into the bamboo structure, followed by dehydration and crystallization upon hydrothermal treatment, leading to the formation of ZnO/GO nanocomposites anchored in the bulk bamboo. The bamboo composites were characterized by several techniques including scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), and X-ray diffraction (XRD), which confirmed the existence of GO and ZnO in the composites. Antibacterial performances of bamboo samples were evaluated by the bacteriostatic circle method. The introduction of ZnO/GO nanocomposites into bamboo yielded ZnO/GO/bamboo materials which exhibited significant antibacterial activity against Escherichia coli (E. coli, Gram-negative) and Bacillus subtilis (B. subtilis, Gram-positive) bacteria and high thermal stability. The antimicrobial bamboo would be expected to be a promising material for the application in the furniture, decoration, and construction industry.
Collapse
Affiliation(s)
- Junyi Zhang
- Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Bo Zhang
- Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Xiufang Chen
- Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Bingbing Mi
- Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Penglian Wei
- International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Benhua Fei
- International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Xindong Mu
- Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. ,cn
| |
Collapse
|
211
|
Wang H, Hao L, Wang P, Chen M, Jiang S, Jiang S. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.028] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
212
|
Bhaisare ML, Wu BS, Wu MC, Khan MS, Tseng MH, Wu HF. MALDI MS analysis, disk diffusion and optical density measurements for the antimicrobial effect of zinc oxide nanorods integrated in graphene oxide nanostructures. Biomater Sci 2017; 4:183-94. [PMID: 26575840 DOI: 10.1039/c5bm00342c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide-zinc oxide hybrid nanostructures were synthesized and they demonstrated significant and promising antimicrobial activity on pathogenic bacteria. The combination of graphene oxide with zinc oxide nanorods showed an impressive antibacterial effect under intense scrutiny as compared with individual graphene oxide or zinc oxide nanomaterials. The characterization and investigation of GO-ZnO nanorod hybrid nanostructures were conducted using UV, FTIR, XRD, SEM, EDX and TEM measurements. The antimicrobial activity of the above hybrid material was evaluated by various methods including MALDI-MS analysis, a disk diffusion assay and optical density measurements.
Collapse
Affiliation(s)
| | - Bo-Sgum Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Mon-Chun Wu
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, 10048, Taiwan
| | - M Shahnawaz Khan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| | - Mei-Hwei Tseng
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, 10048, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan. and Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| |
Collapse
|
213
|
Rojas-Andrade MD, Chata G, Rouholiman D, Liu J, Saltikov C, Chen S. Antibacterial mechanisms of graphene-based composite nanomaterials. NANOSCALE 2017; 9:994-1006. [PMID: 28054094 DOI: 10.1039/c6nr08733g] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are gaining resistance to conventional antibiotics at an alarming rate due to overuse and rapid transfer of resistance genes between bacterial populations. As bacterial resistance to antibiotics causes millions of fatalities worldwide, it is of urgent importance to develop a new class of antibiotic materials with both broad-spectrum bactericidal activity and suitable biocompatibility. Graphene derivatives are rapidly emerging as an extremely promising class of antimicrobial materials due to their diverse bactericidal mechanisms and relatively low cytotoxicity towards mammalian cells. By combining graphene derivatives with currently utilized antibacterial metal and metal-oxide nanostructures, composite materials with exceptional bactericidal activity can be achieved. In this review, the antibacterial activities of graphene derivatives as well as their metal and metal-oxide composite nanostructures will be presented. The synthetic methodology for these various materials will be briefly mentioned, and emphasis will be placed on the evaluation of their mechanisms of action. This information will provide a valuable insight into the current understanding of the interactions governing the microbial toxicity of graphene-based composite nanostructures.
Collapse
Affiliation(s)
- Mauricio D Rojas-Andrade
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Gustavo Chata
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Dara Rouholiman
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Junli Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA. and School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| |
Collapse
|
214
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
215
|
Joe A, Park SH, Shim KD, Kim DJ, Jhee KH, Lee HW, Heo CH, Kim HM, Jang ES. Antibacterial mechanism of ZnO nanoparticles under dark conditions. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.10.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
216
|
Li P, Gao Y, Sun Z, Chang D, Gao G, Dong A. Synthesis, Characterization, and Bactericidal Evaluation of Chitosan/Guanidine Functionalized Graphene Oxide Composites. Molecules 2016; 22:molecules22010012. [PMID: 28025561 PMCID: PMC6155602 DOI: 10.3390/molecules22010012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
In response to the wide spread of microbial contamination induced by bacterial pathogens, the development of novel materials with excellent antibacterial activity is of great interest. In this study, novel antibacterial chitosan (CS) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-CS-PHGC) composites were designed and easily fabricated. The as-prepared materials were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. Their antibacterial capability towards bacterial strains was also studied by incubating both Gram-negative bacteria and Gram-positive bacteria in their presence. More significantly, the synergistic antibacterial action of the three components was assayed, and the findings implied that the as-prepared GO-CS-PHGC shows enhanced antibacterial activity when compared to its single components (GO, CS, PHGC or CS-PHGC) and the mixture of individual components. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by GO-CS-PHGC composites. The minimum inhibitory concentration (MIC) value of GO-CS-PHGC against E. coli was 32 μg/mL. With the powerful antibacterial activity as well as its low cost and facile preparation, GO-CS-PHGC has potential applications as a novel antibacterial agent in a wide range of biomedical uses.
Collapse
Affiliation(s)
- Ping Li
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Zijia Sun
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Dan Chang
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Ge Gao
- College of Chemistry, Jilin University, Changchun 130021, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
217
|
Chen J, Zhang X, Cai H, Chen Z, Wang T, Jia L, Wang J, Wan Q, Pei X. Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: Preparation and in vitro evaluation. Colloids Surf B Biointerfaces 2016; 147:397-407. [DOI: 10.1016/j.colsurfb.2016.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
|
218
|
Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv Drug Deliv Rev 2016; 105:176-189. [PMID: 27129441 DOI: 10.1016/j.addr.2016.04.009] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 12/19/2022]
Abstract
Graphene has emerged as a novel green broad-spectrum antibacterial material, with little bacterial resistance and tolerable cytotoxic effect on mammalian cells. It exerts its antibacterial action via physical damages such as direct contact of its sharp edges with bacterial membranes and destructive extraction of lipid molecules. These damages also include wrapping and photothermal ablation mechanisms. Alternatively, chemical damage of bacteria is caused by oxidative stress with the generation of reactive oxygen species and charge transfer. Furthermore, graphene has been used as a support to disperse and stabilize various nanomaterials, such as metals, metal oxides, and polymers, with high antibacterial efficiency due to the synergistic effect. In addition, graphene-based antibiotic drug delivery platforms have been constructed. Due to the superior antibacterial properties and good biocompatibility, graphene-based nanocomposites have a wide range of applications, such as antibacterial packaging, wound dressing, and water disinfection. In this review, we highlight the antibacterial mechanism of graphene and summarize recent advances related to the antibacterial activity of graphene-based materials. Many of the recent application examples are further discussed. We hope that this review provides valuable insight, stimulates broader concerns, and spurs further developments in this promising field.
Collapse
|
219
|
Chambhare SU, Lokhande GP, Jagtap RN. Effects of incorporated imine functionality and dispersed nano zinc oxide particles on antimicrobial activity synthesized by RAFT polymerization. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1800-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
220
|
Szunerits S, Boukherroub R. Antibacterial activity of graphene-based materials. J Mater Chem B 2016; 4:6892-6912. [PMID: 32263558 DOI: 10.1039/c6tb01647b] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complications related to infectious diseases have significantly decreased due to the availability and use of a wide variety of antibiotics and antimicrobial agents. However, excessive use of antibiotics and antimicrobial agents over years has increased the number of drug resistant pathogens. Microbial multidrug resistance poses serious risks and consequently research attention has refocused on finding alternatives for antimicrobial treatment. Among the various approaches, the use of engineered nanostructures is currently the most promising strategy to overcome microbial drug resistance by improving the remedial efficiency due to their high surface-to-volume ratio and their intrinsic or chemically incorporated antibacterial activity. Graphene, a two-dimensional ultra-thin nanomaterial, possesses excellent biocompatibility, putting it in the forefront for different applications in biosensing, drug delivery, biomedical device development, diagnostics and therapeutics. Graphene-based nanostructures also hold great promise for combating microbial infections. Yet, several questions remain unanswered such as the mechanism of action with the microbial entities, the importance of size and chemical composition in the inhibition of bacterial proliferation and adhesion, cytotoxicity, and other issues when considering future clinical implementation. This review summarizes the current efforts in the formulation of graphene-based nanocomposites with antimicrobial and antibiofilm activities as new tools to tackle the current challenges in fighting against bacterial targets. Furthermore, the review describes the features of graphene-bacterial interactions, with the hope to shed light on the range of possible mode of actions, serving the goal to develop a better understanding of the antibacterial capabilities of graphene-based nanostructures.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré- CS60069, 59652 Villeneuve d'Ascq, France.
| | | |
Collapse
|
221
|
Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, Luo Z, Shi X, Wang Y, Ren L. The Antibacterial Applications of Graphene and Its Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4165-84. [PMID: 27389848 DOI: 10.1002/smll.201601841] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/11/2016] [Indexed: 05/20/2023]
Abstract
Graphene materials have unique structures and outstanding thermal, optical, mechanical and electronic properties. In the last decade, these materials have attracted substantial interest in the field of nanomaterials, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of antibacterial agents. Here, recent advancements in the use of graphene and its derivatives as antibacterial agents are reviewed. Graphene is used in three forms: the pristine form; mixed with other antibacterial agents, such as Ag and chitosan; or with a base material, such as poly (N-vinylcarbazole) (PVK) and poly (lactic acid) (PLA). The main mechanisms proposed to explain the antibacterial behaviors of graphene and its derivatives are the membrane stress hypothesis, the oxidative stress hypothesis, the entrapment hypothesis, the electron transfer hypothesis and the photothermal hypothesis. This review describes contributions to improving these promising materials for antibacterial applications.
Collapse
Affiliation(s)
- Lin Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jiongrun Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lijing Teng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Sa Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
222
|
Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester. Biosens Bioelectron 2016; 85:142-150. [PMID: 27162145 DOI: 10.1016/j.bios.2016.04.099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
An ultrasensitive photoelectrochemical (PEC) aptasensor based on a novel signal amplification strategy was developed for the quantitative determination of microRNA (miR)-155. CH3NH3PbI3 quantum dots (QDs) functionalized ZnO nanosheets (NSs) were employed as the light harvester. Owing to the synergetic effect between CH3NH3PbI3 QDs and ZnO NSs, ZnO@CH3NH3PbI3 can provide an obviously increasing PEC signal by forming the heterojunction. Due to the larger steric hindrance, the sensitive decrease of the PEC signal can be achieved by the specific recognition between the primers and ssDNA of miR-155. In this sense, this developed aptasensor can achieve a high sensitivity (especially in the presence of the low concentrations of miR-155) and a wide detection range (0.01fmol/L to 20,000pmol/L). Under the optimal conditions, the proposed aptasensor offered an ultrasensitive and specific determination of miR-155 down to 0.005fmol/L. This aptassay method would open up a new promising platform at ultralow levels for early diagnose of different miRNA.
Collapse
|
223
|
Cai Q, Gao Y, Gao T, Lan S, Simalou O, Zhou X, Zhang Y, Harnoode C, Gao G, Dong A. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10109-10120. [PMID: 27042940 DOI: 10.1021/acsami.5b11573] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zinc oxides have gained exciting achievements in antimicrobial fields because of their advantageous properties, whereas their biological effects on bacteria are currently underexplored. In this study, biological effects of flower-shaped nano zinc oxides on bacteria were systematically investigated. Zinc oxide nanoflowers with controllable morphologies (viz., rod flowers, fusiform flowers, and petal flowers) were synthesized by modulating merely base type and concentration using the hydrothermal process. Their antibacterial power is in an order of petal flowers > fusiform flowers > rod flowers because of their differences in microscopic parameters such as specific surface area, pore size, and Zn-polar plane, etc. More importantly, the role of morphology in influencing biological effect on bacteria was examined, focusing on the morphology-induced effect on integrality of cell wall, permeability of cell membrane, DNA cleavage, etc. As for cytotoxicity, all petal flowers, fusiform flowers, and rod flowers show trivial cytotoxicity to the Hela cells. This work provides a guide for enhancing biological effect of the biocides on pathogenic bacteria by the morphological modulation.
Collapse
Affiliation(s)
- Qian Cai
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Shi Lan
- College of Science, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Oudjaniyobi Simalou
- Département de Chimie, Faculté Des Sciences (FDS), Université de Lomé (UL) , Lome BP 1515, Togo
| | - Xinyue Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Chokto Harnoode
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Ge Gao
- College of Chemistry, Jilin University , Changchun 130021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| |
Collapse
|
224
|
Wang L, Liu JH, Song ZM, Yang YX, Cao A, Liu Y, Wang H. Interaction of multi-walled carbon nanotubes and zinc ions enhances cytotoxicity of zinc ions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5591-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
225
|
Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial Activity of Ti₃C₂Tx MXene. ACS NANO 2016; 10:3674-84. [PMID: 26909865 DOI: 10.1021/acsnano.6b00181] [Citation(s) in RCA: 582] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MXenes are a family of atomically thin, two-dimensional (2D) transition metal carbides and carbonitrides with many attractive properties. Two-dimensional Ti3C2Tx (MXene) has been recently explored for applications in water desalination/purification membranes. A major success indicator for any water treatment membrane is the resistance to biofouling. To validate this and to understand better the health and environmental impacts of the new 2D carbides, we investigated the antibacterial properties of single- and few-layer Ti3C2Tx MXene flakes in colloidal solution. The antibacterial properties of Ti3C2Tx were tested against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) by using bacterial growth curves based on optical densities (OD) and colonies growth on agar nutritive plates. Ti3C2Tx shows a higher antibacterial efficiency toward both Gram-negative E. coli and Gram-positive B. subtilis compared with graphene oxide (GO), which has been widely reported as an antibacterial agent. Concentration dependent antibacterial activity was observed and more than 98% bacterial cell viability loss was found at 200 μg/mL Ti3C2Tx for both bacterial cells within 4 h of exposure, as confirmed by colony forming unit (CFU) and regrowth curve. Antibacterial mechanism investigation by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with lactate dehydrogenase (LDH) release assay indicated the damage to the cell membrane, which resulted in release of cytoplasmic materials from the bacterial cells. Reactive oxygen species (ROS) dependent and independent stress induction by Ti3C2Tx was investigated in two separate abiotic assays. MXenes are expected to be resistant to biofouling and offer bactericidal properties.
Collapse
Affiliation(s)
- Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU) , P.O. Box 5825, Doha, Qatar
| | - Mohamed Helal
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU) , P.O. Box 5825, Doha, Qatar
| | - Adnan Ali
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU) , P.O. Box 5825, Doha, Qatar
| | - Chang E Ren
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials Institute, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials Institute, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU) , P.O. Box 5825, Doha, Qatar
| |
Collapse
|
226
|
Abstract
Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs). Due to their unique chemical and physical properties, graphene and its derivatives have found important places in their respective application fields, yet they are being found to have cytotoxic and genotoxic effects too. Since the discovery of graphene, a number of researches are being conducted to find out the toxic potential of GFNs to different cell and animal models, finding their suitability for being used in new and varied innovative fields. This paper presents a systematic review of the research done on GFNs and gives an insight into the mode and action of these nanosized moieties. The paper also emphasizes on the recent and up-to-date developments in research on GFNs and their nanocomposites for their toxic effects.
Collapse
Affiliation(s)
- Zorawar Singh
- Department of Zoology, Khalsa College, Amritsar, Punjab, India
| |
Collapse
|
227
|
Sun D, Zhang W, Li N, Zhao Z, Mou Z, Yang E, Wang W. Silver nanoparticles-quercetin conjugation to siRNA against drug-resistant Bacillus subtilis for effective gene silencing: in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:522-34. [PMID: 27040247 DOI: 10.1016/j.msec.2016.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/26/2023]
Abstract
Quercetin (Qe) exhibited extremely low water solubility, and thus, it was modified using silver nanoparticles (AgNPs). We fabricated AgNPs combined with Qe (AgNPs-Qe). The modification suggested that the synergistic properties of Qe enhanced the antibacterial activity of AgNPs. However, AgNPs-Qe exerted no effect on many kinds of drug-resistant bacteria, including Pseudomonas aeruginosa and Bacillus subtilis. RNA interference has considerable therapeutic potential because of its high specificity and potential capability to evade drug resistance. Therefore, we stabilized AgNPs-Qe with a layer of molecules (siRNA). The newly fabricated nanoparticles exerted improved effect on many kinds of bacteria, including the most prominent drug-resistant species B. subtilis. Agarose gel electrophoresis showed that the highest critical nitrogen-to-phosphorus (N/P) ratio occurred at a vector/siRNA with a w/w ratio of 7:1. Characterization experiment indicated that the diameter of siRNA/AgNPs-Qe was approximately 40 nm (40 ± 10 nm). Moreover, AgNPs-Qe were stabilized with a layer of siRNA that was approximately 10nm thick. Results of the in vitro study suggested that siRNA/AgNPs-Qe could destroy the cell wall and inhibit bacterial propagation. Meanwhile, the in vivo experiment on the animal bacteremia model, as well as the optical imaging of nude mice and their isolated organs, demonstrated that bacteria accumulated in the blood, heart, liver, spleen, lungs, and kidneys after the intravenous injection of B. subtilis. The bacteria in the blood and organs, as well as the inflamed cells in the tissues, gradually decreased after the mice received intravenous tail injection of siRNA/AgNPs-Qe for treatment. Both the in vitro and the in vivo studies exhibit that siRNA/AgNPs-Qe can be a potential nanoscale drug delivery system for B. subtilis targeting bacterimia.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiwei Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Nuan Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhiwei Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhipeng Mou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
228
|
Nadres ET, Fan J, Rodrigues DF. Toxicity and Environmental Applications of Graphene-Based Nanomaterials. GRAPHENE-BASED MATERIALS IN HEALTH AND ENVIRONMENT 2016. [DOI: 10.1007/978-3-319-45639-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
229
|
Pang B, Yan J, Yao L, Liu H, Guan J, Wang H, Liu H. Preparation and characterization of antibacterial paper coated with sodium lignosulfonate stabilized ZnO nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra21434c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ZnO nanoparticles were synthesized using sodium lignosulfonate as a stabilizing agent and sodium hydroxide as a precipitation agent. The negatively charged ZnO nanoparticles were deposited onto cellulose paper through a layer-by-layer approach.
Collapse
Affiliation(s)
- Bo Pang
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Jipeng Yan
- Department of Paper and Bioprocess Engineering
- SUNY College of Environmental Science and Forestry
- Syracuse
- USA
| | - Lan Yao
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Huan Liu
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Jing Guan
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Haisong Wang
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| |
Collapse
|
230
|
Naskar A, Bera S, Bhattacharya R, Saha P, Roy SS, Sen T, Jana S. Synthesis, characterization and antibacterial activity of Ag incorporated ZnO–graphene nanocomposites. RSC Adv 2016. [DOI: 10.1039/c6ra14808e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One pot low temperature synthesis of silver incorporated ZnO–chemically converted graphene nanocomposites is reported. An optimum of 10% Ag incorporated sample at 6.25 μg ml−1 dose shows an excellent antibacterial activity on E. coli and S. aureus.
Collapse
Affiliation(s)
- Atanu Naskar
- Sol-Gel Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| | - Susanta Bera
- Sol-Gel Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| | - Rahul Bhattacharya
- Cell Biology & Physiology Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Pritam Saha
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
- India
| | - Sib Sankar Roy
- Cell Biology & Physiology Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Tuhinadri Sen
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
- India
| | - Sunirmal Jana
- Sol-Gel Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| |
Collapse
|
231
|
Nagvenkar AP, Deokar A, Perelshtein I, Gedanken A. A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. J Mater Chem B 2016; 4:2124-2132. [DOI: 10.1039/c6tb00033a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the limitations in the applications and commercialization of metal oxides in diverse fields is their inferior colloidal stability.
Collapse
Affiliation(s)
- Anjani P. Nagvenkar
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Archana Deokar
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Ilana Perelshtein
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Aharon Gedanken
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| |
Collapse
|
232
|
Singh RK, Kumar R, Singh DP. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 2016. [DOI: 10.1039/c6ra07626b] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review article, we describe a general introduction to GO, its synthesis, reduction and some selected frontier applications. Its low cost and potential for mass production make GO a promising building block for functional hybrid materials.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- School of Physical & Material Sciences
- Central University of Himachal Pradesh (CUHP)
- Dharamshala
- India
| | - Rajesh Kumar
- Center for Semiconductor Components and Nanotechnology (CCS Nano)
- University of Campinas (UNICAMP)
- 13083-870 Campinas
- Brazil
| | | |
Collapse
|
233
|
Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. Int J Biol Macromol 2015; 82:702-10. [PMID: 26582339 DOI: 10.1016/j.ijbiomac.2015.11.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/22/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022]
Abstract
Magnetic chitosan-graphene oxide (MCGO) nanocomposite was prepared as a multi-functional nanomaterial for the applications of antibacterial and dye removal. The nanocomposite was characterized by scanning electronic microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR). The antibacterial performance for MCGO against Escherichia coli was varied depending on the concentration of MCGO. SEM images of E. coli cells demonstrated that the antimicrobial performance of MCGO nanocomposite was possibly due to the damage of cell membrane. This work also explored MCGO's adsorption performance for methyl orange (MO). The experimental parameters including adsorbent mass, pH value, contact time and concentration of MO on the adsorption capacity were investigated. The maximum adsorption capacity of MCGO for MO was 398.08 mg/g. This study showed that the MCGO offered enormous potential applications for water treatment.
Collapse
|
234
|
Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0145-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
235
|
Efremova LV, Vasilchenko AS, Rakov EG, Deryabin DG. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests. BIOMED RESEARCH INTERNATIONAL 2015; 2015:869361. [PMID: 26221608 PMCID: PMC4449897 DOI: 10.1155/2015/869361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 01/01/2023]
Abstract
The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., "membrane stress") as a clue to graphene oxide's mechanism of toxicity.
Collapse
Affiliation(s)
- Ludmila V. Efremova
- Department of Microbiology, Orenburg State University, Pobedy Avenue 13, Orenburg 460018, Russia
| | - Alexey S. Vasilchenko
- Department of Microbiology, Orenburg State University, Pobedy Avenue 13, Orenburg 460018, Russia
- Institute of Cellular and Intracellular Symbiosis, RAS, Pionerskaya Street 11, Orenburg 460000, Russia
| | - Eduard G. Rakov
- D. Mendeleyev University of Chemical Technology, Miusskaya Square 9, Moscow 125047, Russia
| | - Dmitry G. Deryabin
- Department of Microbiology, Orenburg State University, Pobedy Avenue 13, Orenburg 460018, Russia
| |
Collapse
|
236
|
Dallavalle M, Calvaresi M, Bottoni A, Melle-Franco M, Zerbetto F. Graphene can wreak havoc with cell membranes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4406-14. [PMID: 25648559 DOI: 10.1021/am508938u] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular dynamics--coarse grained to the level of hydrophobic and hydrophilic interactions--shows that small hydrophobic graphene sheets pierce through the phospholipid membrane and navigate the double layer, intermediate size sheets pierce the membrane only if a suitable geometric orientation is met, and larger sheets lie mainly flat on the top of the bilayer where they wreak havoc with the membrane and create a patch of upturned phospholipids. The effect arises in order to maximize the interaction between hydrophobic moieties and is quantitatively explained in terms of flip-flops by the analysis of the simulations. Possible severe biological consequences are discussed.
Collapse
Affiliation(s)
- Marco Dallavalle
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna , via F. Selmi 2, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
237
|
Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev 2015; 44:5861-96. [DOI: 10.1039/c5cs00021a] [Citation(s) in RCA: 1073] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A critical assessment of recent developments in environmental applications of graphene and graphene-based materials.
Collapse
Affiliation(s)
- François Perreault
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
| | | | - Menachem Elimelech
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
| |
Collapse
|
238
|
Babitha KB, Jani Matilda J, Peer Mohamed A, Ananthakumar S. Catalytically engineered reduced graphene oxide/ZnO hybrid nanocomposites for the adsorption, photoactivity and selective oil pick-up from aqueous media. RSC Adv 2015. [DOI: 10.1039/c5ra04850h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microwave mediated in situ growth of nanocrystalline ZnO on rGO nanosheets is achieved using APTMS as the crosslinking agent. The deposition of hydrophobic ZnO/Si@rGO on a simple cotton textile results in the selective adsorption of oil from aqueous media.
Collapse
Affiliation(s)
- K. B. Babitha
- Functional Materials Section
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - J. Jani Matilda
- Functional Materials Section
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - A. Peer Mohamed
- Functional Materials Section
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - S. Ananthakumar
- Functional Materials Section
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| |
Collapse
|
239
|
Ray Chowdhuri A, Tripathy S, Chandra S, Roy S, Sahu SK. A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv 2015. [DOI: 10.1039/c5ra05393e] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rise in antimicrobial resistance requires the development of new antibacterial agents.
Collapse
Affiliation(s)
| | - Satyajit Tripathy
- Immunology and Microbiology Laboratory
- Department of Human Physiology with Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Soumen Chandra
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad 826004
- India
| | - Somenath Roy
- Immunology and Microbiology Laboratory
- Department of Human Physiology with Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Sumanta Kumar Sahu
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad 826004
- India
| |
Collapse
|
240
|
Situ SF, Samia ACS. Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20154-20163. [PMID: 25347201 DOI: 10.1021/am505744m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new hydrothermal synthesis approach involving the carbonization of glucose in the presence of wüstite (FeO) nanoparticles is presented, which leads to the fabrication of rapidly acting and potent antibacterial agents based on iron oxide@carbon (IO@C) nanochains. By using nonmagnetic FeO precursor nanoparticles that slowly oxidize into the magnetic Fe3O4 crystal structure under hydrothermal conditions, we were able to prepare well-defined and short-length IO@C nanochains that are highly dispersed in aqueous media and readily interact with bacterial cells, leading to a complete loss in bacterial cell viability within short incubation times at minimal dosage. The smaller IO@C nanochains synthesized using the FeO precursor nanoparticles can reach above 2-fold enhancement in microbe-killing activity when compared to the larger nanochains fabricated directly from Fe3O4 nanoparticles. In addition, the synthesized IO@C nanochains can be easily isolated using an external magnet and be subsequently recycled to effectively eradicate Escherichia coli cells even after five separate treatment cycles.
Collapse
Affiliation(s)
- Shu F Situ
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
241
|
Shen X, Hu Y, Xu G, Chen W, Xu K, Ran Q, Ma P, Zhang Y, Li J, Cai K. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16426-40. [PMID: 25148131 DOI: 10.1021/am5049338] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.
Collapse
Affiliation(s)
- Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University , Chongqing 400044, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|