201
|
Domhoff A, Wang X, Silva MS, Creager S, Martin TB, Davis EM. Role of nanoparticle size and surface chemistry on ion transport and nanostructure of perfluorosulfonic acid ionomer nanocomposites. SOFT MATTER 2022; 18:3342-3357. [PMID: 35297438 DOI: 10.1039/d1sm01573g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we present a systematic investigation of the impact of silica nanoparticle (SiNP) size and surface chemistry on the nanoparticle dispersion state and the resulting morphology and vanadium ion permeability of the composite ionomer membranes. Specifically, Nafion containing a mass fraction of 5% silica particles, ranging in nominal diameters from 10 nm to >1 μm and with both sulfonic acid- and amine-functionalized surfaces, was fabricated. Most notably, an 80% reduction in vanadium ion permeability was observed for ionomer membranes containing amine-functionalized SiNPs at a nominal diameter of 200 nm. Further, these membranes exhibited an almost 400% increase in proton selectivity when compared to pristine Nafion. Trends in vanadium ion permeability within a particular nominal diameter were seen to be a function of the surface chemistry, where, for example, vanadyl ion permeability was observed to increase with increasing particle size for membranes containing unfunctionalized SiNPs, while it was seen to remain relatively constant for membranes containing amine-functionalized SiNPs. In general, the silica particles tended to exhibit a higher extent of aggregation as the size of the particles was increased. From small-angle neutron scattering experiments, an increase in the spacing of the hydrophobic domains was observed for all composite membranes, though particle size and surface chemistry were seen to have varying impacts on the spacing of the ionic domains of the ionomer.
Collapse
Affiliation(s)
- Allison Domhoff
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | - Xueting Wang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | - Mayura S Silva
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Stephen Creager
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Tyler B Martin
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - Eric M Davis
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| |
Collapse
|
202
|
Seo M, Park S, Ryu J, Kim SJ. Adhesive lift method for patterning arbitrary-shaped thin ion-selective films in micro/nanofluidic device. LAB ON A CHIP 2022; 22:1723-1735. [PMID: 35373806 DOI: 10.1039/d2lc00185c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micro/nanofluidic platforms with nanoporous films have been utilized as research tools for studying electrokinetic phenomena occurring not only in macro-scale systems such as electro-desalination but also in micro-scale systems such as bio-molecular preconcentrators. However, due to the limitations of fabrication techniques, studies with nanoporous films are mainly limited to vary the physicochemical properties of the films such as surface charge and pore size, despite the enormous effect of the membrane morphology on the phenomena that is to be expected. Therefore, we propose an economic and feasible nanofabrication method called the "adhesive lift method" for patterning thin arbitrarily-shaped nanoporous film to integrate it into micro/nanofluidic platforms. The conformal patterning of the nanoporous films (Nafion or poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) in this work) was accomplished with spin coating, oxygen plasma treatment and the "adhesive lift technique". Using the fabricated platforms, the initiation of ion concentration polarization along the film with various shapes was demonstrated. In particular, various electrokinetic characteristics of overlimiting conductance depending on the length scale of the microchannels were successfully demonstrated. Therefore, the presented adhesive lift method would provide platforms which can nearly mimic practical macro-scale fluidic systems so that the method would be very useful for studying various electrokinetic phenomena inside it.
Collapse
Affiliation(s)
- Myungjin Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungmin Park
- Creative Research Center for Brain Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junghwan Ryu
- Department of Forest Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
203
|
Evaluation of radiation stability of electron beam irradiated Nafion® and sulfonated poly(ether ether ketone) membranes. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
204
|
Ion and Molecular Transport in Solid Electrolytes Studied by NMR. Int J Mol Sci 2022; 23:ijms23095011. [PMID: 35563404 PMCID: PMC9103273 DOI: 10.3390/ijms23095011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
NMR is the method of choice for molecular and ionic structures and dynamics investigations. The present review is devoted to solvation and mobilities in solid electrolytes, such as ion-exchange membranes and composite materials, based on cesium acid sulfates and phosphates. The applications of high-resolution NMR, solid-state NMR, NMR relaxation, and pulsed field gradient 1H, 7Li, 13C, 19F, 23Na, 31P, and 133Cs NMR techniques are discussed. The main attention is paid to the transport channel morphology, ionic hydration, charge group and mobile ion interaction, and translation ions and solvent mobilities in different spatial scales. Self-diffusion coefficients of protons and Li+, Na+, and Cs+ cations are compared with the ionic conductivity data. The microscopic ionic transfer mechanism is discussed.
Collapse
|
205
|
Bentley CL, Kang M, Bukola S, Creager SE, Unwin PR. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes. ACS NANO 2022; 16:5233-5245. [PMID: 35286810 PMCID: PMC9047657 DOI: 10.1021/acsnano.1c05872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
Collapse
Affiliation(s)
- Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saheed Bukola
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen E. Creager
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
206
|
Yang Z, Zhang N, Lei L, Yu C, Ding J, Li P, Chen J, Li M, Ling S, Zhuang X, Zhang S. Supramolecular Proton Conductors Self-Assembled by Organic Cages. JACS AU 2022; 2:819-826. [PMID: 35557762 PMCID: PMC9089675 DOI: 10.1021/jacsau.1c00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Proton conduction is vital for living systems to execute various physiological activities. The understanding of its mechanism is also essential for the development of state-of-the-art applications, including fuel-cell technology. We herein present a bottom-up strategy, that is, the self-assembly of Cage-1 and -2 with an identical chemical composition but distinct structural features to provide two different supramolecular conductors that are ideal for the mechanistic study. Cage-1 with a larger cavity size and more H-bonding anchors self-assembled into a crystalline phase with more proton hopping pathways formed by H-bonding networks, where the proton conduction proceeded via the Grotthuss mechanism. Small cavity-sized Cage-2 with less H-bonding anchors formed the crystalline phase with loose channels filled with discrete H-bonding clusters, therefore allowing for the translational diffusion of protons, that is, vehicle mechanism. As a result, the former exhibited a proton conductivity of 1.59 × 10-4 S/cm at 303 K under a relative humidity of 48%, approximately 200-fold higher compared to that of the latter. Ab initio molecular dynamics simulations revealed distinct H-bonding dynamics in Cage-1 and -2, which provided further insights into potential proton diffusion mechanisms. This work therefore provides valuable guidelines for the rational design and search of novel proton-conducting materials.
Collapse
Affiliation(s)
- Zhenyu Yang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ningjin Zhang
- Instrumental
Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200237, China
| | - Lei Lei
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Chunyang Yu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junjie Ding
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pan Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiaolong Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ming Li
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sanliang Ling
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Xiaodong Zhuang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaodong Zhang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
207
|
Deng C, Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Preparation and Properties of Sulfonated Poly(phthalazinone ether ketone) Membranes for Electrodialysis. Polymers (Basel) 2022; 14:polym14091723. [PMID: 35566892 PMCID: PMC9105782 DOI: 10.3390/polym14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023] Open
Abstract
Sulfonated poly(phthalazinone ether ketones) (SPPEK) with ion exchange capacities from 0.77 to 1.82 mmol·g−1 are synthesized via an electrophilic substitution reaction. Nuclear magnetic resonance and infrared absorption spectroscopy are used to characterize the chemical structure of the obtained polymers for confirming the successful introduction of sulfonic groups. SPPEKs show excellent thermal stability; their temperature required to achieve 5% weight loss is about 360 °C. Accordingly, the obtained membranes possess high ion perm-selectivity, proton conductivity, and low area resistance. Regarding the electrodialysis-related performance of the membranes, the SPPEK-4 membrane has the highest limiting current density (39.8 mA·cm2), resulting from its high content of sulfonic groups. In a desalination test of standard solution, SPPEK-3 and SPPEK-4 membranes exhibit both better salt removal rate and acceptable energy consumption than commercial membrane. Additionally, SPPEK-3 membrane shows outstanding performance in terms of high concentration rate and low energy consumption during saline water treatment, which indicates the feasibility of novel membranes in electrodialysis application.
Collapse
Affiliation(s)
- Cong Deng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
| | - Qian Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
- Correspondence: ; Tel.: +86-411-8498-6107
| | - Zhaoqi Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
| | - Yuning Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
| |
Collapse
|
208
|
Nagai T, Yoshimori A, Okazaki S. Dynamic Monte Carlo calculation generating particle trajectories that satisfy the diffusion equation for heterogeneous systems with a position-dependent diffusion coefficient and free energy. J Chem Phys 2022; 156:154506. [PMID: 35459306 DOI: 10.1063/5.0086949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A series of new Monte Carlo (MC) transition probabilities was investigated that could produce molecular trajectories statistically satisfying the diffusion equation with a position-dependent diffusion coefficient and potential energy. The MC trajectories were compared with the numerical solution of the diffusion equation by calculating the time evolution of the probability distribution and the mean first passage time, which exhibited excellent agreement. The method is powerful when investigating, for example, the long-distance and long-time global transportation of a molecule in heterogeneous systems by coarse-graining them into one-particle diffusive molecular motion with a position-dependent diffusion coefficient and free energy. The method can also be applied to many-particle dynamics.
Collapse
Affiliation(s)
- Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Akira Yoshimori
- Department of Physics, Niigata University, Niigata 950-2181, Japan
| | - Susumu Okazaki
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
209
|
Wang Y, Wang Y, Guo M, Ban T, Zhu X. High performance poly(isatin alkyl-terphenyl)s proton exchange membranes with flexible alkylsulfonated side groups. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221089570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrocarbon-based polymer proton exchange membranes (PEMs) free of heteroatom linkages are supposed to be an attractive alternative for the most advanced perfluorosulfonic acid PEMs, but it is challenging to synthesize them. Here we disclosed a series of aliphatic chain-containing poly(isatin diphenyl-co-terphenyl)(PIDT) copolymers, which were conveniently prepared by superacid-catalyzed Friedel-Crafts polycondensation. Subsequently, the sulfonated copolymer (SPIDT) membranes were prepared by the grafting of side-chain sulfonic acid groups. Due to the formed continuous and efficient nanoscale proton transport channel, these PEMs exhibited excellent proton conductivity showing 186 mS/cm at 80°C, higher than Nafion115 (150 mS/cm). Meanwhile, the prepared membranes exhibited good oxidative stability. The residual weight of the membranes is still greater than 98 wt % after 1 h immersion in Fenton’s reagent at 80°C. Notably, the direct borohydride-hydrogen fuel cell (DBHFC) equipped with SPIDT-50 membrane as the diaphragm showed the peak power density of 71 mW•cm−2 at 25°C, which was greater than that of Nafion115 (63 mW•cm−2). Therefore, the hydrocarbon-based PEMs prepared in this study show promise for application in fuel cells.
Collapse
Affiliation(s)
- Yannan Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Yajie Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Maolian Guo
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Tao Ban
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Xiuling Zhu
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| |
Collapse
|
210
|
Lu ZQ, Yin Z, Zhang LL, Yan Y, Jiang Z, Wu H, Wang W. Synthesis of Proton Conductive Copolymers of Inorganic Polyacid Cluster Polyelectrolytes and PEO Bottlebrush Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhuo-Qun Lu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuoyu Yin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lan-Lan Zhang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Yukun Yan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
211
|
Katcharava Z, Saatkamp T, Muenchinger A, Dumbadze N, Kreuer K, Schuster M, Titvinidze G. Optimized step‐growth polymerization of water‐insoluble, highly sulfonated poly(phenylene sulfone). POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Torben Saatkamp
- Max Planck Institute for Solid State Research Stuttgart Germany
| | | | | | | | | | | |
Collapse
|
212
|
A Short Overview of Biological Fuel Cells. MEMBRANES 2022; 12:membranes12040427. [PMID: 35448397 PMCID: PMC9031071 DOI: 10.3390/membranes12040427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
Abstract
This short review summarizes the improvements on biological fuel cells (BioFCs) with or without ionomer separation membrane. After a general introduction about the main challenges of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less complicated systems, without the need for high purification, and the lower environmental impact. In comparison with classical FCs and given their lower electrochemical performances, BioFCs have, up to now, only found niche applications with low power needs, but they could become a green solution in the perspective of sustainable development and the circular economy. Ion exchange membranes for utilization in BioFCs are discussed in the final section of the review: they include perfluorinated proton exchange membranes but also aromatic polymers grafted with proton or anion exchange groups.
Collapse
|
213
|
Gawel A, Jaster T, Siegmund D, Holzmann J, Lohmann H, Klemm E, Apfel UP. Electrochemical CO 2 reduction - The macroscopic world of electrode design, reactor concepts & economic aspects. iScience 2022; 25:104011. [PMID: 35340428 PMCID: PMC8943412 DOI: 10.1016/j.isci.2022.104011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For the efficient electrochemical conversion of CO2 into valuable chemical feedstocks, a well-coordinated interaction of all electrolyzer compartments is required. In addition to the catalyst, whose role is described in detail in the part "Electrochemical CO2 Reduction toward Multicarbon Alcohols - The Microscopic World of Catalysts & Process Conditions" of this divided review, the general cell setups, design and manufacture of the electrodes, membranes used, and process parameters must be optimally matched. The authors' goal is to provide a comprehensive review of the current literature on how these aspects affect the overall performance of CO2 electrolysis. To be economically competitive as an overall process, the framework conditions, i.e., CO2 supply and reaction product treatment must also be considered. If the key indicators for current density, selectivity, cell voltage, and lifetime of a CO2 electrolyzer mentioned in the techno-economic consideration of this review are met, electrochemical CO2 reduction can make a valuable contribution to the creation of closed carbon cycles and to a sustainable energy economy.
Collapse
Affiliation(s)
- Alina Gawel
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Theresa Jaster
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Daniel Siegmund
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Johannes Holzmann
- Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Heiko Lohmann
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Elias Klemm
- Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Ulf-Peter Apfel
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
214
|
Elucidating the Water and Methanol Dynamics in Sulfonated Polyether Ether Ketone Nanocomposite Membranes Bearing Layered Double Hydroxides. MEMBRANES 2022; 12:membranes12040419. [PMID: 35448389 PMCID: PMC9028358 DOI: 10.3390/membranes12040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Conventional Nafion membranes demonstrate a strong affinity for methanol, resulting in a high fuel crossover, poor mechanical stability, and thus poor performance in direct methanol fuel cells (DMFCs). This study involves the synthesis and physiochemical characterization of an alternative polymer electrolyte membrane for DMFCs based on sulfonated poly(ether ether ketone) and a layered double hydroxide (LDH) material. Nanocomposite membranes (sPL), with filler loading ranging between 1 wt% and 5 wt%, were prepared by simple solution intercalation and characterized by XRD, DMA, swelling tests, and EIS. For the first time, water and methanol mobility inside the hydrophilic channels of sPEEK-LDH membranes were characterized by NMR techniques. The introduction of LDH nanoplatelets improved the dimensional stability while having a detrimental effect on methanol mobility, with its self-diffusion coefficient almost two orders of magnitude lower than that of water. It is worth noting that anionic lamellae are directly involved in the proton transport mechanism, thus enabling the formation of highly interconnected paths for proton conduction. In this regard, sPL3 yielded a proton conductivity of 110 mS cm−1 at 120 °C and 90% RH, almost attaining the performance of the Nafion benchmark. The nanocomposite membrane also showed an excellent oxidative stability (over more than 24 h) during Fenton’s test at 80 °C. These preliminary results demonstrate that an sPL3 nanocomposite can be potentially and successfully applied in DMFCs.
Collapse
|
215
|
Ninham BW, Bolotskova PN, Gudkov SV, Baranova EN, Kozlov VA, Shkirin AV, Vu MT, Bunkin NF. Nafion Swelling in Salt Solutions in a Finite Sized Cell: Curious Phenomena Dependent on Sample Preparation Protocol. Polymers (Basel) 2022; 14:1511. [PMID: 35458261 PMCID: PMC9027590 DOI: 10.3390/polym14081511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
When a membrane of Nafion swells in water, polymer fibers "unwind" into the adjoining liquid. They extend to a maximum of about ~300 μm. We explore features of Nafion nanostructure in several electrolyte solutions that occur when the swelling is constrained to a cell of size less than a distance of 300 μm. The constraint forces the polymer fibers to abut against the cell windows. The strongly amphiphilic character of the polymer leads to a shear stress field and the expulsion of water from the complex swollen fiber mixture. An air cavity is formed. It is known that Nafion membrane swelling is highly sensitive to small changes in ion concentration and exposure to shaking. Here we probe such changes further by studying the dynamics of the collapse of the induced cavity. Deionized water and aqueous salt solutions were investigated with Fourier IR spectrometry. The characteristic times of collapse differ for water and for the salt solutions. The dynamics of the cavity collapse differs for solutions prepared by via different dilution protocols. These results are surprising. They may have implications for the standardization of pharmaceutical preparation processes.
Collapse
Affiliation(s)
- Barry W. Ninham
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia;
| | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.T.V.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
- N.V. Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Botanicheskaya Str. 5, 127276 Moscow, Russia
| | - Valeriy A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.T.V.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Alexey V. Shkirin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
- Laser Physics Department, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia
| | - Minh Tuan Vu
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.T.V.)
| | - Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.T.V.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| |
Collapse
|
216
|
Strategically Altered Fluorinated Polymer at Nanoscale for Enhancing Proton Conduction and Power Generation from Salinity Gradient. MEMBRANES 2022; 12:membranes12040395. [PMID: 35448365 PMCID: PMC9025533 DOI: 10.3390/membranes12040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Reverse electrodialysis (RED) generates power directly by transforming salinity gradient into electrical energy. The ion transport properties of the ion-exchange membranes need to be investigated deeply to improve the limiting efficiencies of the RED. The interaction between “counterions” and “ionic species” in the membrane requires a fundamental understanding of the phase separation process. Here, we report on sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)/graphitic carbon nitride nanocomposites for RED application. We demonstrate that the rearrangement of the hydrophilic and hydrophobic domains in the semicrystalline polymer at a nanoscale level improves ion conduction. The rearrangement of the ionic species in polymer and “the functionalized nanosheet with ionic species” enhances the proton conduction in the hybrid membrane without a change in the structural integrity of the membrane. A detailed discussion has been provided on the membrane nanostructure, chemical configuration, structural robustness, surface morphology, and ion transport properties of the prepared hybrid membrane. Furthermore, the RED device was fabricated by combining synthesized cation exchange membrane with commercially available anion exchange membrane, NEOSEPTA, and a maximum power density of 0.2 W m−2 was successfully achieved under varying flow rates at the ambient condition.
Collapse
|
217
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
218
|
Nederstedt H, Jannasch P. Poly(p-terphenyl alkylene)s grafted with highly acidic sulfonated polypentafluorostyrene side chains for proton exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
219
|
Munavalli BB, Hegde SN, Kariduraganavar MY. Synthesis of cross‐linked composite membranes by functionalization of single‐walled carbon nanotubes with 1,4‐butane sultone and sulfanilic acid for fuel cell. J Appl Polym Sci 2022. [DOI: 10.1002/app.52388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sachin N. Hegde
- PG Department of Studies in Chemistry Karnatak University Dharwad India
| | | |
Collapse
|
220
|
Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers. MEMBRANES 2022; 12:membranes12030344. [PMID: 35323819 PMCID: PMC8951258 DOI: 10.3390/membranes12030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide (GO) and its acid-functionalized form are known to be effective in enhancing the proton transport properties of phosphoric-acid doped polybenzimidazole (PA-doped PBI) membranes utilized in high-temperature proton exchange membrane fuel cells (HTPEMFC) owing to the presence of proton-conducting functional groups. This work aims to provide a comparison between the different effects of GO with the sulfonated GO (SGO) and phosphonated GO (PGO) on the properties of PA-doped PBI, with emphasis given on proton conductivity to understand which functional groups are suitable for proton transfer under high temperature and anhydrous conditions. Each filler was synthesized following existing methods and introduced into PBI at loadings of 0.25, 0.5, and 1 wt.%. Characterizations were carried out on the overall thermal stability, acid doping level (ADL), dimensional swelling, and proton conductivity. SGO and PGO-containing PBI exhibit better conductivity than those with GO at 180 °C under anhydrous conditions, despite a slight reduction in ADL. PBI with 0.5 wt.% SGO exhibits the highest conductivity at 23.8 mS/cm, followed by PBI with 0.5 wt.% PGO at 19.6 mS/cm. However, the membrane with PGO required a smaller activation energy for proton conduction, thus less energy was needed to initiate fast proton transfer. Additionally, the PGO-containing membrane also displayed an advantage in its thermal stability aspect. Therefore, considering these properties, it is shown that PGO is a potential filler for improving PBI properties for HTPEMFC applications.
Collapse
|
221
|
Salmanion M, Nandy S, Chae KH, Najafpour MM. Further Insight into the Conversion of a Ni-Fe Metal-Organic Framework during Water-Oxidation Reaction. Inorg Chem 2022; 61:5112-5123. [PMID: 35297622 DOI: 10.1021/acs.inorgchem.2c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks (MOFs) are extensively investigated as catalysts in the oxygen-evolution reaction (OER). A Ni-Fe MOF with 2,5-dihydroxy terephthalate as a linker has been claimed to be among the most efficient catalysts for the oxygen-evolution reaction (OER) under alkaline conditions. Herein, the MOF stability under the OER was reinvestigated by electrochemical methods, X-ray diffraction, X-ray absorption spectroscopy, energy-dispersive spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, nuclear magnetic resonance, operando visible spectroscopy, electrospray ionization mass spectroscopy, and Raman spectroscopy. The peaks corresponding to the carboxylate group are observed at 1420 and 1520 cm-1 using Raman spectroscopy. The peaks disappear after the reaction, suggesting the removal of the carboxylate group. A drop in carbon content but growth in oxygen content after the OER was detected by energy-dispersive spectra. This shows that after the OER, the surface of MOF is oxidized. SEM images also show deep restructures in the surface morphology of this Ni-Fe MOF after the OER. Nuclear magnetic resonance and electrospray ionization mass spectrometry show the decomposition of the linker in alkaline conditions and even in the absence of potential. These experimental data indicate that during the OER, the synthesized MOF transforms to a Fe-Ni-layered double hydroxide, and the formed metal oxide is a candidate for the OER catalysis. Generalization is not true; however, taken together, these findings suggest that the stability of Ni-Fe MOFs under harsh oxidation conditions should be reconsidered.
Collapse
Affiliation(s)
- Mahya Salmanion
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
222
|
Das G, Choi JH, Nguyen PKT, Kim DJ, Yoon YS. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers (Basel) 2022; 14:1197. [PMID: 35335528 PMCID: PMC8955432 DOI: 10.3390/polym14061197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The fuel cell industry is the most promising industry in terms of the advancement of clean and safe technologies for sustainable energy generation. The polymer electrolyte membrane fuel cell is divided into two parts: anion exchange membrane fuel cells (AEMFCs) and proton exchange membrane fuel cells (PEMFCs). In the case of PEMFCs, high-power density was secured and research and development for commercialization have made significant progress. However, there are technical limitations and high-cost issues for the use of precious metal catalysts including Pt, the durability of catalysts, bipolar plates, and membranes, and the use of hydrogen to ensure system stability. On the contrary, AEMFCs have been used as low-platinum or non-platinum catalysts and have a low activation energy of oxygen reduction reaction, so many studies have been conducted to find alternatives to overcome the problems of PEMFCs in the last decade. At the core of ensuring the power density of AEMFCs is the anion exchange membrane (AEM) which is less durable and less conductive than the cation exchange membrane. AEMFCs are a promising technology that can solve the high-cost problem of PEMFCs that have reached technological saturation and overcome technical limitations. This review focuses on the various aspects of AEMs for AEMFCs application.
Collapse
Affiliation(s)
- Gautam Das
- Department of Polymer Science and Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Ji-Hyeok Choi
- Department of Materials Science and Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Korea;
| | - Dong-Joo Kim
- Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849, USA
| | - Young Soo Yoon
- Department of Materials Science and Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
| |
Collapse
|
223
|
Liang X, Wu L, Yang Z, Xu T. 聚电解质燃料电池中的质子交换膜研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
224
|
Hu Y, Zhang Y, Cheng Y. Kinetic insight on the long-range exclusion of dissolved substances by interfacial interactions of water and hydrophilic surface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
225
|
Torres MD, de Lima LF, Ferreira AL, de Araujo WR, Callahan P, Dávila A, Abella BS, de la Fuente-Nunez C. Detection of SARS-CoV-2 with RAPID: a prospective cohort study. iScience 2022; 25:104055. [PMID: 35291265 PMCID: PMC8913428 DOI: 10.1016/j.isci.2022.104055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 has killed over 6 million people worldwide. Currently available methods to detect SARS-CoV-2 are limited by their cost and need for multistep sample preparation and trained personnel. Therefore, there is an urgent need to develop fast, inexpensive, and scalable point-of-care diagnostics that can be used for mass testing. Between January and March 2021, we obtained 321 anterior nare swab samples from individuals in Philadelphia (PA, USA). For the Real-time Accurate Portable Impedimetric Detection prototype 1.0 (RAPID) test, anterior nare samples were tested via an electrochemical impedance spectroscopy (EIS) approach. The overall sensitivity, specificity, and accuracy of RAPID in this cohort study were 80.6%, 89.0%, and 88.2%, respectively. We present a rapid, accurate, inexpensive (<$5.00 per unit), and scalable test for diagnosing COVID-19 at the point-of-care. We anticipate that further iterations of this approach will enable widespread deployment, large-scale testing, and population-level surveillance. RAPID shows high accuracy, sensitivity, and specificity in prospective cohort study RAPID was successfully validated using 321 clinical samples Effective point-of-care diagnosis of a heterogeneous sample set
Collapse
Affiliation(s)
- Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas F. de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - André L. Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - William R. de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Paul Callahan
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonio Dávila
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin S. Abella
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Corresponding author
| |
Collapse
|
226
|
|
227
|
MacLeod BP, Parlane FGL, Rupnow CC, Dettelbach KE, Elliott MS, Morrissey TD, Haley TH, Proskurin O, Rooney MB, Taherimakhsousi N, Dvorak DJ, Chiu HN, Waizenegger CEB, Ocean K, Mokhtari M, Berlinguette CP. A self-driving laboratory advances the Pareto front for material properties. Nat Commun 2022; 13:995. [PMID: 35194074 PMCID: PMC8863835 DOI: 10.1038/s41467-022-28580-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023] Open
Abstract
Useful materials must satisfy multiple objectives, where the optimization of one objective is often at the expense of another. The Pareto front reports the optimal trade-offs between these conflicting objectives. Here we use a self-driving laboratory, Ada, to define the Pareto front of conductivities and processing temperatures for palladium films formed by combustion synthesis. Ada discovers new synthesis conditions that yield metallic films at lower processing temperatures (below 200 °C) relative to the prior art for this technique (250 °C). This temperature difference makes possible the coating of different commodity plastic materials (e.g., Nafion, polyethersulfone). These combustion synthesis conditions enable us to to spray coat uniform palladium films with moderate conductivity (1.1 × 105 S m-1) at 191 °C. Spray coating at 226 °C yields films with conductivities (2.0 × 106 S m-1) comparable to those of sputtered films (2.0 to 5.8 × 106 S m-1). This work shows how a self-driving laboratoy can discover materials that provide optimal trade-offs between conflicting objectives.
Collapse
Affiliation(s)
- Benjamin P MacLeod
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Fraser G L Parlane
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Connor C Rupnow
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kevan E Dettelbach
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Michael S Elliott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Thomas D Morrissey
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ted H Haley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Oleksii Proskurin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Michael B Rooney
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Nina Taherimakhsousi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - David J Dvorak
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hsi N Chiu
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | | | - Karry Ocean
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Mehrdad Mokhtari
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.
- Canadian Institute for Advanced Research (CIFAR), MaRS Centre, 661 University Avenue Suite 505, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
228
|
Lei Y, Zhao W, Zhu Y, Buttner U, Dong X, Alshareef HN. Three-Dimensional Ti 3C 2T x MXene-Prussian Blue Hybrid Microsupercapacitors by Water Lift-Off Lithography. ACS NANO 2022; 16:1974-1985. [PMID: 35089009 PMCID: PMC8867912 DOI: 10.1021/acsnano.1c06552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/24/2022] [Indexed: 05/19/2023]
Abstract
The construction of electrochemical energy-storage devices by scalable thin-film microfabrication methods with high energy and power density is urgently needed for many emerging applications. Herein, we demonstrate an in-plane hybrid microsupercapacitor with a high areal energy density by employing a battery-type CuFe-Prussian blue analogue (CuFe-PBA) as the positive electrode and pseudocapacitive titanium carbide MXene (Ti3C2Tx) as the negative electrode. A three-dimensional lignin-derived laser-induced graphene electrode was prepared as the substrate by laser exposure combined with an environmentally friendly water lift-off lithography. The designed hybrid device achieved enhanced electrochemical performance thanks to the ideal match of the two types of high-rate performance materials in proton-based electrolytes and the numerous electrochemically active sites. In particular, the device delivers a high areal capacitance of 198 mF cm-2, a wide potential window (1.6 V), an ultrahigh rate performance (75.8 mF cm-2 retained even at a practical/high current density of 100 mA cm-2), and a competitive energy density of 70.5 and 27.6 μWh cm-2 at the power densities 0.74 and 52 mW cm-2, respectively. These results show that the Ti3C2Tx/CuFe-PBA hybrid microsupercapacitors are promising energy storage devices in miniaturized portable and wireless applications.
Collapse
Affiliation(s)
- Yongjiu Lei
- Materials
Science and Engineering, Physical Science and Engineering
Division and Nanofabrication Core Lab, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Wenli Zhao
- School
of Physical and Mathematical Sciences, Nanjing
Tech University, Nanjing 211816, China
| | - Yunpei Zhu
- Materials
Science and Engineering, Physical Science and Engineering
Division and Nanofabrication Core Lab, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ulrich Buttner
- Materials
Science and Engineering, Physical Science and Engineering
Division and Nanofabrication Core Lab, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiaochen Dong
- School
of Physical and Mathematical Sciences, Nanjing
Tech University, Nanjing 211816, China
| | - Husam N. Alshareef
- Materials
Science and Engineering, Physical Science and Engineering
Division and Nanofabrication Core Lab, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
229
|
Safronova EY, Voropaeva DY, Novikova SA, Yaroslavtsev AB. On the Influence of Solvent and Ultrasonic Treatment on Properties of Cast Nafion® Membranes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
230
|
Wang J, Chen J, Xu Z, Yang X, Ramakrishna S, Liu Y. Mesoscale hydrated morphology of perfluorosulfonic acid membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jihao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Zhiyang Xu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Xiaozhen Yang
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Science Beijing China
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative National University of Singapore Singapore Singapore
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
231
|
Kozmai A, Pismenskaya N, Nikonenko V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int J Mol Sci 2022; 23:ijms23042238. [PMID: 35216352 PMCID: PMC8877549 DOI: 10.3390/ijms23042238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.
Collapse
|
232
|
Bunkin NF, Bolotskova PN, Bondarchuk EV, Gryaznov VG, Kozlov VA, Okuneva MA, Ovchinnikov OV, Smoliy OP, Turkanov IF, Galkina CA, Dmitriev AS, Seliverstov AF. Stochastic Ultralow-Frequency Oscillations of the Luminescence Intensity from the Surface of a Polymer Membrane Swelling in Aqueous Salt Solutions. Polymers (Basel) 2022; 14:polym14040688. [PMID: 35215601 PMCID: PMC8874797 DOI: 10.3390/polym14040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Photoluminescence from the surface of a Nafion polymer membrane upon swelling in isotonic aqueous solutions and Milli-Q water has been studied. Liquid samples were preliminarily processed by electric pulses with a duration of 1 μs and an amplitude of 0.1 V using an antenna in the form of a flat capacitor; experiments on photoluminescent spectroscopy were carried out 20 min after this treatment. A typical dependence of the luminescence intensity, I, on the swelling time, t, obeys an exponentially decaying function. The characteristic decay time of these functions and the stationary level of luminescence intensity depend on the repetition rate of electrical pulses, and the obtained dependences are well reproduced. It transpired that, at certain pulse repetition rates, the dependence, I(t), is a random function, and there is no reproducibility. Stochastic effects are associated with a random external force of an electromagnetic nature that acts on a polymer membrane during swelling. The source of this random force, in our opinion, is low-frequency pulsations of neutron stars or white dwarfs.
Collapse
Affiliation(s)
- Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.A.O.)
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia
- Correspondence:
| | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.A.O.)
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia
| | - Elena V. Bondarchuk
- “Concern GRANIT”, Gogolevsky Blvd., 31, 2, 119019 Moscow, Russia; (E.V.B.); (V.G.G.); (O.V.O.); (O.P.S.); (I.F.T.); (C.A.G.)
| | - Valery G. Gryaznov
- “Concern GRANIT”, Gogolevsky Blvd., 31, 2, 119019 Moscow, Russia; (E.V.B.); (V.G.G.); (O.V.O.); (O.P.S.); (I.F.T.); (C.A.G.)
| | - Valeriy A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.A.O.)
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia
| | - Maria A. Okuneva
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (M.A.O.)
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia
| | - Oleg V. Ovchinnikov
- “Concern GRANIT”, Gogolevsky Blvd., 31, 2, 119019 Moscow, Russia; (E.V.B.); (V.G.G.); (O.V.O.); (O.P.S.); (I.F.T.); (C.A.G.)
| | - Oleg P. Smoliy
- “Concern GRANIT”, Gogolevsky Blvd., 31, 2, 119019 Moscow, Russia; (E.V.B.); (V.G.G.); (O.V.O.); (O.P.S.); (I.F.T.); (C.A.G.)
| | - Igor F. Turkanov
- “Concern GRANIT”, Gogolevsky Blvd., 31, 2, 119019 Moscow, Russia; (E.V.B.); (V.G.G.); (O.V.O.); (O.P.S.); (I.F.T.); (C.A.G.)
| | - Catherine A. Galkina
- “Concern GRANIT”, Gogolevsky Blvd., 31, 2, 119019 Moscow, Russia; (E.V.B.); (V.G.G.); (O.V.O.); (O.P.S.); (I.F.T.); (C.A.G.)
| | - Alexandr S. Dmitriev
- Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Mokhovaya 11, 7, 125009 Moscow, Russia;
| | - Alexandr F. Seliverstov
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prospect 31, 4, 119071 Moscow, Russia;
| |
Collapse
|
233
|
Colodrero RMP, Olivera-Pastor P, Cabeza A, Bazaga-García M. Properties and Applications of Metal Phosphates and Pyrophosphates as Proton Conductors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1292. [PMID: 35207833 PMCID: PMC8875660 DOI: 10.3390/ma15041292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
We review the progress in metal phosphate structural chemistry focused on proton conductivity properties and applications. Attention is paid to structure-property relationships, which ultimately determine the potential use of metal phosphates and derivatives in devices relying on proton conduction. The origin of their conducting properties, including both intrinsic and extrinsic conductivity, is rationalized in terms of distinctive structural features and the presence of specific proton carriers or the factors involved in the formation of extended hydrogen-bond networks. To make the exposition of this large class of proton conductor materials more comprehensive, we group/combine metal phosphates by their metal oxidation state, starting with metal (IV) phosphates and pyrophosphates, considering historical rationales and taking into account the accumulated body of knowledge of these compounds. We highlight the main characteristics of super protonic CsH2PO4, its applicability, as well as the affordance of its composite derivatives. We finish by discussing relevant structure-conducting property correlations for divalent and trivalent metal phosphates. Overall, emphasis is placed on materials exhibiting outstanding properties for applications as electrolyte components or single electrolytes in Polymer Electrolyte Membrane Fuel Cells and Intermediate Temperature Fuel Cells.
Collapse
Affiliation(s)
| | | | | | - Montse Bazaga-García
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (R.M.P.C.); (P.O.-P.); (A.C.)
| |
Collapse
|
234
|
Liu B, Duan Y, Li T, Li J, Zhang H, Zhao C. Nanostructured anion exchange membranes based on poly(arylene piperidinium) with bis-cation strings for diffusion dialysis in acid recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
235
|
Huang Z, Lv B, Zhou L, Tao wei, Qin X, Shao Z. Ultra-thin h-BN doped high sulfonation sulfonated poly (ether-ether-ketone) of PTFE-reinforced proton exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
236
|
Nagai T, Fujimoto K, Okazaki S. Three-dimensional free-energy landscape of hydrogen and oxygen molecules in polymer electrolyte membranes: Insight into diffusion paths. J Chem Phys 2022; 156:044507. [DOI: 10.1063/5.0075969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kazushi Fujimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Susumu Okazaki
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
237
|
Abi Y, Li W, Chang Z. PEBAX 3533/PAA/CNC Composite Fiber Membranes as the Humidifier Membrane for Proton Exchange Membrane Fuel Cells. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasi Abi
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiye Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhihong Chang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
238
|
Kim DJ, Zhu Q, Rigby K, Wu X, Kim JH, Kim JH. A Protocol for Electrocatalyst Stability Evaluation: H 2O 2 Electrosynthesis for Industrial Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1365-1375. [PMID: 34958567 DOI: 10.1021/acs.est.1c06850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalysis has been proposed as a versatile technology for wastewater treatment and reuse. While enormous attention has been centered on material synthesis and design, the practicality of such catalyst materials remains clouded by a lack of both stability assessment protocols and understanding of deactivation mechanisms. In this study, we develop a protocol to identify the wastewater constituents most detrimental to electrocatalyst performance in a timely manner and elucidate the underlying phenomena behind these losses. Synthesized catalysts are electrochemically investigated in various electrolytes based on real industrial effluent characteristics and methodically subjected to a sequence of chronopotentiometric stability tests, in which each stage presents harsher operating conditions. To showcase, oxidized carbon black is chosen as a model catalyst for the electrosynthesis of H2O2, a precursor for advanced oxidation processes. Results illustrate severe losses in catalyst activity and/or selectivity upon the introduction of metal pollutants, namely magnesium and zinc. The insights garnered from this protocol serve to translate lab-scale electrocatalyst developments into practical technologies for industrial water treatment purposes.
Collapse
Affiliation(s)
- David J Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Qianhong Zhu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jin Hyun Kim
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
239
|
Sulfonated Polyether Ether Ketone and Organosilica Layered Nanofiller for Sustainable Proton Exchange Membranes Fuel Cells (PEMFCs). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ease and low environmental impact of its preparation, the reduced fuel crossover, and the low cost, make sulfonated polyether ether ketone (sPEEK) a potential candidate to replace the Nafion ionomer in proton exchange membrane fuel cells (PEMFCs). In this study, sPEEK was used as a polymer matrix for the preparation of nanocomposite electrolyte membranes by dispersing an organo-silica layered material properly functionalized by anchoring high phosphonated (PO3H) ionic groups (nominated PSLM). sPEEK-PSLM membranes were prepared by the solution intercalation method and the proton transport properties were investigated by NMR (diffusometry-PFG and relaxometry-T1) and EIS spectroscopies, whereas the mechanical properties of the membranes were studied by dynamic mechanical analysis (DMA). The presence of the organosilica nanoplatelets remarkably improved the mechanical strength, the water retention capacity at high temperatures, and the proton transport, in particular under harsh operative conditions (above 100 °C and 20–30% RH), usually required in PEMFCs applications.
Collapse
|
240
|
Hu Y, Wang S, Gao G, He Y. The degradation effect on proton dissociation and transfer in perfluorosulfonic acid membranes. Phys Chem Chem Phys 2022; 24:3007-3016. [PMID: 35037924 DOI: 10.1039/d1cp04686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the operation of proton exchange membrane fuel cells (PEMFCs), the ionomer-perfluorosulfonic acid (PSFA) membrane side chains are easily attacked by free radicals, resulting in membrane degradation. In this work, the chemical degradation effect of side chains in the PSFA membrane on proton dissociation and transfer behaviors is investigated by means of the quantum chemistry calculation. The rotation of the H atom in the acid group after the degradation is evaluated. The impact of the electrostatic potential (ESP) and electronegativity of the side chains is analyzed. The results demonstrate that the membrane degradation decreases the positive potential of the proton in the acid group, leading to the proton being less active so that more water molecules are required for the spontaneous proton dissociation. The rotation of the H atom in the acid group affects the proton dissociation mode owing to the change of the hydrogen bond network. It is found that the ESP of the acid group in two side chain fragments influences each other and the water molecules between two side chains can be shared to reduce the number of water molecules for the proton dissociation.
Collapse
Affiliation(s)
- Yu Hu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shuai Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Guohui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yurong He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
241
|
Fluorine-containing bio-inert polymers: Roles of intermediate water. Acta Biomater 2022; 138:34-56. [PMID: 34700043 DOI: 10.1016/j.actbio.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Fluorine-containing polymers are used not only in industrial processes but also in medical applications, because they exhibit excellent heat, weather, and chemical resistance. As these polymers are not easily degraded in our body, it is difficult to use them in applications that require antithrombotic properties, such as artificial blood vessels. The material used for medical applications should not only be stable in vivo, but it should also be inert to biomolecules such as proteins or cells. In this review, this property is defined as "bio-inert," and previous studies in this field are summarized. Bio-inert materials are less recognized as foreign substances by proteins or cells in the living body, and they must be covered at interfaces designed with the concept of intermediate water (IW). On the basis of this concept, we present here the current understanding of bio-inertness and unusual blood compatibility found in fluoropolymers used in biomedical applications. IW is the water that interacts with materials with moderate strength and has been quantified by a variety of analytical methods and simulations. For example, by using differential scanning calorimetry (DSC) measurements, IW was defined as water frozen at around -40°C. To consider the role of the IW, quantification methods of the hydration state of polymers are also summarized. These investigations have been conducted independently because of the conflict between hydrophobic fluorine and bio-inert properties that require hydrophilicity. In recent years, not many materials have been developed that incorporate the good points of both aspects, and their properties have seldom been linked to the hydration state. This has been critically performed now. Furthermore, fluorine-containing polymers in medical use are reviewed. Finally, this review also describes the molecular design of the recently reported fluorine-containing bio-inert polymers for controlling their hydration state. STATEMENT OF SIGNIFICANCE: A material covered with a hydration layer known as intermediate water that interacts moderately with other objects is difficult to be recognized as a foreign substance and exhibits bio-inert properties. Fluoropolymers show high durability, but conflict with bio-inert characteristics requiring hydrophilicity as these research studies have been conducted independently. On the other hand, materials that combine the advantages of both hydrophobic and hydrophilic features have been developed recently. Here, we summarize the molecular architecture and analysis methods that control intermediate water and provide a guideline for designing novel fluorine-containing bio-inert materials.
Collapse
|
242
|
Sigwadi R, Mokrani T, Msomi P, Nemavhola F. The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency. Polymers (Basel) 2022; 14:polym14020263. [PMID: 35054671 PMCID: PMC8779290 DOI: 10.3390/polym14020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.
Collapse
Affiliation(s)
- Rudzani Sigwadi
- Department of Chemical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa;
- Correspondence: ; Tel.: +27-11-471-2354
| | - Touhami Mokrani
- Department of Chemical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa;
| | - Phumlani Msomi
- Department of Applied Chemistry, University of Johannesburg, Johannesburg 2092, South Africa;
| | - Fulufhelo Nemavhola
- Department of Mechanical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa;
| |
Collapse
|
243
|
Jain SK, Rawlings D, Antoine S, Segalman RA, Han S. Confinement Promotes Hydrogen Bond Network Formation and Grotthuss Proton Hopping in Ion-Conducting Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheetal K. Jain
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Dakota Rawlings
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ségolène Antoine
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
244
|
Ho TE, Datta A, Lee HM. Proton-conducting metal–organic frameworks with linkers containing anthracenyl and sulfonate groups. CrystEngComm 2022. [DOI: 10.1039/d2ce00747a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Co(dia)1.5(Hsip)(H2O)·H2O (1) and Zn2(μ-OH)(dia)2(sip)·2H2O (2) were prepared from the same set of ligand precursors. They exhibited bnn and dia topologies, respectively. Factors that contributed to the higher proton conductivity of 1 were presented.
Collapse
Affiliation(s)
- Tsai-En Ho
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Amitabha Datta
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hon Man Lee
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
245
|
Cavaye H, Welbourn RJL, Gluschke JG, Hughes P, Nguyen KV, Micolich AP, Meredith P, Mostert AB. Systematic in situ hydration neutron reflectometry study on Nafion thin films. Phys Chem Chem Phys 2022; 24:28554-28563. [DOI: 10.1039/d2cp03067e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nafion thin films continuously form an increasing number of lamellae layers (high Q peak) near a substrate surface with increasing hydration content, as opposed to exhibiting a phase transition like change.
Collapse
Affiliation(s)
- Hamish Cavaye
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| | - Rebecca J. L. Welbourn
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| | - Jan G. Gluschke
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paul Hughes
- Centre for Nano Health, College of Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Ky V. Nguyen
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam P. Micolich
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, SA2 8PP, Wales, UK
- School of Mathematics and Physics, University of Queensland, St Lucia Campus, Brisbane Queensland 4072, Australia
| | - A. Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
246
|
Hu Y, Wang S, He Y, An L. Evaluation of proton transport and solvation effect in hydrated Nafion membrane with degradation. Phys Chem Chem Phys 2022; 24:29024-29033. [DOI: 10.1039/d2cp02817d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In proton exchange membrane fuel cells (PEMFCs), free radicals easily attack ionomers, resulting in membrane degradation.
Collapse
Affiliation(s)
- Yu Hu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuai Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yurong He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
247
|
Huang XL, Chen YQ, Wen GH, Bao SS, Zheng LM. Hydrated Metal Ions as Weak Bronsted Acids Show the Promoting Effects in Proton Conduction. CrystEngComm 2022. [DOI: 10.1039/d2ce00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is well-known that the hydrated metal ions can act as Bronsted acids, which tend to donate protons increasing the acidic proton concentration in materials, as well as the proton...
Collapse
|
248
|
Na M, Kim K, Oh K, Choi HJ, Ha C, Chang S. Sodium Cholate-Based Active Delipidation for Rapid and Efficient Clearing and Immunostaining of Deep Biological Samples. SMALL METHODS 2022; 6:e2100943. [PMID: 35041279 DOI: 10.1002/smtd.202100943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Indexed: 06/14/2023]
Abstract
Recent surges of optical clearing provided anatomical maps to understand structure-function relationships at organ scale. Detergent-mediated lipid removal enhances optical clearing and allows efficient penetration of antibodies inside tissues, and sodium dodecyl sulfate (SDS) is the most common choice for this purpose. SDS, however, forms large micelles and has a low critical micelle concentration (CMC). Theoretically, detergents that form smaller micelles and higher CMC should perform better but these have remained mostly unexplored. Here, SCARF, a sodium cholate (SC)-based active delipidation method, is developed for better clearing and immunolabeling of thick tissues or whole organs. It is found that SC has superior properties to SDS as a detergent but has serious problems; precipitation and browning. These limitations are overcome by using the ion-conductive film to confine SC while enabling high conductivity. SCARF renders orders of magnitude faster tissue transparency than the SDS-based method, while excellently preserving the endogenous fluorescence, and enables much efficient penetration of a range of antibodies, thus revealing structural details of various organs including sturdy post-mortem human brain tissues at the cellular resolution. Thus, SCARF represents a robust and superior alternative to the SDS-based clearing methods and is expected to facilitate the 3D morphological mapping of various organs.
Collapse
Affiliation(s)
- Myeongsu Na
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Kitae Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Kyoungjoon Oh
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hyung Jin Choi
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - ChangMan Ha
- Research Division and Brain Research Core Facility, Korea Brain Research Institute, Daegu, 41068, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
249
|
Yang X, Kim JH, Kim YJ. Enhanced proton conductivity of poly(ether sulfone) multi-block copolymers grafted with densely pendant sulfoalkoxyl side chains for proton exchange membranes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
250
|
Zhao Y, Zhu P, Pan L, Xie Y, Ng SW, Zhang KL. Preparation and characterization of a newly constructed multifunctional Co( ii)–organic framework: proton conduction and adsorption of Congo red in aqueous medium. CrystEngComm 2022. [DOI: 10.1039/d2ce00330a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient adsorption of CR over Co-MOF 1 as well as the pH-dependent proton-conducting mechanism of the composite Co-MOF–Nafion membrane.
Collapse
Affiliation(s)
- Yanzhu Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lingwei Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yiqing Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Seik Weng Ng
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Kou-Lin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|