201
|
Ultrafast Vibrational Dynamics at Aqueous Interfaces Studied by 2D Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. SPRINGER SERIES IN OPTICAL SCIENCES 2019. [DOI: 10.1007/978-981-13-9753-0_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
202
|
Pullanchery S, Yang T, Cremer PS. Introduction of Positive Charges into Zwitterionic Phospholipid Monolayers Disrupts Water Structure Whereas Negative Charges Enhances It. J Phys Chem B 2018; 122:12260-12270. [DOI: 10.1021/acs.jpcb.8b08476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
203
|
Abstract
Supersolidity of ice, which was proposed in 2013 and intensively verified since then [C. Q. Sun et al., Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors, J. Phys. Chem. Lett., 2013, 4, 2565-2570; C. Q. Sun et al., Density and phonon-stiffness anomalies of water and ice in the full temperature range, J. Phys. Chem. Lett., 2013, 4, 3238-3244], refers to the water molecules being polarized by molecular undercoordination, which is associated with the skin of bulk ice, nanobubbles, and nanodroplets (often called confinement), or by the electrostatic field of ions in salt solutions [X. Zhang et al., Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating, Phys. Chem. Chem. Phys., 2014, 16(45), 24666-24671; C. Q. Sun et al., (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities, J. Phys. Chem. B, 2018, 122(3), 1228-1238]. From the perspective of hydrogen bond (O:H-O or HB with ":" representing the lone pairs on O2-) cooperative relaxation and polarization, this review features the recent progress and recommends future trends in understanding the bond-electron-phonon correlation in the supersolid phase. Supersolidity is characterized by a shorter and stiffer H-O bond, longer and softer O:H nonbond, deeper O 1s energy band, and longer photoelectron and phonon lifetimes. The supersolid phase is less dense, viscoelastic, and mechanically and thermally more stable. Furthermore, O:H-O bond cooperative relaxation offsets the boundaries of structural phases and increases the melting point while lowering the freezing temperature of ice, which is known as supercooling and superheating.
Collapse
Affiliation(s)
- Chang Q Sun
- EBEAM, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
204
|
Li X, Ma L, Lu X. Calcium Ions Affect Water Molecular Structures Surrounding an Oligonucleotide Duplex as Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14774-14779. [PMID: 30089212 DOI: 10.1021/acs.langmuir.8b01763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The solvation of DNA in water facilitates the formation of a hydration layer surrounding it, thus stabilizing the DNA duplex in the biological aqueous environment. In this study, via using the lipid bilayer as a soft substrate to accommodate the duplex oligonucleotide, the structure of the water layer surrounding the oligonucleotide was detected under the perturbation of the calcium ions (Ca2+) with chiral and achiral sum frequency generation (SFG) vibrational spectroscopy. With increasing Ca2+ concentration, both the chiral and achiral water vibrational signals had similar concentration-dependent changes, i.e., an initial decreasing phase followed by an increasing phase. However, when the Ca2+ concentrations were adjusted to within the range comparable to those in the human serum, the chiral water vibrational signals remained nearly unchanged, whereas the achiral water vibrational signals still changed as a function of the Ca2+ concentration. Therefore, the current experimental result supports the possible protection function of the chiral hydration layer against the Ca2+ ions, which generally exist in the cell sap and play important roles in many biological functions.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , Jiangsu Province , P. R. China
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , Jiangsu Province , P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , Jiangsu Province , P. R. China
| |
Collapse
|
205
|
Sengupta S, Moberg DR, Paesani F, Tyrode E. Neat Water-Vapor Interface: Proton Continuum and the Nonresonant Background. J Phys Chem Lett 2018; 9:6744-6749. [PMID: 30407831 DOI: 10.1021/acs.jpclett.8b03069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whether the surface of neat water is "acidic" or "basic" remains an active and controversial field of research. Most of the experimental evidence supporting the preferential adsorption of H3O+ ions stems from nonlinear optical spectroscopy methods typically carried out at extreme pH conditions (pH < 1). Here, we use vibrational sum frequency spectroscopy (VSFS) to target the "proton continuum", an unexplored frequency range characteristic of hydrated protons and hydroxide ions. The VSFS spectra of neat water show a broad and nonzero signal intensity between 1700 and 3000 cm-1 in the three different polarization combinations examined. By comparing the SF response of water with that from dilute HCl and NaOH aqueous solutions, we conclude the intensity does not originate from either adsorbed H3O+ or OH- ions. Contributions from the nonresonant background are then critically considered by comparing the experimental results with many-body molecular dynamics (MB-MD) simulated spectra.
Collapse
Affiliation(s)
- Sanghamitra Sengupta
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | | | | | - Eric Tyrode
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| |
Collapse
|
206
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
207
|
Santos JCC, Negreiros FR, Pedroza LS, Dalpian GM, Miranda PB. Interaction of Water with the Gypsum (010) Surface: Structure and Dynamics from Nonlinear Vibrational Spectroscopy and Ab Initio Molecular Dynamics. J Am Chem Soc 2018; 140:17141-17152. [DOI: 10.1021/jacs.8b09907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jaciara C. C. Santos
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
| | - Fabio R. Negreiros
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Luana S. Pedroza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gustavo M. Dalpian
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Paulo B. Miranda
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
| |
Collapse
|
208
|
Wu CH, Pascal TA, Baskin A, Wang H, Fang HT, Liu YS, Lu YH, Guo J, Prendergast D, Salmeron MB. Molecular-Scale Structure of Electrode-Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid. J Am Chem Soc 2018; 140:16237-16244. [PMID: 30369234 DOI: 10.1021/jacs.8b09743] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Knowledge of the molecular composition and electronic structure of electrified solid-liquid interfaces is key to understanding elemental processes in heterogeneous reactions. Using X-ray absorption spectroscopy in the interface-sensitive electron yield mode (EY-XAS), first-principles electronic structure calculations, and multiscale simulations, we determined the chemical composition of the interfacial region of a polycrystalline platinum electrode in contact with aqueous sulfuric acid solution at potentials between the hydrogen and oxygen evolution reactions. We found that between 0.7 and 1.3 V vs Ag/AgCl the electrical double layer (EDL) region comprises adsorbed sulfate ions with hydrated hydronium ions in the next layer. No evidence was found for bisulfate or Pt-O/Pt-OH species, which have very distinctive spectral signatures. In addition to resolving the long-standing issue of the EDL structure, our work establishes interface- and element-sensitive EY-XAS as a powerful spectroscopic tool for studying condensed phase, buried solid-liquid interfaces relevant to various electrochemical processes and devices.
Collapse
Affiliation(s)
- Cheng Hao Wu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tod A Pascal
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Artem Baskin
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Huixin Wang
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150080 , P. R. China
| | - Hai-Tao Fang
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150080 , P. R. China
| | - Yi-Sheng Liu
- The Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yi-Hsien Lu
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jinghua Guo
- The Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry and Chemical Biology , University of California, Santa Cruz , Santa Cruz , California 95064 , United States
| | - David Prendergast
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Miquel B Salmeron
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Materials Science and Engineering , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
209
|
Yang WC, Hore DK. Broadband models and their consequences on line shape analysis in vibrational sum-frequency spectroscopy. J Chem Phys 2018; 149:174703. [DOI: 10.1063/1.5053128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei-Chen Yang
- Department of Chemistry, University of Victoria, Victoria,
British Columbia V8W 3V6, Canada
| | - Dennis K. Hore
- Department of Chemistry, University of Victoria, Victoria,
British Columbia V8W 3V6, Canada
| |
Collapse
|
210
|
Sarhangi SM, Waskasi MM, Hashemianzadeh SM, Matyushov DV. Interfacial structural crossover and hydration thermodynamics of charged C 60 in water. Phys Chem Chem Phys 2018; 20:27069-27081. [PMID: 30328845 DOI: 10.1039/c8cp05422c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classical molecular dynamics simulations of the hydration thermodynamics, structure, and dynamics of water in hydration shells of charged buckminsterfullerenes are presented in this study. Charging of fullerenes leads to a structural transition in the hydration shell, accompanied by creation of a significant population of dangling O-H bonds pointing toward the solute. In contrast to the well accepted structure-function paradigm, this interfacial structural transition causes nearly no effect on either the dynamics of hydration water or on the solvation thermodynamics. Linear response to the solute charge is maintained despite significant structural changes in the hydration shell, and solvation thermodynamic potentials are nearly insensitive to the altering structure. Only solvation heat capacities, which are higher thermodynamic derivatives of the solvation free energy, indicate some sensitivity to the local hydration structure. We have separated the solvation thermodynamic potentials into direct solute-solvent interactions and restructuring of the hydration shell and analyzed the relative contributions of electrostatic and nonpolar interactions to the solvation thermodynamics.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | | | | |
Collapse
|
211
|
Richert ME, García Rey N, Braunschweig B. Charge-Controlled Surface Properties of Native and Fluorophore-Labeled Bovine Serum Albumin at the Air-Water Interface. J Phys Chem B 2018; 122:10377-10383. [PMID: 30339752 PMCID: PMC6245422 DOI: 10.1021/acs.jpcb.8b06481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Proteins
at interfaces are important for protein formulations and
in soft materials such as foam. Here, interfacial stability and physicochemical
properties are key elements, which drive macroscopic foam properties
through structure–property relations. Native and fluorescein
isothiocyanate-labeled bovine serum albumin (BSA) were used to modify
air–water interfaces as a function of pH. Characterizations
were performed with tensiometry and sum-frequency generation (SFG).
SFG spectra of O–H stretching vibrations reveal a phase reversal
and a pronounced minimum in O–H intensity at pH values of 5.3
and 4.7 for native and labeled BSA, respectively. This minimum is
attributed to the interfacial isoelectric point (IEP) and is accompanied
by a minimum in surface tension and negligible ζ-potentials
in the bulk. Interfacial proteins at pH values close to the IEP can
promote macroscopic foam stability and are predominately located in
the lamellae between individual gas bubbles as evidenced by confocal
fluorescence microscopy. Different from the classical stabilization
mechanisms, for example, via the electrostatic disjoining pressure,
we propose that the presence of more close-packed BSA, because of
negligible net charges, inside the foam lamellae is more effective
in reducing foam drainage as compared to a situation with strong repulsive
electrostatic interactions.
Collapse
Affiliation(s)
- Manuela E Richert
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany
| | - Natalia García Rey
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany.,Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany.,Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
| |
Collapse
|
212
|
Spectroscopic BIL-SFG Invariance Hides the Chaotropic Effect of Protons at the Air-Water Interface. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The knowledge of the water structure at the interface with the air in acidic pH conditions is of utmost importance for chemistry in the atmosphere. We shed light on the acidic air-water (AW) interfacial structure by DFT-MD simulations of the interface containing one hydronium ion coupled with theoretical SFG (Sum Frequency Generation) spectroscopy. The interpretation of SFG spectra at charged interfaces requires a deconvolution of the signal into BIL (Binding Interfacial Layer) and DL (Diffuse Layer) SFG contributions, which is achieved here, and hence reveals that even though H 3 O + has a chaotropic effect on the BIL water structure (by weakening the 2D-HBond-Network observed at the neat air-water interface) it has no direct probing in SFG spectroscopy. The changes observed experimentally in the SFG of the acidic AW interface from the SFG at the neat AW are shown here to be solely due to the DL-SFG contribution to the spectroscopy. Such BIL-SFG and DL-SFG deconvolution rationalizes the experimental SFG data in the literature, while the hydronium chaotropic effect on the water 2D-HBond-Network in the BIL can be put in perspective of the decrease in surface tension at acidic AW interfaces.
Collapse
|
213
|
Dreier LB, Bernhard C, Gonella G, Backus EHG, Bonn M. Surface Potential of a Planar Charged Lipid-Water Interface. What Do Vibrating Plate Methods, Second Harmonic and Sum Frequency Measure? J Phys Chem Lett 2018; 9:5685-5691. [PMID: 30212219 DOI: 10.1021/acs.jpclett.8b02093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interfacial electrical potential is an important parameter influencing, for instance, electrochemical reactions and biomolecular interactions at membranes. A deeper understanding of different methods that measure quantities related to the surface potential is thus of great scientific and technological relevance. We use lipid monolayers with varying charge density and thoroughly compare the results of surface potential measurements performed with the vibrating plate capacitor method and second harmonic generation spectroscopy. The two techniques provide very different results as a function of surface charge. Using the molecular information on lipid alkyl chain, lipid headgroup, and interfacial water provided by sum frequency generation spectroscopy, we disentangle the different contributions to the surface potential measured by the different techniques. Our results show that the two distinct approaches are dominated by different molecular moieties and effects. While the shape of the SPOT method response as a function of charge density is dominated by the lipid carbonyl groups, the SHG results contain contributions from the interfacial water molecules, the lipids and hyper-Rayleigh scattering.
Collapse
Affiliation(s)
- L B Dreier
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
- Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany
| | - C Bernhard
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - G Gonella
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - E H G Backus
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - M Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
214
|
Schulze-Zachau F, Bachmann S, Braunschweig B. Effects of Ca 2+ Ion Condensation on the Molecular Structure of Polystyrene Sulfonate at Air-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11714-11722. [PMID: 30188134 PMCID: PMC6170951 DOI: 10.1021/acs.langmuir.8b02631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/05/2018] [Indexed: 06/02/2023]
Abstract
The structure of poly(sodium 4-styrenesulfonate) (NaPSS) polyelectrolytes at air-water interfaces was investigated with tensiometry, ellipsometry, and vibrational sum-frequency generation (SFG) in the presence of low and high CaCl2 concentrations. In addition, we have studied the foaming behavior of 20 mM NaPSS solutions to relate the PSS molecular structure at air-water interfaces to foam properties. PSS polyelectrolytes without additional salt exhibited significant surface activity, which can be tuned further by additions of CaCl2. The hydrophobicity of the backbone due to incomplete sulfonation during synthesis is one origin, whereas the effective charge of the polyelectrolyte chain is shown to play another major role. At low salt concentrations, we propose that the polyelectrolyte is forming a layered structure. The hydrophobic parts are likely to be located directly at the interface in loops, whereas the hydrophilic parts are at low concentrations stretched out into near-interface regions in tails. Increasing the Ca2+ concentration leads to ion condensation, a collapse of the tails, and likely to Ca2+ intra- and intermolecular bridges between polyelectrolytes at the interface. The increase in both surface excess and foam stability originates from changes in the polyelectrolyte's hydrophobicity due to Ca2+ condensation onto the PSS polyanions. Consequently, charge screening at the interface is enhanced and repulsive electrostatic interactions are reduced. Furthermore, SFG spectra of O-H stretching bands reveal a decrease in intensity of the low-frequency branch when c(Ca2+) is increased whereas the high-frequency branch of O-H stretching modes persists even for 1 M CaCl2. This originates from the remaining net charge of the PSS polyanions at the air-water interface that is not fully compensated by condensation of Ca2+ ions and leads to electric-field-induced contributions to the SFG spectra of interfacial H2O. A charge reversal of the PSS net charge at the air-water interface is not observed and is consistent with bulk electrophoretic mobility measurements.
Collapse
Affiliation(s)
- Felix Schulze-Zachau
- Institute
of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Silvia Bachmann
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
| | - Björn Braunschweig
- Institute
of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
215
|
Leung K, Criscenti LJ, Knight AW, Ilgen AG, Ho TA, Greathouse JA. Concerted Metal Cation Desorption and Proton Transfer on Deprotonated Silica Surfaces. J Phys Chem Lett 2018; 9:5379-5385. [PMID: 30169044 DOI: 10.1021/acs.jpclett.8b02173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na+, Mg2+, and Cu2+ on partially deprotonated silica surfaces are considered. Na+ is predicted to be unbound, while Cu2+ exhibits binding free energies to surface SiO- groups that are larger than those of Mg2+. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu2+ dissociates one of the H2O molecules in its first solvation shell, turning into Cu2+(OH-)(H2O)3, while Mg remains Mg2+(H2O)6. The protonation state of the SiO- group at the initial binding site does not vary monotonically with cation desorption.
Collapse
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States
| | - Louise J Criscenti
- Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States
| | - Andrew W Knight
- Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States
| | - Anastasia G Ilgen
- Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States
| | - Tuan A Ho
- Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States
| | - Jeffery A Greathouse
- Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
216
|
Purnell GE, Walker RA. Hindered Isomerization at the Silica/Aqueous Interface: Surface Polarity or Restricted Solvation? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9946-9949. [PMID: 30058811 DOI: 10.1021/acs.langmuir.8b02299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Time-resolved fluorescence measurements performed in a total internal reflection (TIR) geometry examined the photophysical behavior of coumarin 152 (C152) adsorbed to a silica/aqueous interface. Results imply that interfacial C152 has a remarkably different photoisomerization rate compared to its bulk solution value. C152's fluorescence in bulk water is dominated by a short, sub-nanosecond emission lifetime as the solute readily forms a nonemissive, twisted, intramolecular charge transfer (TICT) state. Time-resolved-TIR data from the silica/aqueous interface show that C152 emission contains a contribution from a longer-lived state (τ = 3.5 ns) that matches C152's fluorescence lifetime in nonpolar solvents where a photoexcited TICT state does not form. This long-lived excited state is assigned to C152 solvated in the interfacial region, where strong substrate-solvent hydrogen bonding prevents the aqueous solvent from stabilizing C152's TICT isomer. Similar results are observed for C152 in frozen water, emphasizing the silica surface's ability to restrict solvent mobility and change the interfacial solvation and reactivity from bulk solution limits.
Collapse
Affiliation(s)
- Grace E Purnell
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Robert A Walker
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| |
Collapse
|
217
|
Besford QA, Liu M, Christofferson AJ. Stabilizing Dipolar Interactions Drive Specific Molecular Structure at the Water Liquid–Vapor Interface. J Phys Chem B 2018; 122:8309-8314. [DOI: 10.1021/acs.jpcb.8b06464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quinn Alexander Besford
- Department of Chemical Engineering, The University of Melbourne, Victoria, Melbourne 3010, Australia
| | - Maoyuan Liu
- School of Chemistry, The University of Melbourne, Victoria, Melbourne 3010, Australia
| | | |
Collapse
|
218
|
Schabes BK, Altman RM, Richmond GL. Come Together: Molecular Details into the Synergistic Effects of Polymer–Surfactant Adsorption at the Oil/Water Interface. J Phys Chem B 2018; 122:8582-8590. [DOI: 10.1021/acs.jpcb.8b05432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Brandon K. Schabes
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Rebecca M. Altman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
219
|
Cui X, Liu J, Xie L, Huang J, Liu Q, Israelachvili JN, Zeng H. Modulation of Hydrophobic Interaction by Mediating Surface Nanoscale Structure and Chemistry, not Monotonically by Hydrophobicity. Angew Chem Int Ed Engl 2018; 57:11903-11908. [PMID: 30043553 DOI: 10.1002/anie.201805137] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/08/2022]
Abstract
The hydrophobic (HB) interaction plays a critical role in many colloidal and interfacial phenomena, biophysical and industrial processes. Surface hydrophobicity, characterized by the water contact angle, is generally considered the most dominant parameter determining the HB interaction. Herein, we quantified the HB interactions between air bubbles and a series of hydrophobic surfaces with different nanoscale structures and surface chemistry in aqueous media using a bubble probe atomic force microscopy (AFM). Surprisingly, it is discovered that surfaces of similar hydrophobicity can show different ranges of HB interactions, while surfaces of different hydrophobicity can have similar ranges of HB interaction. The increased heterogeneity of the surface nanoscale structure and chemistry can effectively decrease the decay length of HB interaction from 1.60 nm to 0.35 nm. Our work provides insights into the physical mechanism of HB interaction.
Collapse
Affiliation(s)
- Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jun Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jacob N Israelachvili
- Department of Chemical Engineering, Materials Department, University of California Santa Barbara, CA, 93106, USA
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
220
|
Cui X, Liu J, Xie L, Huang J, Liu Q, Israelachvili JN, Zeng H. Modulation of Hydrophobic Interaction by Mediating Surface Nanoscale Structure and Chemistry, not Monotonically by Hydrophobicity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Cui
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Jun Huang
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Jacob N. Israelachvili
- Department of Chemical Engineering; Materials Department; University of California Santa Barbara; CA 93106 USA
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| |
Collapse
|
221
|
Serva A, Pezzotti S, Bougueroua S, Galimberti DR, Gaigeot MP. Combining ab-initio and classical molecular dynamics simulations to unravel the structure of the 2D-HB-network at the air-water interface. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
222
|
Urashima SH, Myalitsin A, Nihonyanagi S, Tahara T. The Topmost Water Structure at a Charged Silica/Aqueous Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2018; 9:4109-4114. [PMID: 29975846 DOI: 10.1021/acs.jpclett.8b01650] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite recent significant advances in interface-selective nonlinear spectroscopy, the topmost water structure at a charged silica surface is still not clearly understood. This is because, for charged interfaces, not only interfacial molecules at the topmost layer but also a large number of molecules in the electric double layer are probed even with second-order nonlinear spectroscopy. In the present study, we studied water structure at the negatively charged silica/aqueous interface at pH 12 using heterodyne-detected vibrational sum frequency generation spectroscopy, and demonstrated that the spectral component of the topmost water can be extracted by examining the ionic strength dependence of the Imχ(2) spectrum. The obtained Imχ(2) spectrum indicates that the dominant water species in the topmost layer is hydrogen-bonded to the negatively charged silanolate at the silica surface with one OH group. There also exists minor water species that weakly interacts with the oxygen atom of a siloxane bridge or the remaining silanol at the silica surface, using one OH group. The ionic strength dependence of the Imχ(2) spectrum indicates that this water structure of the topmost layer is unchanged in a wide ionic strength range from 0.01 to 2 M.
Collapse
Affiliation(s)
- Shu-Hei Urashima
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Anton Myalitsin
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
223
|
Sartin MM, Sung W, Nihonyanagi S, Tahara T. Molecular mechanism of charge inversion revealed by polar orientation of interfacial water molecules: A heterodyne-detected vibrational sum frequency generation study. J Chem Phys 2018; 149:024703. [DOI: 10.1063/1.5024310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew M. Sartin
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Woongmo Sung
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
224
|
Reddy SK, Thiraux R, Wellen Rudd BA, Lin L, Adel T, Joutsuka T, Geiger FM, Allen HC, Morita A, Paesani F. Bulk Contributions Modulate the Sum-Frequency Generation Spectra of Water on Model Sea-Spray Aerosols. Chem 2018. [DOI: 10.1016/j.chempr.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
225
|
Ishiyama T, Shirai S, Okumura T, Morita A. Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl 2 solution interfaces. J Chem Phys 2018; 148:222801. [PMID: 29907059 DOI: 10.1063/1.5006543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Shinnosuke Shirai
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Tomoaki Okumura
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science Tohoku University, Sendai 980-8578, Japan and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
226
|
Dos Santos AP, Levin Y. Effective charges and zeta potentials of oil in water microemulsions in the presence of Hofmeister salts. J Chem Phys 2018; 148:222817. [PMID: 29907070 DOI: 10.1063/1.5019704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a theory which allows us to calculate the effective charge and zeta potential of oil droplets in microemulsions containing Hofmeister salts. A modified Poisson-Boltzmann equation is used to account for the surface and ion polarizations and hydrophobic and dispersion interactions. The ions are classified as kosmotropes and chaotropes according to their Jones-Dole viscosity B coefficient. Kosmotropes stay hydrated and do not enter into the oil phase, while chaotropes can adsorb to the oil-water interface. The effective interaction potentials between ions and oil-water interface are parametrized so as to accurately account for the excess interfacial tension.
Collapse
Affiliation(s)
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
227
|
Shin S, Willard AP. Water’s Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface–Water Interactions. J Phys Chem B 2018; 122:6781-6789. [DOI: 10.1021/acs.jpcb.8b02438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
228
|
Roy S, Beutier C, Hore DK. Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
229
|
Schnurbus M, Stricker L, Ravoo BJ, Braunschweig B. Smart Air-Water Interfaces with Arylazopyrazole Surfactants and Their Role in Photoresponsive Aqueous Foam. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6028-6035. [PMID: 29718669 PMCID: PMC5981290 DOI: 10.1021/acs.langmuir.8b00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Indexed: 06/02/2023]
Abstract
A new light-switchable azo-surfactant arylazopyrazole tetraethylene glycol carboxylic acid (AAP-E4) was used as a molecular building block to functionalize macroscopic foams. AAP-E4 was studied in the bulk solution with UV/vis spectroscopy and at the interface with sum-frequency generation (SFG) as well as tensiometry. Additional foaming experiments were performed with a dynamic foam analyzer to study the role of AAP-E4 surfactants at the ubiquitous air-water interface as well as within macroscopic foam. In the bulk, it is possible to switch the AAP-E4 surfactant reversibly from trans to cis configurations and vice versa using 380 nm UV and 520 nm green light, respectively. At the interface, we demonstrate the excellent switching ability of AAP-E4 surfactants and a substantial modification of the surface tension. In addition, we show that the response of the interface is strongly influenced by lateral electrostatic interactions, which can be tuned by the charging state of AAP-E4. Consequently, the electrostatic disjoining pressure and thus the foam stability are highly dependent on the bulk pH and the charging state of the interface. For that reason, we have studied both the surface net charge (SFG) and the surface excess (tensiometry) as important parameters that determine foam stability in this system and show that neutral pH conditions lead to the optimal compromise between switching ability, surface excess, and surface charging. Measurements on the foam stability demonstrated that foams under irradiation with green light are more stable than foams irradiated with UV light.
Collapse
Affiliation(s)
- Marco Schnurbus
- Institute
of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Lucas Stricker
- Organic
Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic
Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute
of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
230
|
Guo J, You S, Wang Z, Peng J, Ma R, Jiang Y. Probing the Structure and Dynamics of Interfacial Water with Scanning Tunneling Microscopy and Spectroscopy. J Vis Exp 2018. [PMID: 29889192 DOI: 10.3791/57193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Water/solid interfaces are ubiquitous and play a key role in many environmental, biophysical, and technological processes. Resolving the internal structure and probing the hydrogen-bond (H-bond) dynamics of the water molecules adsorbed on solid surfaces are fundamental issues of water science, which remains a great challenge owing to the light mass and small size of hydrogen. Scanning tunneling microscopy (STM) is a promising tool for attacking these problems, thanks to its capabilities of sub-Ångström spatial resolution, single-bond vibrational sensitivity, and atomic/molecular manipulation. The designed experimental system consists of a Cl-terminated tip and a sample fabricated by dosing water molecules in situ onto the Au(111)-supported NaCl(001) surfaces. The insulating NaCl films electronically decouple the water from the metal substrates, so the intrinsic frontier orbitals of water molecules are preserved. The Cl-tip facilitates the manipulation of the single water molecules, as well as gating the orbitals of water to the proximity of Fermi level (EF) via tip-water coupling. This paper outlines the detailed methods of submolecular resolution imaging, molecular/atomic manipulation, and single-bond vibrational spectroscopy of interfacial water. These studies open up a new route for investigating the H-bonded systems at the atomic scale.
Collapse
Affiliation(s)
- Jing Guo
- International Center for Quantum Materials, School of Physics, Peking University
| | - Sifan You
- International Center for Quantum Materials, School of Physics, Peking University
| | - Zhichang Wang
- International Center for Quantum Materials, School of Physics, Peking University
| | - Jinbo Peng
- International Center for Quantum Materials, School of Physics, Peking University
| | - Runze Ma
- International Center for Quantum Materials, School of Physics, Peking University
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University; Collaborative Innovation Center of Quantum Matter;
| |
Collapse
|
231
|
Singh A, Kumar A. Benzoin Condensation: A Kinetic Monitoring at the Oil-Water Interface. ChemistrySelect 2018. [DOI: 10.1002/slct.201703107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anshu Singh
- Department of Chemistry; Banaras Hindu University; 221005 India
| | - Anil Kumar
- Physical and Materials Chemistry Division; CSIR-National Chemical Laboratory; Homi Bhabha Road Pune-411 008 India
| |
Collapse
|
232
|
Pan X, Yang F, Chen S, Zhu X, Wang C. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5273-5278. [PMID: 29672067 DOI: 10.1021/acs.langmuir.8b00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cooperative effects of a series of equimolar binary zwitterionic-ionic surfactant mixtures on the interfacial water structure at the air-water interfaces have been studied by sum frequency generation vibrational spectroscopy (SFG-VS). For zwitterionic surfactant palmityl sulfobetaine (SNC16), anionic surfactant sodium hexadecyl sulfate (SHS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) with the same length of alkyl chain, significantly enhanced ordering of interfacial water molecules was observed for the zwitterionic-anionic surfactant mixtures SNC16-SHS, indicating that SNC16 interacts more strongly with SHS than with CTAB because of the strong headgroup-headgroup electrostatic attraction for SNC16-SHS. Meanwhile, the SFG amplitude ratio of methyl and methylene symmetric stretching modes was used to verify the stronger interaction between SNC16 and SHS. The conformational order indicator increased from 0.64 for SNC16 to 7.17 for SNC16-SHS but only 0.94 for SNC16-CTAB. In addition, another anionic surfactant sodium dodecyl sulfate (SDS) was introduced to study the influence of chain-chain interaction. Decreased SFG amplitude of interfacial water molecules for SNC16-SDS was observed. Therefore, both the headgroup-headgroup electrostatic interaction and chain-chain van der Waals attractive interaction of the surfactants play an important role in enhancing the ordering of interfacial water molecules. The results provided experimental and theoretical bases for practical applications of the surfactants.
Collapse
Affiliation(s)
- Xuecong Pan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments , Chinese Academy of Sciences , 40-1 South Beijing Road , Urumqi 830011 , Xinjiang , China
- Laboratory of Nanofiber Membrane Materials and Devices , Xinjiang University Institute of Science and Technology , 1 Xuefu Road , Akesu 843100 , Xinjiang , China
| | - Fangyuan Yang
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments , Chinese Academy of Sciences , 40-1 South Beijing Road , Urumqi 830011 , Xinjiang , China
| | - Shunli Chen
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments , Chinese Academy of Sciences , 40-1 South Beijing Road , Urumqi 830011 , Xinjiang , China
| | - Xuefeng Zhu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments , Chinese Academy of Sciences , 40-1 South Beijing Road , Urumqi 830011 , Xinjiang , China
| | - Chuanyi Wang
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments , Chinese Academy of Sciences , 40-1 South Beijing Road , Urumqi 830011 , Xinjiang , China
| |
Collapse
|
233
|
Pezzotti S, Serva A, Gaigeot MP. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations. J Chem Phys 2018; 148:174701. [DOI: 10.1063/1.5018096] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simone Pezzotti
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR8587, Université d’Evry val d’Essonne, Blvd. F. Mitterrand, Bat Maupertuis, 91025 Evry, France and Université Paris-Saclay, Orsay, France
| | - Alessandra Serva
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR8587, Université d’Evry val d’Essonne, Blvd. F. Mitterrand, Bat Maupertuis, 91025 Evry, France and Université Paris-Saclay, Orsay, France
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR8587, Université d’Evry val d’Essonne, Blvd. F. Mitterrand, Bat Maupertuis, 91025 Evry, France and Université Paris-Saclay, Orsay, France
| |
Collapse
|
234
|
Zhu Z, Guo H, Jiang X, Chen Y, Song B, Zhu Y, Zhuang S. Reversible Hydrophobicity-Hydrophilicity Transition Modulated by Surface Curvature. J Phys Chem Lett 2018; 9:2346-2352. [PMID: 29669417 DOI: 10.1021/acs.jpclett.8b00749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wettability (hydrophobicity and hydrophilicity) is of fundamental importance in physical, chemical, and biological behaviors, resulting in widespread interest. Herein, by modulating surface curvature, we observed a reversible hydrophobic-hydrophilic transition on a model referred to a platinum surface. The underlying mechanism is revealed to be the competition between strong water-solid attraction and interfacial water orderliness. On the basis of the competition, we further propose an equation of wetting transition in the presence of an ordered interfacial liquid. It quantitatively reveals the relation of solid wettability with interfacial water orderliness and solid surface curvature, which can be used for predicting the critical point of the wetting transition. Our findings thus provide an innovative perspective on the design of a functional device demonstrating a reversible wettability transition and even a molecular-level understanding of biological functions.
Collapse
Affiliation(s)
- Zhi Zhu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , PR China
| | - HongKai Guo
- Shijiazhuang Tiedao University , Shijiazhuang 050043 , PR China
| | - XianKai Jiang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , PR China
| | - YongCong Chen
- Shanghai Center for Quantitative Life Sciences & Physics Department , Shanghai University , Shanghai 200444 , PR China
| | - Bo Song
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , PR China
| | - YiMing Zhu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , PR China
| | - SongLin Zhuang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , PR China
| |
Collapse
|
235
|
Ohno PE, Wang HF, Paesani F, Skinner JL, Geiger FM. Second-Order Vibrational Lineshapes from the Air/Water Interface. J Phys Chem A 2018; 122:4457-4464. [PMID: 29665333 DOI: 10.1021/acs.jpca.8b02802] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χtotal(2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ(2)) and χ(3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χtotal(2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ(2) and bulk χ(3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm-1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm-1 frequency range.
Collapse
Affiliation(s)
- Paul E Ohno
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Hong-Fei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China
| | - Francesco Paesani
- Departments of Chemistry and Biochemistry , Materials Science and Engineering , and San Diego Supercomputer Center , University of California, San Diego , Urey Hall 6218, 9500 Gilman Drive , La Jolla , California 92093-0314 , United States
| | - James L Skinner
- Eckhardt Research Center , Institute for Molecular Engineering , Room 205, 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
236
|
Rehl B, Li Z, Gibbs JM. Influence of High pH on the Organization of Acetonitrile at the Silica/Water Interface Studied by Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4445-4454. [PMID: 29580058 DOI: 10.1021/acs.langmuir.7b04289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The acetonitrile-water mixture is one of the most commonly used solvents in hydrophilic interaction chromatography, which contains silica as the solid phase. As such, the silica/acetonitrile-water interface plays a large role in the separation of compounds. Varying the pH is one way to influence retention times, particularly of ionizable solutes, yet the influence of high pH is often unpredictable. To determine how the structure of this interface changes with pH, we utilized the surface specific technique sum frequency generation (SFG). Previous SFG studies at neutral pH have suggested the existence of acetonitrile bilayers at the aqueous silica interface even at low acetonitrile mole fractions. Here we find that the SFG signal from 2900 to 3040 cm-1 at the silica/acetonitrile-water interface increased as we adjusted the aqueous pH from near neutral to high values. This increase in signal was attributed to a greater amount of aligned water which is consistent with an increase in silica surface charge at high pH. In contrast, complementary measurements of the silica/acetonitrile-deuterium oxide interface revealed that the acetonitrile methyl mode nearly vanished as the aqueous pH was increased. This loss of methyl mode signal is indicative of a decrease in the number density of acetonitrile molecules at the interface, as orientation analysis indicates no significant change in the net orientation of the outer leaflet of the acetonitrile bilayer over the pH range studied.
Collapse
Affiliation(s)
- Benjamin Rehl
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Zhiguo Li
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Julianne M Gibbs
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
237
|
Moberg DR, Straight SC, Paesani F. Temperature Dependence of the Air/Water Interface Revealed by Polarization Sensitive Sum-Frequency Generation Spectroscopy. J Phys Chem B 2018; 122:4356-4365. [DOI: 10.1021/acs.jpcb.8b01726] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel R. Moberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shelby C. Straight
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
238
|
Sanders SE, Vanselous H, Petersen PB. Water at surfaces with tunable surface chemistries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:113001. [PMID: 29393860 DOI: 10.1088/1361-648x/aaacb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Collapse
Affiliation(s)
- Stephanie E Sanders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | | | | |
Collapse
|
239
|
Smit WJ, Versluis J, Backus EHG, Bonn M, Bakker HJ. Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice. J Phys Chem Lett 2018; 9:1290-1294. [PMID: 29481753 PMCID: PMC5857927 DOI: 10.1021/acs.jpclett.7b03359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 05/28/2023]
Abstract
We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H2O and D2O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, for both water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.
Collapse
Affiliation(s)
- Wilbert J. Smit
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- PSL
Research University, ESPCI Paris, UMR CBI 8231, 10 rue Vauquelin, 75005 Paris, France
| | - Jan Versluis
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
240
|
Zhang J, Yang W, Tan J, Ye S. In situ examination of a charged amino acid-induced structural change in lipid bilayers by sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 2018; 20:5657-5665. [PMID: 29412195 DOI: 10.1039/c7cp07389e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interactions between amino acids (AAs) and membranes represent various short-range and long-range interactions for biological phenomena; however, they are still poorly understood. In this study, we used cationic lysine and arginine as AA models, and systematically investigated the interactions between charged AAs and lipid bilayers using sum frequency generation vibrational spectroscopy (SFG-VS) in situ and in real time. The AA-induced dynamic structural changes of the lipid bilayer were experimentally monitored using the spectral features of CD2, CD3, the lipid head phosphate, and carbonyl groups in real time. Time-dependent SFG changes in the structure of the lipid bilayer provide direct evidence for the different interactions of lysine and arginine with the membrane. It was found that the discrepancy between lysine and arginine in binding with the lipid bilayer is due to the nature of the terminal functional groups. Arginine exhibits a more drastic impact on the membrane than lysine. SFG responses of the acyl chains, phosphate groups, and carbonyl groups provide evidence that the interaction between AAs and the membrane most likely follows an electrostatics and hydrogen bond-induced defect model. This work presents an exemplary method for comprehensive investigations of interactions between membranes and other functionally significant substances.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|
241
|
Remsing RC, Duignan TT, Baer MD, Schenter GK, Mundy CJ, Weeks JD. Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions. J Phys Chem B 2018; 122:3519-3527. [DOI: 10.1021/acs.jpcb.7b10722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard C. Remsing
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Timothy T. Duignan
- Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Marcel D. Baer
- Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Gregory K. Schenter
- Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Christopher J. Mundy
- Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, Washington, United States
- Affiliate Professor, Department of Chemical Engineering, University of Washington, Seattle, Washington, United States
| | - John D. Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
242
|
Sun CQ, Chen J, Gong Y, Zhang X, Huang Y. (H, Li)Br and LiOH Solvation Bonding Dynamics: Molecular Nonbond Interactions and Solute Extraordinary Capabilities. J Phys Chem B 2018; 122:1228-1238. [DOI: 10.1021/acs.jpcb.7b09269] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chang Q. Sun
- Chongqing
Key Laboratory of Extraordinary Coordination Bond and Advanced Materials
Technologies (EBEAM), Yangtze Normal University, Chongqing 408100, China
- School
EEE, Nanyang Technological University, Singapore 639798
| | - Jiasheng Chen
- Key
Laboratory of Low-Dimensional Materials and Application Technologies
(Ministry of Education) and School of Materials, Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yinyan Gong
- Institute
of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzou 310018, China
| | - Xi Zhang
- Institute
of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongli Huang
- Key
Laboratory of Low-Dimensional Materials and Application Technologies
(Ministry of Education) and School of Materials, Science and Engineering, Xiangtan University, Hunan 411105, China
| |
Collapse
|
243
|
Kusaka R, Watanabe M. Mechanism of phase transfer of uranyl ions: a vibrational sum frequency generation spectroscopy study on solvent extraction in nuclear reprocessing. Phys Chem Chem Phys 2018; 20:29588-29590. [DOI: 10.1039/c8cp04558e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VSFG study on interfaces of TBP/uranyl aqueous solutions shows that uranyl ion does not form complexes with TBP at the interface, and proposes a new extraction mechanism.
Collapse
Affiliation(s)
- Ryoji Kusaka
- Nuclear Science and Engineering Center
- Japan Atomic Energy Agency (JAEA)
- Tokai
- Japan
| | - Masayuki Watanabe
- Nuclear Science and Engineering Center
- Japan Atomic Energy Agency (JAEA)
- Tokai
- Japan
| |
Collapse
|
244
|
Pezzotti S, Galimberti DR, Shen YR, Gaigeot MP. Structural definition of the BIL and DL: a new universal methodology to rationalize non-linearχ(2)(ω) SFG signals at charged interfaces, includingχ(3)(ω) contributions. Phys Chem Chem Phys 2018; 20:5190-5199. [DOI: 10.1039/c7cp06110b] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BIL (Binding Interfacial Layer) and DL (Diffuse Layer) at aqueous interfaces: universal structural definitions, deconvolution of their SFG signals andχ3contribution.
Collapse
Affiliation(s)
- Simone Pezzotti
- LAMBE CNRS UMR8587
- Université d’Evry val d’Essonne
- France & Université Paris-Saclay
- 91025 Evry
- France
| | - Daria Ruth Galimberti
- LAMBE CNRS UMR8587
- Université d’Evry val d’Essonne
- France & Université Paris-Saclay
- 91025 Evry
- France
| | - Y. Ron Shen
- Department of Physics
- University of California
- Berkeley
- USA
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587
- Université d’Evry val d’Essonne
- France & Université Paris-Saclay
- 91025 Evry
- France
| |
Collapse
|
245
|
Thämer M, Campen RK, Wolf M. Detecting weak signals from interfaces by high accuracy phase-resolved SFG spectroscopy. Phys Chem Chem Phys 2018; 20:25875-25882. [DOI: 10.1039/c8cp04239j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase-resolved, collinear, time domain SFG spectrometer for the detection of weak vibrational signals from interfaces.
Collapse
Affiliation(s)
- Martin Thämer
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - R. Kramer Campen
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| |
Collapse
|
246
|
Tan J, Luo Y, Ye S. A Highly Sensitive Femtosecond Time-Resolved Sum Frequency Generation Vibrational Spectroscopy System with Simultaneous Measurement of Multiple Polarization Combinations. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1706114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
247
|
Streubel S, Schulze-Zachau F, Weißenborn E, Braunschweig B. Ion Pairing and Adsorption of Azo Dye/C 16TAB Surfactants at the Air-Water Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:27992-28000. [PMID: 29285205 PMCID: PMC5742476 DOI: 10.1021/acs.jpcc.7b08924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/29/2017] [Indexed: 06/01/2023]
Abstract
Mixed layers of 6-hydroxy-5-[(4-sulfophenyl)azo]-2-naphthalenesulfonate (Sunset Yellow, SSY) and cetyltrimethylammonium bromide (C16TAB) at the air-water interface were studied using vibrational sum-frequency generation (SFG) and dynamic surface tension measurements. In the bulk, addition of C16TAB to SSY aqueous solution causes substantial changes in UV/vis absorption spectra, which originate from strong electrostatic interactions between the anionic SSY azo dye with the cationic C16TAB surfactant. These interactions are a driving force for the formation of SSY/C16TAB ion pairs. The latter are found to be highly surface active while free SSY molecules show no surface activity. Dynamic SFG as well as surface tension measurements at low SSY concentrations reveal that free C16TAB surfactants adsorb at the air-water interface on time scales <1 s where they initially form the dominating surface species, but on longer time scales free C16TAB is exchanged by SSY/C16TAB ion pairs. This causes a dramatic reduction of the surface tension to 35 mN/m but also in foam stability. These changes are accompanied by a substantial loss in SFG intensity from O-H stretching bands around 3200 and 3450 cm-1, which we relate to a decrease in surface charging due to adsorption of ion pairs with no or negligible net charges. For SSY/C16TAB molar ratios >0.5, the O-H bands in SFG spectra are reduced to very low intensities and are indicative to electrically neutral SSY/C16TAB ion pairs. This conclusion is corroborated by an analysis of macroscopic foams, which become highly instable in the presence of neutral SSY/C16TAB ion pairs. From an analysis of SFG spectra of air-water interfaces, we show that the electrostatic repulsion forces inside the ubiquitous foam films are reduced and thus remove the major stabilization mechanism within macroscopic foam.
Collapse
Affiliation(s)
- Saskia Streubel
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Felix Schulze-Zachau
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Eric Weißenborn
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| |
Collapse
|
248
|
Tang F, Ohto T, Hasegawa T, Xie WJ, Xu L, Bonn M, Nagata Y. Definition of Free O–H Groups of Water at the Air–Water Interface. J Chem Theory Comput 2017; 14:357-364. [DOI: 10.1021/acs.jctc.7b00566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fujie Tang
- International
Center for Quantum Materials, School of Physics, Peking University, 5
Yiheyuan Road, Haidian, Beijing 100871, China
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Taisuke Hasegawa
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Wen Jun Xie
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- College
of Chemistry and Molecular Engineering, Peking University, 5
Yiheyuan Road, Haidian, Beijing 100871, China
| | - Limei Xu
- International
Center for Quantum Materials, School of Physics, Peking University, 5
Yiheyuan Road, Haidian, Beijing 100871, China
- Collaborative Innovation
Center of Quantum Matter, Beijing 100871, China
| | - Mischa Bonn
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- Institute for
Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
249
|
Tian T, Lin S, Li S, Zhao L, Santos EJG, Shih CJ. Doping-Driven Wettability of Two-Dimensional Materials: A Multiscale Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12827-12837. [PMID: 29058907 DOI: 10.1021/acs.langmuir.7b03165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Engineering molecular interactions at two-dimensional (2D) materials interfaces enables new technological opportunities in functional surfaces and molecular epitaxy. Understanding the wettability of 2D materials represents the crucial first step toward quantifying the interplay between the interfacial forces and electric potential of 2D materials interfaces. Here we develop the first theoretical framework to model the wettability of the doped 2D materials by properly bridging the multiscale physical phenomena at the 2D interfaces, including (i) the change of 2D materials surface energy (atomistic scale, several angstroms), (ii) the molecular reorientation of liquid molecules adjacent to the interface (molecular scale, 100-101 nm), and (iii) the electrical double layer (EDL) formed in the liquid phase (mesoscopic scales, 100-104 nm). The latter two effects are found to be the major mechanisms responsible for the contact angle change upon doping, while the surface energy change of a pure 2D material has no net effect on the wetting property. When the doping level is electrostatically tuned, we demonstrate that 2D materials with high quantum capacitances (e.g., transition metal dichalcogenides, TMDCs) possess a wider range of tunability in the interfacial tension, under the same applied gate voltage. Furthermore, practical considerations such as defects and airborne contamination are also quantitatively discussed. Our analysis implies that the doping level can be another variable to modulate the wettability at 2D materials interfaces, as well as the molecular packing behavior on a 2D material-coated surface, essentially facilitating the interfacial engineering of 2D materials.
Collapse
Affiliation(s)
- Tian Tian
- Institute for Chemical and Bioengineering, ETH Zürich , Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Shangchao Lin
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida 32310, United States
| | - Siyu Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University , Nanjing, Jiangsu 210096, China
| | - Lingling Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University , Nanjing, Jiangsu 210096, China
| | - Elton J G Santos
- School of Mathematics and Physics, Queen's University Belfast , Belfast BT7 1NN, United Kingdom
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich , Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
250
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|