201
|
Nishimoto Y. Analytic first-order derivatives of partially contracted n-electron valence state second-order perturbation theory (PC-NEVPT2). J Chem Phys 2019; 151:114103. [PMID: 31542000 DOI: 10.1063/1.5115819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A balanced treatment of dynamic and static electron correlation is important in computational chemistry, and multireference perturbation theory (MRPT) is able to do this at a reasonable computational cost. In this paper, analytic first-order derivatives, specifically gradients and dipole moments, are developed for a particular MRPT method, state-specific partially contracted n-electron valence state second-order perturbation theory (PC-NEVPT2). Only one linear equation needs to be solved for the derivative calculation if the Z-vector method is employed, which facilitates the practical application of this approach. A comparison of the calculated results with experimental geometrical parameters of O3 indicates excellent agreement although the calculated results for O3 - are slightly outside the experimental error bars. The 0-0 transition energies of various methylpyrimidines and trans-polyacetylene are calculated by performing geometry optimizations and seminumerical second-order geometrical derivative calculations. In particular, the deviations of 0-0 transition energies of trans-polyacetylene from experimental values are consistently less than 0.1 eV with PC-NEVPT2, indicating the reliability of the method. These results demonstrate the importance of adding dynamic electron correlation on top of methods dominated by static electron correlation and of developing analytic derivatives for highly accurate methods.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
202
|
Schnack-Petersen AK, Haase PAB, Faber R, Provasi PF, Sauer SPA. RPA(D) and HRPA(D): Two new models for calculations of NMR indirect nuclear spin-spin coupling constants. J Comput Chem 2019; 39:2647-2666. [PMID: 30515901 DOI: 10.1002/jcc.25712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/26/2018] [Accepted: 09/23/2018] [Indexed: 01/21/2023]
Abstract
In this article, the RPA(D) and HRPA(D) models for the calculation of linear response functions are presented. The performance of the new RPA(D) and HRPA(D) models is compared to the performance of the established RPA, HRPA, and SOPPA models in calculations of indirect nuclear spin-spin coupling constants using the CCSD model as a reference. The doubles correction offers a significant improvement on both the RPA and HRPA models; however, the improvement is more dramatic in the case of the RPA model. For all coupling types investigated in this study, the results obtained using the HRPA(D) model are comparable in accuracy to those given by the SOPPA model, while requiring between 30% and 90% of the calculation time needed for SOPPA. The RPA(D) model, while of slightly lower accuracy compared to the CCSD model than HRPA(D), offered calculation times of only approximately 25% of those required for SOPPA for all the investigated molecules. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Pi A B Haase
- Van Swinderen Institute, University of Groningen, Groningen, The Netherlands
| | - Rasmus Faber
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patricio F Provasi
- Department of Physics-IMIT, Northeastern University-CONICET, Corrientes, Argentina
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
203
|
Kozłowska J, Lipkowski P, Roztoczyńska A, Bartkowiak W. DFT and spatial confinement: a benchmark study on the structural and electrical properties of hydrogen bonded complexes. Phys Chem Chem Phys 2019; 21:17253-17273. [PMID: 31347634 DOI: 10.1039/c9cp02714a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An extended set of 37 exchange correlation functionals, representing different DFT approximations, has been evaluated on a difficult playground represented by the dipole moment (μz), polarizability (αzz), first hyperpolarizability (βzzz), and the corresponding interaction-induced electrical properties (Δμz, Δαzz, Δβzzz) of spatially confined hydrogen bonded (HB) dimers. A two-dimensional harmonic oscillator potential was used to exert the effect of spatial restriction. The performance of DFT methods in predicting hydrogen bond lengths in the studied molecular complexes upon confinement has also been examined. The data determined using a high-level CCSD(T) method serve as a reference. The conducted analyses allow us to conclude that methods rooted in DFT constitute a precise tool for the calculation of μz and αzz as well as Δμz and Δαzz, as most of the tested functionals provide results affected by rather small relative errors. On the other hand, an accurate description of the nonlinear optical response of the studied HB systems remains a great challenge for most of the analyzed DFT functionals, both in vacuum and in the presence of an analytical confining potential. Some of the tested DFT methods are found to be prone to catastrophic failure in the prediction of βzzz as well as Δβzzz. The obtained results indicate that there is no great chasm in performance between functionals belonging to different DFT approximations or functionals including different amount of Hartree-Fock exchange when the values of dipole moment and first hyperpolarizability as well as the corresponding interaction-induced electrical properties are considered. However, a higher fraction of Hartree-Fock exchange improves the quality of predictions of αzz and Δαzz. Additionally, it has been shown that only three functionals from the examined set, namely B2PLYP, B3LYP and ωB97X-D, provide highly accurate structural parameters for the investigated systems. Of significant importance is the conclusion that the ωB97X-D functional, representing a modern and highly parametrized range-separated hybrid, demonstrates the most coherent behavior, showing rather small deviations from the reference data in the case of μz, αzz, Δμz and Δαzz as well as the structural parameters of the studied HB dimers. Moreover, our results indicate that the presence of spatial confinement has a rather small effect on the performance of DFT methods.
Collapse
Affiliation(s)
- Justyna Kozłowska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | - Paweł Lipkowski
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | - Agnieszka Roztoczyńska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | - Wojciech Bartkowiak
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| |
Collapse
|
204
|
Frati F, de Groot F, Cerezo J, Santoro F, Cheng L, Faber R, Coriani S. Coupled cluster study of the x-ray absorption spectra of formaldehyde derivatives at the oxygen, carbon, and fluorine K-edges. J Chem Phys 2019. [DOI: 10.1063/1.5097650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Federica Frati
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 GC Utrecht, The Netherlands
| | - Frank de Groot
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 GC Utrecht, The Netherlands
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM–CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Lan Cheng
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
205
|
Rtibi E, Abderrabba M, Ayadi S, Champagne B. Theoretical Assessment of the Second-Order Nonlinear Optical Responses of Lindqvist-Type Organoimido Polyoxometalates. Inorg Chem 2019; 58:11210-11219. [PMID: 31390191 DOI: 10.1021/acs.inorgchem.9b01857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The second-order nonlinear optical properties of Lindqvist-type organoimido polyoxometalates bearing donor and acceptor substituents are evaluated by employing density functional theory and time-dependent density functional theory using the ωB97X-D range-separated hybrid exchange-correlation functional to describe accurately the field-induced effects. The hyper-Rayleigh scattering responses, βHRS (-2ω; ω, ω), and the depolarization ratio are the targeted quantities. They are analyzed by resorting to the two-state model, which reduces the full summation-over-state expression to a single diagonal term and relates the response to a few spectroscopic quantities. The validity of this model is demonstrated by its ability to reproduce the βHRS variations as a function of the nature of the ligand, owing to the dominant 1D character of these organic-inorganic hybrids. The calculated values are in good agreement with the recent experimental work of Al-Yasari et al. (Inorg. Chem. 2017, 56, 10181-10194), which demonstrates that the hexamolybdate moiety plays the role of an electron acceptor group. On the contrary, they contradict previous studies, which attributed an electron donor character to the polyoxometalate moiety. Calculations highlight that (i) combining the hexamolybdate unit with an organic ligand bearing a strong donor substituent leads to an enhanced first hyperpolarizability, associated with a dominant low-energy excited state, characterized by a large excitation-induced electron transfer from the donating ligand to the hexamolybdate, therefore coupling the polyoxometalate (POM) and its substituted ligand; (ii) in the case of weaker donor substituents, the hexamolybdate still behaves as an electron acceptor, but the first hyperpolarizability is smaller and the coupling has a reduced spatial extension; and, on the contrary, (iii) in the presence of an acceptor substituent, there is a competition between the hexamolybdate and this group so that the first hyperpolarizability becomes very small. The whole set of results demonstrates that polyoxometalate moieties are good candidates to achieve large second-order nonlinear optical (NLO) responses while keeping a rather large transparency window and also that there remains space to improve their integration into NLO efficient organic-inorganic hybrids.
Collapse
Affiliation(s)
- Emna Rtibi
- Chemistry Department , University of Tunis El Manar, Faculty of Sciences of Tunis , B.P. 248 El Manar II , 2092 Tunis , Tunisia.,Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter , University of Namur , Rue de Bruxelles, 61 , 5000 Namur , Belgium
| | - Manef Abderrabba
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies , Carthage University , B.P. 51, La Marsa , 2075 Tunis , Tunisia
| | - Sameh Ayadi
- Chemistry Department , University of Tunis El Manar, Faculty of Sciences of Tunis , B.P. 248 El Manar II , 2092 Tunis , Tunisia
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter , University of Namur , Rue de Bruxelles, 61 , 5000 Namur , Belgium
| |
Collapse
|
206
|
Stetina TF, Sun S, Williams‐Young DB, Li X. Modeling Magneto‐Photoabsorption Using Time‐Dependent Complex Generalized Hartree‐Fock. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Torin F. Stetina
- Department of Chemistry University of Washington Seattle WA, 98195
| | - Shichao Sun
- Department of Chemistry University of Washington Seattle WA, 98195
| | | | - Xiaosong Li
- Department of Chemistry University of Washington Seattle WA, 98195
| |
Collapse
|
207
|
Pokhilko P, Epifanovsky E, Krylov AI. General framework for calculating spin-orbit couplings using spinless one-particle density matrices: Theory and application to the equation-of-motion coupled-cluster wave functions. J Chem Phys 2019; 151:034106. [PMID: 31325926 DOI: 10.1063/1.5108762] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Standard implementations of nonrelativistic excited-state calculations compute only one component of spin multiplets (i.e., Ms = 0 triplets); however, matrix elements for all components are necessary for deriving spin-dependent experimental observables. Wigner-Eckart's theorem allows one to circumvent explicit calculations of all multiplet components. We generate all other spin-orbit matrix elements by applying Wigner-Eckart's theorem to a reduced one-particle transition density matrix computed for a single multiplet component. In addition to computational efficiency, this approach also resolves the phase issue arising within Born-Oppenheimer's separation of nuclear and electronic degrees of freedom. A general formalism and its application to the calculation of spin-orbit couplings using equation-of-motion coupled-cluster wave functions are presented. The two-electron contributions are included via the mean-field spin-orbit treatment. Intrinsic issues of constructing spin-orbit mean-field operators for open-shell references are discussed, and a resolution is proposed. The method is benchmarked by using several radicals and diradicals. The merits of the approach are illustrated by a calculation of the barrier for spin inversion in a high-spin tris(pyrrolylmethyl)amine Fe(II) complex.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA and Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
208
|
Townsend J, Vogiatzis KD. Data-Driven Acceleration of the Coupled-Cluster Singles and Doubles Iterative Solver. J Phys Chem Lett 2019; 10:4129-4135. [PMID: 31290671 DOI: 10.1021/acs.jpclett.9b01442] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Solving the coupled-cluster (CC) equations is a cost-prohibitive process that exhibits poor scaling with system size. These equations are solved by determining the set of amplitudes (t) that minimize the system energy with respect to the coupled-cluster equations at the selected level of truncation. Here, a novel approach to predict the converged coupled-cluster singles and doubles (CCSD) amplitudes, thus the coupled-cluster wave function, is explored by using machine learning and electronic structure properties inherent to the MP2 level. Features are collected from quantum chemical data, such as orbital energies, one-electron Hamiltonian, Coulomb, and exchange terms. The data-driven CCSD (DDCCSD) is not an alchemical method because the actual iterative coupled-cluster equations are solved. However, accurate energetics can also be obtained by bypassing solving the CC equations entirely. Our preliminary data show that it is possible to achieve remarkable speedups in solving the CCSD equations, especially when the correct physics are encoded and used for training of machine learning models.
Collapse
Affiliation(s)
- Jacob Townsend
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | | |
Collapse
|
209
|
Semenov VA, Samultsev DO, Krivdin LB. DFT computational schemes for 15 N NMR chemical shifts of the condensed nitrogen-containing heterocycles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:346-358. [PMID: 30769377 DOI: 10.1002/mrc.4851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A systematic density functional theory (DFT) study of the accuracy factors (functionals, basis sets, and solvent effects) for the computation of 15 N NMR chemical shifts has been performed in the series of condensed nitrogen-containing heterocycles. The behavior of the most representative functionals was examined based on the benchmark calculations of 15 N NMR chemical shifts in the reference set of compounds. It was found that the best agreement with experiment was achieved with OLYP functional in combination with aug-pcS-3(N)//pc-2 locally dense basis set scheme providing mean absolute error of 5.2 ppm in the range of about 300 ppm. Taking into account solvent effects was performed within a general Tomasi's polarizable continuum model scheme. It was also found that computationally demanding supermolecular solvation model computations essentially improved some "difficult" cases, as was illustrated with phenanthroline dissolved in methanol. Based on the performed calculations, some 200 unknown 15 N NMR chemical shifts were predicted with a high level of confidence for about 50 real-life condensed nitrogen-containing heterocycles, which could serve as a practical guide in structural elucidation of this class of compounds.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
210
|
Dittmer A, Izsák R, Neese F, Maganas D. Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorg Chem 2019; 58:9303-9315. [PMID: 31240911 PMCID: PMC6750750 DOI: 10.1021/acs.inorgchem.9b00994] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
this work, we present a detailed comparison between wave-function-based
and particle/hole techniques for the prediction of band gap energies
of semiconductors. We focus on the comparison of the back-transformed
Pair Natural Orbital Similarity Transformed Equation of Motion Coupled-Cluster
(bt-PNO-STEOM-CCSD) method with Time Dependent Density Functional
Theory (TD-DFT) and Delta Self Consistent Field/DFT (Δ-SCF/DFT)
that are employed to calculate the band gap energies in a test set
of organic and inorganic semiconductors. Throughout, we have used
cluster models for the calculations that were calibrated by comparing
the results of the cluster calculations to periodic DFT calculations
with the same functional. These calibrations were run with cluster
models of increasing size until the results agreed closely with the
periodic calculation. It is demonstrated that bt-PNO-STEOM-CC yields
accurate results that are in better than 0.2 eV agreement with the
experiment. This holds for both organic and inorganic semiconductors.
The efficiency of the employed computational protocols is thoroughly
discussed. Overall, we believe that this study is an important contribution
that can aid future developments and applications of excited state
coupled cluster methods in the field of solid-state chemistry and
heterogeneous catalysis. In this work, it is shown
that a combination of the embedded cluster approach with wave-function-based
ab initio methods in the framework of the Similarity Transformed Equation
of Motion Coupled Cluster (bt-PNO STEOM-CC) provides an accurate protocol
for band gap energy predictions in classes of organic and inorganic
semiconductors.
Collapse
Affiliation(s)
- Anneke Dittmer
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
211
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
212
|
Di Remigio R, Giovannini T, Ambrosetti M, Cappelli C, Frediani L. Fully Polarizable QM/Fluctuating Charge Approach to Two-Photon Absorption of Aqueous Solutions. J Chem Theory Comput 2019; 15:4056-4068. [DOI: 10.1021/acs.jctc.9b00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
213
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
214
|
Semenov VA, Samultsev DO, Rusakova IL, Krivdin LB. Computational Multinuclear NMR of Platinum Complexes: A Relativistic Four-Component Study. J Phys Chem A 2019; 123:4908-4920. [DOI: 10.1021/acs.jpca.9b02867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentin A. Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Dmitry O. Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Irina L. Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Leonid B. Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| |
Collapse
|
215
|
Helmich-Paris B. CASSCF linear response calculations for large open-shell molecules. J Chem Phys 2019; 150:174121. [PMID: 31067879 DOI: 10.1063/1.5092613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complete active space self-consistent-field (CASSCF) linear response method for the simulation of ultraviolet-visible (UV/Vis) absorption and electronic circular dichroism (ECD) spectra of large open-shell molecules is presented. By using a one-index transformed Hamiltonian, the computation of the most time-consuming intermediates can be pursued in an integral-direct fashion, which allows us to employ the efficient resolution-of-the-identity and overlap-fitted chain-of-spheres approximation. For the iterative diagonalization, pairs of Hermitian and anti-Hermitian trial vectors are used which facilitate, on the one hand, an efficient solution of the pair-structured generalized eigenvalue problem in the reduced space, and on the other hand, make the full multiconfigurational random phase approximation as efficient as the corresponding Tamm-Dancoff approximation. Electronic transitions are analyzed and characterized in the particle-hole picture by natural transition orbitals that are introduced for CASSCF linear response theory. For a small organic radical, we can show that the accuracy of simulated UV/Vis absorption spectra with the CASSCF linear response approach is significantly improved compared to the popular state-averaged CASSCF method. To demonstrate the efficiency of the implementation, the 50 lowest roots of a large Ni triazole complex with 231 atoms are computed for the simulated UV/Vis and ECD spectra.
Collapse
Affiliation(s)
- Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
216
|
Peyton BG, Crawford TD. Basis Set Superposition Errors in the Many-Body Expansion of Molecular Properties. J Phys Chem A 2019; 123:4500-4511. [DOI: 10.1021/acs.jpca.9b03864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Benjamin G. Peyton
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - T. Daniel Crawford
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
217
|
Vidal ML, Feng X, Epifanovsky E, Krylov AI, Coriani S. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. J Chem Theory Comput 2019; 15:3117-3133. [PMID: 30964297 DOI: 10.1021/acs.jctc.9b00039] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a fully analytical implementation of the core-valence separation (CVS) scheme for the equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD) method for calculations of core-level states. Inspired by the CVS idea as originally formulated by Cederbaum, Domcke, and Schirmer, pure valence excitations are excluded from the EOM target space and the frozen-core approximation is imposed on the reference-state amplitudes and multipliers. This yields an efficient, robust, practical, and numerically balanced EOM-CCSD framework for calculations of excitation and ionization energies as well as state and transition properties (e.g., spectral intensities, natural transition, and Dyson orbitals) from both the ground and excited states. The errors in absolute excitation/ionization energies relative to the experimental reference data are on the order of 0.2-3.0 eV, depending on the K-edge considered and on the basis set used, and the shifts are systematic for each edge. Compared to a previously proposed CVS scheme where CVS was applied as a posteriori projection only during the solution of the EOM eigenvalue equations, the new scheme is computationally cheaper. It also achieves better cancellation of errors, yielding similar spectral profiles but with absolute core excitation and ionization energies that are systematically closer to the corresponding experimental data. Among the presented results are calculations of transient-state X-ray absorption spectra, relevant for interpretation of UV-pump/X-ray probe experiments.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry, Department of Chemistry , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| | - Xintian Feng
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Q-Chem Incorporated , 6601 Owens Drive, Suite 105 , Pleasanton , California 94588 , United States
| | - Evgeny Epifanovsky
- Q-Chem Incorporated , 6601 Owens Drive, Suite 105 , Pleasanton , California 94588 , United States
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0482 , United States
| | - Sonia Coriani
- DTU Chemistry, Department of Chemistry , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| |
Collapse
|
218
|
Pedersen TB, Kvaal S. Symplectic integration and physical interpretation of time-dependent coupled-cluster theory. J Chem Phys 2019; 150:144106. [DOI: 10.1063/1.5085390] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Thomas Bondo Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
219
|
Pawłowski F, Olsen J, Jørgensen P. Cluster perturbation theory. V. Theoretical foundation for cluster linear target states. J Chem Phys 2019; 150:134112. [DOI: 10.1063/1.5053627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Jeppe Olsen
- Department of Chemistry, qLEAP Center for Theoretical Chemistry, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Poul Jørgensen
- Department of Chemistry, qLEAP Center for Theoretical Chemistry, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
220
|
Sun S, Williams-Young D, Li X. An ab Initio Linear Response Method for Computing Magnetic Circular Dichroism Spectra with Nonperturbative Treatment of Magnetic Field. J Chem Theory Comput 2019; 15:3162-3169. [DOI: 10.1021/acs.jctc.9b00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David Williams-Young
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
221
|
Giovannini T, Puglisi A, Ambrosetti M, Cappelli C. Polarizable QM/MM Approach with Fluctuating Charges and Fluctuating Dipoles: The QM/FQFμ Model. J Chem Theory Comput 2019; 15:2233-2245. [DOI: 10.1021/acs.jctc.8b01149] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
222
|
Ghosh S, Asher JC, Gagliardi L, Cramer CJ, Govind N. A semiempirical effective Hamiltonian based approach for analyzing excited state wave functions and computing excited state absorption spectra using real-time dynamics. J Chem Phys 2019; 150:104103. [DOI: 10.1063/1.5061746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Jason C. Asher
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99338, USA
| |
Collapse
|
223
|
Kyriakidou K, Karafiloglou P, Glendening E, Weinhold F. To Be or Not to Be: Demystifying the 2nd‐Quantized Picture of Complex Electronic Configuration Patterns in Chemistry with Natural Poly‐Electron Population Analysis. J Comput Chem 2019; 40:1509-1520. [DOI: 10.1002/jcc.25803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/03/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Eric Glendening
- Department of Chemistry and Physics Indiana State University Terre Haute Indiana, 47809
| | - Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin, 53706
| |
Collapse
|
224
|
Peng R, Copan AV, Sokolov AY. Simulating X-ray Absorption Spectra with Linear-Response Density Cumulant Theory. J Phys Chem A 2019; 123:1840-1850. [DOI: 10.1021/acs.jpca.8b12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruojing Peng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andreas V. Copan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
225
|
Balachandran Pillai PC, Couling VW. Dispersion of the Rayleigh light-scattering virial coefficients and polarisability anisotropy of CO 2. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1510143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Prathapa C. Balachandran Pillai
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Vincent W. Couling
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| |
Collapse
|
226
|
Correlation between molecular acidity (pKa) and vibrational spectroscopy. J Mol Model 2019; 25:48. [DOI: 10.1007/s00894-019-3928-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
|
227
|
Crawford TD, Kumar A, Bazanté AP, Di Remigio R. Reduced‐scaling coupled cluster response theory: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T. Daniel Crawford
- Department of Chemistry Virginia Tech, Blacksburg Virginia
- The Molecular Sciences Software Institute Blacksburg Virginia
| | - Ashutosh Kumar
- Department of Chemistry Virginia Tech, Blacksburg Virginia
| | | | - Roberto Di Remigio
- Department of Chemistry Virginia Tech, Blacksburg Virginia
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry University of Tromsø ‐ The Arctic University of Norway Tromsø Norway
| |
Collapse
|
228
|
Carbone JP, Cheng L, Myhre RH, Matthews D, Koch H, Coriani S. An analysis of the performance of coupled cluster methods for K-edge core excitations and ionizations using standard basis sets. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2019.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
229
|
Modeling intramolecular energy transfer in lanthanide chelates: A critical review and recent advances. INCLUDING ACTINIDES 2019. [DOI: 10.1016/bs.hpcre.2019.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
230
|
Mostafanejad M, DePrince AE. Combining Pair-Density Functional Theory and Variational Two-Electron Reduced-Density Matrix Methods. J Chem Theory Comput 2018; 15:290-302. [DOI: 10.1021/acs.jctc.8b00988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Mostafanejad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
231
|
Mandal T, Ghosal A, Roy AK. Static polarizability and hyperpolarizability in atoms and molecules through a Cartesian-grid DFT. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2397-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
232
|
Lao KU, Jia J, Maitra R, DiStasio RA. On the geometric dependence of the molecular dipole polarizability in water: A benchmark study of higher-order electron correlation, basis set incompleteness error, core electron effects, and zero-point vibrational contributions. J Chem Phys 2018; 149:204303. [PMID: 30501247 DOI: 10.1063/1.5051458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigate how geometric changes influence the static dipole polarizability (α) of a water molecule by explicitly computing the corresponding dipole polarizability surface (DPS) across 3125 total (1625 symmetry-unique) geometries using linear response coupled cluster theory including single, double, and triple excitations (LR-CCSDT) and the doubly augmented triple-ζ basis set (d-aug-cc-pVTZ). Analytical formulae based on power series expansions of this ab initio surface are generated using linear least-squares analysis and provide highly accurate estimates of this quantity as a function of molecular geometry (i.e., bond and angle variations) in a computationally tractable manner. An additional database, which consists of 25 representative molecular geometries and incorporates a more thorough treatment of both basis sets and core electron effects, is provided as a current benchmark for this quantity and the corresponding leading-order C 6 dispersion coefficient. This database has been utilized to assess the importance of these effects as well as the relative accuracy that can be obtained using several quantum chemical methods and a library of density functional approximations. In addition to high-level electron correlation methods (like CCSD) and our analytical least-squares formulae, we find that the SCAN0, PBE0, MN15, and B97-2 hybrid functionals yield the most accurate descriptions of the molecular polarizability tensor in H2O. Using first-order perturbation theory, we compute the zero-point vibrational correction to α at the CCSDT/d-aug-cc-pVTZ level and find that this correction contributes approximately 3% to the isotropic (α iso) and nearly 50% to the anisotropic (α aniso) polarizability values. In doing so, we find that α iso = 9.8307 bohr3, which is in excellent agreement with the experimental value of 9.83 ± 0.02 bohr3 provided by Russell and Spackman. The DPS reported herein provides a benchmark-quality quantum mechanical estimate of this fundamental quantity of interest and should find extensive use in the development (and assessment) of next-generation force fields and machine-learning based approaches for modeling water in complex condensed-phase environments.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Junteng Jia
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Rahul Maitra
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
233
|
Kozłowska J, Schwilk M, Roztoczyńska A, Bartkowiak W. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Phys Chem Chem Phys 2018; 20:29374-29388. [PMID: 30451255 DOI: 10.1039/c8cp05928d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a systematic evaluation of the performance of a wide range of exchange-correlation functionals and related dispersion correction schemes for the computation of dipole moments of endohedral complexes, formed through the encapsulation of an AB molecule (AB = LiF, HCl) inside carbon nanotubes (CNTs) of different diameter. The consistency and accuracy of (i) generalized gradient approximation, (ii) meta GGA, (iii) global hybrid, and (iv) range-separated hybrid density functionals are assessed. In total, 37 density functionals are tested. The results obtained using the highly accurate pair natural orbitals based explicitly correlated local coupled cluster singles doubles (PNO-LCCSD-F12) method of Werner and co-workers [Schwilk et al., J. Chem. Theory Comput., 2017, 13, 3650; Ma et al., J. Chem. Theory Comput., 2017, 13, 4871] with the aug-cc-pVTZ basis set serve as a reference. The static electric dipole moment is computed via the finite field response or, when possible, as the expectation value of the dipole operator. Among others, it is shown that functionals belonging to the class of range-separated hybrids, provide results closest to the coupled cluster reference data. In particular, the ωB97X as well as the M11 functional may be considered as a promising choice for computing electric properties of noncovalent endohedral complexes. On the other hand, the worst performance was found for the functionals which do not include the Hartree-Fock exchange. The analysis of both the coupled cluster and the DFT results indicates a strong coupling of dispersion and polarization that may also explain why lower level DFT methods, as well as Hartree-Fock and MP2, cannot yield dipole moments beyond a qualitative agreement with the higher order reference data. Interestingly, the much smaller and less systematically constructed basis sets of Pople of moderate size provide results of accuracy at least comparable with the extended Dunning's aug-cc-pVTZ basis set.
Collapse
Affiliation(s)
- Justyna Kozłowska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | | | | | | |
Collapse
|
234
|
Sun S, Williams-Young DB, Stetina TF, Li X. Generalized Hartree–Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions. J Chem Theory Comput 2018; 15:348-356. [DOI: 10.1021/acs.jctc.8b01140] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Torin F. Stetina
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
235
|
Faber R, Coriani S. Resonant Inelastic X-ray Scattering and Nonesonant X-ray Emission Spectra from Coupled-Cluster (Damped) Response Theory. J Chem Theory Comput 2018; 15:520-528. [DOI: 10.1021/acs.jctc.8b01020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rasmus Faber
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
236
|
Baiardi A, Bloino J, Barone V. Time-Dependent Formulation of Resonance Raman Optical Activity Spectroscopy. J Chem Theory Comput 2018; 14:6370-6390. [PMID: 30281300 DOI: 10.1021/acs.jctc.8b00488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, we extend the theoretical framework recently developed for the simulation of resonance Raman (RR) spectra of medium-to-large sized systems to its chiral counterpart, namely, resonance Raman optical activity (RROA). The theory is based on a time-dependent (TD) formulation, with the transition tensors obtained as half-Fourier transforms of the appropriate cross-correlation functions. The implementation has been kept as general as possible, supporting adiabatic and vertical models for the PES representation, both in Cartesian and internal coordinates, with the possible inclusion of Herzberg-Teller (HT) effects. Thanks to the integration of this TD-RROA procedure within a general-purpose quantum-chemistry program, both solvation and leading anharmonicity effects can be included in an effective way. The implementation is validated on one of the smallest chiral molecule (methyloxirane). Practical applications are illustrated with three medium-size organic molecules (naproxen-OCD3, quinidine and 2-Br-hexahelicene), whose simulated spectra are compared to the corresponding experimental data.
Collapse
Affiliation(s)
- Alberto Baiardi
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Julien Bloino
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|
237
|
Reinholdt P, Nørby MS, Kongsted J. Modeling of Magnetic Circular Dichroism and UV/Vis Absorption Spectra Using Fluctuating Charges or Polarizable Embedding within a Resonant-Convergent Response Theory Formalism. J Chem Theory Comput 2018; 14:6391-6404. [DOI: 10.1021/acs.jctc.8b00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Morten S. Nørby
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
238
|
Shee A, Saue T, Visscher L, Severo Pereira Gomes A. Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states. J Chem Phys 2018; 149:174113. [DOI: 10.1063/1.5053846] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109-1055, USA
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS—Université Toulouse III–Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
239
|
Nanda KD, Krylov AI, Gauss J. Communication: The pole structure of the dynamical polarizability tensor in equation-of-motion coupled-cluster theory. J Chem Phys 2018; 149:141101. [DOI: 10.1063/1.5053727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
240
|
Howard JC, Crawford TD. Calculating Optical Rotatory Dispersion Spectra in Solution Using a Smooth Dielectric Model. J Phys Chem A 2018; 122:8557-8564. [DOI: 10.1021/acs.jpca.8b07803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Coleman Howard
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T. Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
241
|
Millán LA, Giribet CG, Aucar GA. Polarization propagator theory and the entanglement between MO excitations. Phys Chem Chem Phys 2018; 20:24832-24842. [PMID: 30229764 DOI: 10.1039/c8cp03480j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Entanglement is at the core of quantum physics and so, one may conjecture that it should have some influence on atomic and molecular response properties. The usual way of treating entanglement is by applying information theory via the von Newman entropy. Given that the principal propagator is the operator that contains the physical information that arises due to the transmission of the effects of two external perturbations through the electronic framework of a quantum system, it should have in it the information necessary to quantify the likely entanglement among molecular orbital excitations. In this article we first propose a proper density matrix and from it, the way to quantify entangled excitations by using information theory. The NMR J-couplings are among the best candidates to learn about the potentialities of this formalism. We applied this new tool to analyze the famous Karplus rule and found a relationship between the dihedral angular dependence and the entanglement. We also found that the entangled excitations are related to electron correlation. The new formalism can be applied to all other response properties.
Collapse
Affiliation(s)
- Leonardo A Millán
- Institute of Modelling and Innovation on Technology, IMIT CONICET-UNNE, Corrientes, Argentina.
| | | | | |
Collapse
|
242
|
Krivdin LB. Theoretical calculations of carbon-hydrogen spin-spin coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:17-73. [PMID: 30538048 DOI: 10.1016/j.pnmrs.2018.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Structural applications of theoretical calculations of carbon-hydrogen spin-spin coupling constants are reviewed covering papers published mainly during the last 10-15 years with a special emphasis on the most notable studies of hybridization, substitution and stereoelectronic effects together with the investigation of hydrogen bonding and intermolecular interactions. The wide scope of different applications of calculated carbon-hydrogen couplings in the structural elucidation of particular classes of organic and bioorganic molecules is reviewed, concentrating mainly on saturated, unsaturated, aromatic and heteroaromatic compounds and their functional derivatives, as well as on natural compounds and carbohydrates. The review is dedicated to Professor Emeritus Michael Barfield in view of his invaluable pioneering contribution to this field.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
243
|
Caputo MC, Alkorta I, Provasi PF, Sauer SPA. Analysis of the interactions in FCCF:(H 2O) and FCCF:(H 2O) 2 complexes through the study of their indirect spin–spin coupling constants. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1488006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- María Cristina Caputo
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires y IFIBA – CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ibon Alkorta
- Instituto de Química Médica (C.S.I.C.), Madrid, Spain
| | - Patricio F. Provasi
- Department of Physics – IMIT – CONICET, Northeastern University, Corrientes, Argentina
| | | |
Collapse
|
244
|
Wang Y, Wang J, Zhang HX, Szilágyi IM, Bai FQ. Strategies on Cyclometalating Ligand Substitution of Several Ir(III) Complexes: Theoretical Investigation of Different Molecular Behaviors. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Jian Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Imre Miklós Szilágyi
- Inorganic and Analytical Chemistry, Technical Analytical Chemistry Research Group of the Hungarian Academy of Sciences, Szt. Gellért tér 4., H-1111 Budapest, Hungary
| | - Fu-Quan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| |
Collapse
|
245
|
Semenov VA, Samultsev DO, Krivdin LB. GIAO-DFT calculation of 15 N NMR chemical shifts of Schiff bases: Accuracy factors and protonation effects. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:727-739. [PMID: 29427330 DOI: 10.1002/mrc.4721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
15 N NMR chemical shifts in the representative series of Schiff bases together with their protonated forms have been calculated at the density functional theory level in comparison with available experiment. A number of functionals and basis sets have been tested in terms of a better agreement with experiment. Complimentary to gas phase results, 2 solvation models, namely, a classical Tomasi's polarizable continuum model (PCM) and that in combination with an explicit inclusion of one molecule of solvent into calculation space to form supermolecule 1:1 (SM + PCM), were examined. Best results are achieved with PCM and SM + PCM models resulting in mean absolute errors of calculated 15 N NMR chemical shifts in the whole series of neutral and protonated Schiff bases of accordingly 5.2 and 5.8 ppm as compared with 15.2 ppm in gas phase for the range of about 200 ppm. Noticeable protonation effects (exceeding 100 ppm) in protonated Schiff bases are rationalized in terms of a general natural bond orbital approach.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| |
Collapse
|
246
|
Semenov VA, Samultsev DO, Krivdin LB. Substitution effects in the 15 N NMR chemical shifts of heterocyclic azines evaluated at the GIAO-DFT level. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:767-774. [PMID: 29504638 DOI: 10.1002/mrc.4731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
A systematic study of the accuracy factors for the computation of 15 N NMR chemical shifts in comparison with available experiment in the series of 72 diverse heterocyclic azines substituted with a classical series of substituents (CH3 , F, Cl, Br, NH2 , OCH3 , SCH3 , COCH3 , CONH2 , COOH, and CN) providing marked electronic σ- and π-electronic effects and strongly affecting 15 N NMR chemical shifts is performed. The best computational scheme for heterocyclic azines at the DFT level was found to be KT3/pcS-3//pc-2 (IEF-PCM). A vast amount of unknown 15 N NMR chemical shifts was predicted using the best computational protocol for substituted heterocyclic azines, especially for trizine, tetrazine, and pentazine where experimental 15 N NMR chemical shifts are almost totally unknown throughout the series. It was found that substitution effects in the classical series of substituents providing typical σ- and π-electronic effects followed the expected trends, as derived from the correlations of experimental and calculated 15 N NMR chemical shifts with Swain-Lupton's F and R constants.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| |
Collapse
|
247
|
Copan AV, Sokolov AY. Linear-Response Density Cumulant Theory for Excited Electronic States. J Chem Theory Comput 2018; 14:4097-4108. [DOI: 10.1021/acs.jctc.8b00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas V. Copan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
248
|
Samanta PK, Blunt NS, Booth GH. Response Formalism within Full Configuration Interaction Quantum Monte Carlo: Static Properties and Electrical Response. J Chem Theory Comput 2018; 14:3532-3546. [DOI: 10.1021/acs.jctc.8b00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pradipta Kumar Samanta
- Institut für Theoretische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Nick S. Blunt
- University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
249
|
Norman P, Dreuw A. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem Rev 2018; 118:7208-7248. [DOI: 10.1021/acs.chemrev.8b00156] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
250
|
Caputo MC, Provasi PF, Sauer SPA. The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2261-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|