201
|
Hayashida O, Ichimura K. Synthesis and Characterization of Reduction-responsive Cyclophane Dimer Based on Disulfide Linkage. CHEM LETT 2012. [DOI: 10.1246/cl.2012.1650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University
| | | |
Collapse
|
202
|
Veeranarayanan S, Poulose AC, Mohamed MS, Varghese SH, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. Synergistic targeting of cancer and associated angiogenesis using triple-targeted dual-drug silica nanoformulations for theragnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3476-3489. [PMID: 22865683 DOI: 10.1002/smll.201200874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 06/01/2023]
Abstract
The targeting and therapeutic efficacy of dye- and dual-drug-loaded silica nanoparticles, functionalized with triple targeting ligands specific towards cancer and neoangiogenesis simultaneously, are discussed. This synergized, high-precision, multitarget concept culminates in an elevated uptake of nanoparticles by cancer and angiogenic cells with amplified proficiency, thereby imparting superior therapeutic efficacy against breast cancer cells and completely disabling the migration and angiogenic sprouting ability of activated endothelial cells. The exceptional multimodal efficiency achieved by this single therapeutic nanoformulation holds promise for the synergistic targeting and treatment of the yet elusive cancer and its related angiogenesis in a single, lethal shot.
Collapse
Affiliation(s)
- Srivani Veeranarayanan
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Wei H, Schellinger JG, Chu DSH, Pun SH. Neuron-targeted copolymers with sheddable shielding blocks synthesized using a reducible, RAFT-ATRP double-head agent. J Am Chem Soc 2012; 134:16554-7. [PMID: 23013485 DOI: 10.1021/ja3085803] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of in vitro optimized polymeric gene delivery systems for in vivo use remains a significant challenge. Most in vivo applications require particles that are sterically stabilized, which significantly compromises transfection efficiency of materials shown to be effective in vitro. We present a multifunctional well-defined block copolymer that forms particles useful for cell targeting, reversible shielding, endosomal release, and DNA condensation. We show that targeted and stabilized particles retain transfection efficiencies comparable to the nonstabilized formulations. A novel, double-head agent that combines a reversible addition-fragmentation chain transfer agent and an atom transfer radical polymerization initiator through a disulfide linkage is used to synthesize a well-defined cationic block copolymer containing a hydrophilic oligoethyleneglycol and a tetraethylenepentamine-grafted polycation. This material effectively condenses plasmid DNA into salt-stable particles that deshield under intracellular reducing conditions. In vitro transfection studies show that the reversibly shielded polyplexes afford up to 10-fold higher transfection efficiencies than the analogous stably shielded polymer in four different mammalian cell lines. To compensate for reduced cell uptake caused by the hydrophilic particle shell, a neuron-targeting peptide is further conjugated to the terminus of the block copolymer. Transfection of neuron-like, differentiated PC-12 cells demonstrates that combining both targeting and deshielding in stabilized particles yields formulations that are suitable for in vivo delivery without compromising in vitro transfection efficiency and are thus promising carriers for in vivo gene delivery applications.
Collapse
Affiliation(s)
- Hua Wei
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
204
|
Dash TK, Konkimalla VB. Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer. Mol Pharm 2012; 9:2365-79. [DOI: 10.1021/mp3001952] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tapan K. Dash
- School of Biological Sciences,
National Institute of
Science Education and Research, Institute of Physics Campus, Sainik
School, Sachivalaya marg, Bhubaneswar-751005, India
| | - V. Badireenath Konkimalla
- School of Biological Sciences,
National Institute of
Science Education and Research, Institute of Physics Campus, Sainik
School, Sachivalaya marg, Bhubaneswar-751005, India
| |
Collapse
|
205
|
Shirazi RS, Ewert KK, Silva BFB, Leal C, Li Y, Safinya CR. Structural evolution of environmentally responsive cationic liposome-DNA complexes with a reducible lipid linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10495-503. [PMID: 22616637 PMCID: PMC3399028 DOI: 10.1021/la301181b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Environmentally responsive materials (i.e., materials that respond to changes in their environment with a change in their properties or structure) are attracting increasing amounts of interest. We recently designed and synthesized a series of cleavable multivalent lipids (CMVLn, with n = 2-5 being the number of positive headgroup charges at full protonation) with a disulfide bond in the linker between their cationic headgroup and hydrophobic tails. The self-assembled complexes of the CMVLs and DNA are a prototypical environmentally responsive material, undergoing extensive structural rearrangement when exposed to reducing agents. We investigated the structural evolution of CMVL-DNA complexes at varied complex composition, temperature, and incubation time using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). A related lipid with a stable linker, TMVL4, was used as a control. In a nonreducing environment, CMVL-DNA complexes form the lamellar (L(α)(C)) phase, with DNA rods sandwiched between lipid bilayers. However, new self-assembled phases form when the disulfide linker is cleaved by dithiothreitol or the biologically relevant reducing agent glutathione. The released DNA and cleaved CMVL headgroups form a loosely organized phase, giving rise to a characteristic broad SAXS correlation profile. CMVLs with high headgroup charge also form condensed DNA bundles. Intriguingly, the cleaved hydrophobic tails of the CMVLs reassemble into tilted chain-ordered L(β') phases upon incubation at physiological temperature (37 °C), as indicated by characteristic WAXS peaks. X-ray scattering further reveals that two of the three phases (L(βF), L(βL), and L(βI)) constituting the L(β') phase coexist in these samples. The described system may have applications in lipid-based nanotechnologies.
Collapse
Affiliation(s)
- Rahau S. Shirazi
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Kai K. Ewert
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Bruno F. B. Silva
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Cecilia Leal
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Cyrus R. Safinya
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
206
|
Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 2012; 64:866-84. [PMID: 22349241 DOI: 10.1016/j.addr.2012.01.020] [Citation(s) in RCA: 789] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/08/2023]
Abstract
The use of polymeric nanocarriers to transport active compounds like small-molecular drugs, peptides, or genes found an increased attention throughout the different fields of natural sciences. Not only that these nanocarriers enhance the properties of already existing drugs in terms of solubility, bioavailability, and prolonged circulation times, furthermore they can be tailor-made in such a manner that they selectively release their cargo at the desired site of action. For the triggered release, these so-called smart drug delivery systems are designed to react on certain stimuli like pH, temperature, redox potential, enzymes, light, and ultrasound. Some of these stimuli are naturally occurring in vivo, for example the difference in pH in different cellular compartments while others are caused by the disease, which is to be treated, like differences in pH and temperature in some tumor tissues. Other external applied stimuli, like light and ultrasound, allow the temporal and spatial control of the release, since they are not triggered by any biological event. This review gives a brief overview about some types of stimuli-responsive nanocarriers with the main focus on organic polymer-based systems. Furthermore, the different stimuli and the design of corresponding responsive nanocarriers will be discussed with the help of selected examples from the literature.
Collapse
|
207
|
Jin HJ, Lu J, Wu X. Development of a new enzyme-responsive self-immolative spacer conjugate applicable to the controlled drug release. Bioorg Med Chem 2012; 20:3465-9. [DOI: 10.1016/j.bmc.2012.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
208
|
Nanocarriers as Nanomedicines. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|