201
|
Tan E, Montesinos-Magraner M, García-Morales C, Mayans JG, Echavarren AM. Rhodium-catalysed ortho-alkynylation of nitroarenes. Chem Sci 2021; 12:14731-14739. [PMID: 34820088 PMCID: PMC8597868 DOI: 10.1039/d1sc04527j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C-H metalation ortho to the strongly electron-withdrawing nitro group.
Collapse
Affiliation(s)
- Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Marc Montesinos-Magraner
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Cristina García-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Joan Guillem Mayans
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
202
|
Liu YH, Xie PP, Liu L, Fan J, Zhang ZZ, Hong X, Shi BF. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C-H Activation. J Am Chem Soc 2021; 143:19112-19120. [PMID: 34747617 DOI: 10.1021/jacs.1c08562] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand. A broad range of C2-alkylated indoles were obtained in high yields and excellent enantioselectivities. DFT calculations revealed the reaction mechanism and elucidated the origins of chiral induction in the stereodetermining alkene insertion step.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhuo-Zhuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
203
|
Liu S, He B, Li H, Zhang X, Shang Y, Su W. Facile Synthesis of Alkylidene Phthalides by Rhodium-Catalyzed Domino C-H Acylation/Annulation of Benzamides with Aliphatic Carboxylic Acids. Chemistry 2021; 27:15628-15633. [PMID: 34519367 DOI: 10.1002/chem.202102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/12/2022]
Abstract
The Rh-catalyzed ortho-C(sp2 )-H functionalization of 8-aminoquinoline-derived benzamides with aliphatic acyl fluorides generated in situ from the corresponding acids has been developed. This reaction initiated with 8-aminoquinoline-directed ortho-C(sp2 )-H acylation, which was accompanied by subsequent intramolecular nucleophilic acyl substitution of amide group to produce alkylidene phthalides This approach exhibits high stereo-selectivity for Z-isomer products, and tolerates a variety of functional groups as well as aliphatic carboxylic acids with diverse structural scaffolds.
Collapse
Affiliation(s)
- Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bangyue He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
204
|
Sahoo SR, Dutta S, Al-Thabaiti SA, Mokhtar M, Maiti D. Transition metal catalyzed C-H bond activation by exo-metallacycle intermediates. Chem Commun (Camb) 2021; 57:11885-11903. [PMID: 34693418 DOI: 10.1039/d1cc05042g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
exo-Metallacycles have become the key reaction intermediates in activating various remote C(sp2)-H and C(sp3)-H bonds in the past decade and aided in achieving unusual site-selectivity. Various novel exo-chelating auxiliaries have assisted metals to reach desired remote C-H bonds of different alcohol and amine-derived substrates. As a result, a wide range of organic transformations of C-H bonds like halogenation, acetoxylation, amidation, sulfonylation, olefination, acylation, arylation, etc. were accessible using the exo-metallacycle strategy. In this review, we have summarized the developments in C-H bond activation via four-, five-, six-, seven- and eight-membered exo-metallacycles and the key reaction intermediates, including the mechanistic aspects, are discussed concisely.
Collapse
Affiliation(s)
- Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Shaeel A Al-Thabaiti
- Chemistry Department, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| |
Collapse
|
205
|
Ghosh S, Laru S, Hajra A. Ortho C-H Functionalization of 2-Arylimidazo[1,2-a]pyridines. CHEM REC 2021; 22:e202100240. [PMID: 34757691 DOI: 10.1002/tcr.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
C-H activation and functionalization is quite promising in recent days as the strategy offers a go-to general method for different bond formations and hence grants synthetic versatility. At the same time, imidazopyridine, a fused bicycle of imidazole moiety with pyridine ring, has a profound impact due to its ubiquitous and prodigious application in medicinal as well as material chemistry. The presence of N-1 atom in 2-arylImidazo[1,2-a]pyridine facilitates the coordination with metal catalysts leading to the formation of ortho-substituted products. This review summarizes all the articles on ortho C-H functionalization of 2-arylImidazo[1,2-a]pyridines published till August 2021.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
206
|
Zhou F, Li M, Jiang H, Wu W. Recent Advances in Transformations Involving Electron‐Rich Alkenes: Functionalization, Cyclization, and Cross‐Metathesis Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Meng Li
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
207
|
Ghorai J, Ramachandran K, Anbarasan P. Rhodium-Catalyzed Annulation of N-Acetoxyacetanilide with Substituted Alkynes: Conversion of Nitroarenes to Substituted Indoles. J Org Chem 2021; 86:14812-14825. [PMID: 34623800 DOI: 10.1021/acs.joc.1c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general and efficient rhodium-catalyzed redox-neutral annulation of N-acetoxyacetanilides, readily accessible from nitroarenes, with alkynes has been accomplished for the synthesis of substituted indole derivatives. A wide range of substituted 2,3-diarylindoles were achieved from various substituted N-acetoxyacetanilides and symmetrical/unsymmetrical alkynes in good to excellent yields. The developed method was successfully integrated with the synthesis of N-acetoxyacetanilides for the efficient one-pot synthesis of indoles from nitroarenes. The important features are the introduction of N-acetoxyacetamide as a new directing group, redox-neutral annulation, an additive-free approach, wide functional group tolerance, an intramolecular version, and a one-pot reaction of nitroarenes. The method was further extended to the synthesis of potent higher analogues of indole, viz., pyrrolo[3,2-f]indoles and dibenzo[a,c]carbazoles. In addition, a plausible mechanism was proposed based on the isolation and stoichiometric study of a potential aryl-Rh intermediate.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
208
|
Kundu A, Dey D, Pal S, Adhikari D. Pyrazole-Mediated C-H Functionalization of Arene and Heteroarenes for Aryl-(Hetero)aryl Cross-Coupling Reactions. J Org Chem 2021; 86:15665-15673. [PMID: 34699216 DOI: 10.1021/acs.joc.1c02234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we introduce a transition-metal-free protocol that involves a commercially available, inexpensive pyrazole molecule to conduct C-C cross-coupling reactions at room temperature via a radical pathway. Using this method, an aryldiazonium salt has been coupled to a wide range of arenes and heteroarenes including benzene, mesitylene, thiophene, furan, benzoxazole to result the corresponding biaryl products. The full reaction mechanism is elucidated along with the crystallographic probation of an active initiator species. A potassium-stabilized deprotonated pyrazole steers single-electron transfer to the substrate and behaves as an initiator for the reaction.
Collapse
Affiliation(s)
- Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Dhananjay Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Subhankar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
209
|
Li J, Li H, Fang D, Liu L, Han X, Sun J, Li C, Zhou Y, Ye D, Liu H. Sulfoximines Assisted Rh(III)-Catalyzed C-H Activation/Annulation Cascade to Synthesize Highly Fused Indeno-1,2-benzothiazines. J Org Chem 2021; 86:15217-15227. [PMID: 34613739 DOI: 10.1021/acs.joc.1c01820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A facile access to highly fused tetracyclic indeno-1,2-benzothiazines has been established via a Rh(III)-catalyzed C-H bond activation and intramolecular annulation cascade between sulfoximides and all-carbon diazo indandiones. This strategy is characterized by the fact that the diazo coupling partners do not require preactivation, along with its high efficiency, broad substrate generality, and facile transformation. Particularly, the highly conjugated tetracyclic products demonstrate good optical properties and can easily enter cells to emit bright fluorescence for live cell imaging.
Collapse
Affiliation(s)
- Jian Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hui Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Daqing Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lingjun Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
210
|
Lin S, Cui J, Chen Y, Li Y. Copper-Catalyzed Direct Cycloaddition of Imidazoles and Alkenes to Trifluoromethylated Tricyclic Imidazoles. J Org Chem 2021; 86:15768-15776. [PMID: 34632765 DOI: 10.1021/acs.joc.1c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We reported herein a copper-catalyzed trifluoromethylarylated cycloaddition of imidazoles and olefins using CF3SO2Cl as the radical source to synthesize highly functionalized tricyclic imidazoles. This procedure exhibits a wide range of substrate scope with 25%-93% isolated yields (36 examples). Mechanistic studies were carried out to support a free trifluoromethyl radical pathway.
Collapse
Affiliation(s)
- Shengnan Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianchao Cui
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
211
|
Zakis JM, Smejkal T, Wencel-Delord J. Cyclometallated complexes as catalysts for C-H activation and functionalization. Chem Commun (Camb) 2021; 58:483-490. [PMID: 34735563 DOI: 10.1039/d1cc05195d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel catalysts for C-H activation reactions with increased reactivity and improved selectivities has been attracting significant interest over the last two decades. More recently, promising results have been developed using tridentate pincer ligands, which form a stable C-M bond. Furthermore, based on mechanistic studies, the unique catalytic role of some metallacyclic intermediate species has been revealed. These experimental observations have subsequently translated into the rational design of advanced C-H activation catalysts in both Ru- and Ir-based systems. Recent breakthroughs in the field of C-H activation catalysed by metallacyclic intermediates are thus discussed.
Collapse
Affiliation(s)
- Janis Mikelis Zakis
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland. .,Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| | - Tomas Smejkal
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| |
Collapse
|
212
|
Zhao F, Zhou Z, Lu Y, Qiao J, Zhang X, Gong X, Liu S, Lin S, Wu X, Yi W. Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5 H)-ones Enabled by Rh(III)-Catalyzed Domino C–H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shuang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
213
|
Kim S, Choi SB, Kang JY, An W, Lee SH, Oh H, Ghosh P, Mishra NK, Kim IS. Synthesis of Cinnolines via Rh(III)‐Catalyzed Annulation of
N
‐Aryl Heterocycles with Vinylene Carbonate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Suho Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Su Bin Choi
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Ju Young Kang
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Harin Oh
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | | | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| |
Collapse
|
214
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
215
|
Yang Z, Yu JT, Pan C. Recent advances in rhodium-catalyzed C(sp 2)-H (hetero)arylation. Org Biomol Chem 2021; 19:8442-8465. [PMID: 34553744 DOI: 10.1039/d1ob01190a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arylation is a common behaviour in organic synthesis for the construction of complex structures, especially the biaryls. Among those reported arylation procedures, transition-metal-catalyzed direct C(sp2)-H arylation has been rapidly developed in recent decades and has become a reliable alternative to traditional cross-coupling procedures using organometallic reagents. Great achievements in rhodium-catalyzed C(sp2)-H arylation have been witnessed during the last decade. Aryl halides, simple arenes, aryl boronic acids, arylsilanes, aryl aldehyde, aryl carboxylic acid, diazides, etc. were successfully utilized as arylating reagents under rhodium-catalyzed conditions. In this review, recent achievements in rhodium-catalyzed arylations through C(sp2)-H bond activation were summarized together with the mechanism discussions.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
216
|
Zheng L, Nie X, Wu Y, Wang P. Construction of Si‐Stereogenic Silanes through C−H Activation Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Long Zheng
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiao‐Xue Nie
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
217
|
Suseelan Sarala A, Bhowmick S, Carvalho RL, Al‐Thabaiti SA, Mokhtar M, Silva Júnior EN, Maiti D. Transition‐Metal‐Catalyzed Selective Alkynylation of C−H Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anjana Suseelan Sarala
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
- Department of Chemistry Saarland University 66123 Saarbrucken Germany
| | - Suman Bhowmick
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| | - Renato L. Carvalho
- Department of Chemistry Federal University of Minas Gerais 31270-901 Belo Horizonte MG Brazil
| | | | - Mohamed Mokhtar
- Chemistry Department Faculty of Science King Abdulaziz University 21589 Jeddah Saudi Arabia
| | | | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| |
Collapse
|
218
|
Zhang T, Wang K, Ke Y, Tang Y, Liu L, Huang T, Li C, Tang Z, Chen T. Transition-metal-free and base promoted C-C bond formation via C-N bond cleavage of organoammonium salts. Org Biomol Chem 2021; 19:8237-8240. [PMID: 34492680 DOI: 10.1039/d1ob01468d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free and base promoted C-C bond forming reaction of benzyl C(sp3)-H bond with organoammonium salts via C-N bond cleavage has been reported. Benzyl ammonium salts as well as cinnamyl ammonium salt could couple readily with various benzyl C(sp3)-H species, producing the corresponding products in moderate to excellent yields with good functional group tolerance. Late stage chemical manipulation enabled the specific 1,2-diarylethane structure of products transformed into useful olefin compounds via dehydrogenation, which further demonstrated the utility of this reaction.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Kunyu Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Yuting Ke
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Yuanyuan Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
219
|
Wei J, Shao X, Zhao H, Yang H, Qiu S, Zhai H. Palladium-Catalyzed Arylation of C(sp 2)-H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS OMEGA 2021; 6:25151-25161. [PMID: 34632174 PMCID: PMC8495716 DOI: 10.1021/acsomega.1c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Palladium-catalyzed C(sp2)-H arylation of ortho C-H bonds involving 2-(1-methylhydrazinyl)pyridine (MHP) as the directing group has been investigated. The reaction proceeds smoothly under an air atmosphere to generate biaryl derivatives in an environmentally friendly manner while tolerating a wide range of functional groups. Notably, the directing group present in the product could be easily removed under mild reductive conditions.
Collapse
Affiliation(s)
- Jian Wei
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Xiaoru Shao
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Hua Zhao
- Institute
of Drug Discovery Technology, QianXuesen Collaborative Research Center
of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongjian Yang
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Shuxian Qiu
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Hongbin Zhai
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
- Institute
of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
220
|
Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Functionalization of C(sp3)-H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
221
|
Srinivas D, Satyanarayana G. Palladium-Catalyzed Distal m-C-H Functionalization of Arylacetic Acid Derivatives. Org Lett 2021; 23:7353-7358. [PMID: 34519504 DOI: 10.1021/acs.orglett.1c02460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present m-C-H olefination on derivatives of phenylacetic acids by tethering with a simple nitrile-based template through palladium catalysis. Notably, the versatility of the method is evaluated with a wide range of phenylacetic acid derivatives for obtaining the meta-olefination products in fair to excellent yields with outstanding selectivities under mild conditions. Significantly, the present strategy is successfully exemplified for the synthesis of drugs/natural product analogues (naproxen, ibuprofen, paracetamol, and cholesterol).
Collapse
Affiliation(s)
- Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
222
|
Xu LP, Haines BE, Ajitha MJ, Yu JQ, Musaev DG. Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp 2)–H Bond Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
223
|
Liu S, Mao H, Qiao J, Zhang X, Lu Y, Gong X, Jia A, Gu L, Wu X, Zhao F. Temperature‐Controlled Divergent Synthesis of Tetrasubstituted Alkenes and Pyrrolo[1,2‐
a
]indole Derivatives via Iridium Catalysis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Hui Mao
- College of Pharmacy Jinhua Polytechnic 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Jin Qiao
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Xiaoning Zhang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Yangbin Lu
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Aiqiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- Zhongshan Institute for Drug Discovery Shanghai Institute of Materia Medica Chinese Academy of Sciences Zhongshan 528400 P. R. China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| |
Collapse
|
224
|
Barham A, Neu J, Canter CL, Pike RD, Li Y, Huo S. Isomerization-Induced Multiple Reaction Pathways in Platinum-Catalyzed C–H Acylation Reaction of 2-Aryloxypyridines. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Barham
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Justin Neu
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Cathleen L. Canter
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Robert D. Pike
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Yumin Li
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Shouquan Huo
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
225
|
Kumar Ghosh A, Kanta Das K, Hajra A. ortho
‐Allylation of 2‐Arylindazoles with Vinyl Cyclic Carbonate and Diallyl Carbonate
via
Manganese‐Catalyzed C−H Bond Activation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Krishna Kanta Das
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
226
|
Guo ZQ, Xu H, Wang X, Wang ZY, Ma B, Dai HX. C3-Arylation of indoles with aryl ketones via C-C/C-H activations. Chem Commun (Camb) 2021; 57:9716-9719. [PMID: 34473138 DOI: 10.1039/d1cc03954g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C3-Arylation of indoles with aryl ketones is accomplished via palladium-catalyzed ligand-promoted Ar-C(O) cleavage and subsequent C-H arylation of indole. Various (hetero)aryl ketones are compatible in this reaction, affording the corresponding 3-arylindoles in moderate to good yields. Further introduction of an indole moiety into the natural products desoxyestrone and evodiamine demonstrate the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Zi-Qiong Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xing Wang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Biao Ma
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
227
|
Yu X, He M, Yang S, Bao M. 7,10-Dibromo-2,3-dicyanopyrazinophenanthrene Aggregates as a Photosensitizer for Nickel-Catalyzed Aryl Esterification. Synlett 2021. [DOI: 10.1055/s-0040-1720887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractSelf-assembled aggregates of 7,10-dibromo-2,3-dicyanopyrazinophenanthrene which act as a new organophotocatalyst in combination with Ni catalyst for the Caryl–Oacyl cross-coupling reactions of carboxylic acids with aryl halides are described. This visible-light-induced Caryl–Oacyl bond-formation reaction proceeds smoothly to afford aryl esters with satisfactory to excellent yields.
Collapse
|
228
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
229
|
|
230
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
231
|
Sherikar MS, Bettadapur KR, Lanke V, Prabhu KR. Rhodium(iii)-catalyzed synthesis of trisubstituted furans via vinylic C-H bond activation. Org Biomol Chem 2021; 19:7470-7474. [PMID: 34612365 DOI: 10.1039/d1ob01293b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report an Rh(iii)-catalyzed one-pot synthesis of trisubstituted furan derivatives through Cvinyl-H activation of α,β-unsaturated ketones with acrylates. The control study revealed that the Heck-type product obtained undergoes Paal-Knorr type cyclization in the presence of an Ag salt. Hence, the Ag salt plays a dual role of a halide scavenger and a Lewis acid catalyst for Paal-Knorr type cyclization. The furan product can be transferred into the respective alcohol and acid derivatives which are useful intermediates in synthesizing biologically active molecules.
Collapse
|
232
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
233
|
Corio A, Gravier-Pelletier C, Busca P. Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules 2021; 26:5467. [PMID: 34576936 PMCID: PMC8466797 DOI: 10.3390/molecules26185467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Quinoline is a versatile heterocycle that is part of numerous natural products and countless drugs. During the last decades, this scaffold also became widely used as ligand in organometallic catalysis. Therefore, access to functionalized quinolines is of great importance and continuous efforts have been made to develop efficient and regioselective synthetic methods. In this regard, C-H functionalization through transition metal catalysis, which is nowadays the Graal of organic green chemistry, represents the most attractive strategy. We aim herein at providing a comprehensive review of methods that allow site-selective metal-catalyzed C-H functionalization of quinolines, or their quinoline N-oxides counterparts, with a specific focus on their scope and limitations, as well as mechanistic aspects if that accounts for the selectivity.
Collapse
Affiliation(s)
| | | | - Patricia Busca
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (A.C.); (C.G.-P.)
| |
Collapse
|
234
|
Sakamoto S, Taniguchi T, Sakata Y, Akine S, Nishimura T, Maeda K. Rhodium(I) Complexes Bearing an Aryl‐Substituted 1,3,5‐Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5‐Hexatrienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shiori Sakamoto
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
235
|
Sreenivasulu G, Kadiyala V, Raju CE, Sridhar B, Karunakar GV. Gold‐Catalyzed Synthesis of Pyrazolo[1,5‐
a
]pyridines Regioselectively
via
6‐
endo‐dig
Cyclization. ChemistrySelect 2021. [DOI: 10.1002/slct.202102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gottam Sreenivasulu
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| | - Veerabhushanam Kadiyala
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| | - Chittala Emmaniel Raju
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India)
| | - Galla V. Karunakar
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| |
Collapse
|
236
|
Rhodium-Catalyzed Oxidative Annulation of 2- or 7-Arylindoles with Alkenes/Alkynes Using Molecular Oxygen as the Sole Oxidant Enabled by Quaternary Ammonium Salt. Molecules 2021; 26:molecules26175329. [PMID: 34500762 PMCID: PMC8433977 DOI: 10.3390/molecules26175329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Developing an efficient catalytic system using molecular oxygen as the oxidant for rhodium-catalyzed cross-dehydrogenative coupling remains highly desirable. Herein, rhodium-catalyzed oxidative annulation of 2- or 7-phenyl-1H-indoles with alkenes or alkynes to assemble valuable 6H-isoindolo[2,1-a]indoles, pyrrolo[3,2,1-de]phenanthridines, or indolo[2,1-a]isoquinolines using the atmospheric pressure of air as the sole oxidant enabled by quaternary ammonium salt has been accomplished. Mechanistic studies provided evidence for the fast intramolecular aza-Michael reaction and aerobic reoxidation of Rh(I)/Rh(III), facilitated by the addition of quaternary ammonium salt.
Collapse
|
237
|
Tan G, Maisuls I, Strieth‐Kalthoff F, Zhang X, Daniliuc C, Strassert CA, Glorius F. AIE-Active Difluoroboron Complexes with N,O-Bidentate Ligands: Rapid Construction by Copper-Catalyzed C-H Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101814. [PMID: 34309217 PMCID: PMC8456238 DOI: 10.1002/advs.202101814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Indexed: 05/12/2023]
Abstract
The development of organic materials with high solid-state luminescence efficiency is highly desirable because of their fundamental importance and applicability in optoelectronics. Herein, a rapid construction of novel BF2 complexes with N,O-bidentate ligands by using Cu(BF4 )2 •6H2 O as a catalyst and BF2 source is disclosed, which avoids the need for pre-composing the N,O-bidentate ligands and features a broad substrate scope and a high tolerance level for sensitive functional groups. Moreover, molecular oxygen is employed as the terminal oxidant in this transformation. A library of 36 compounds as a new class of BF2 complexes with remarkable photophysical properties is delivered in good to excellent yields, showing a substituent-dependency on the photophysical properties, derived from the π-π* character of the photoexcited state. In addition, aggregation-induced emission (AIE) is observed and quantified for the brightest exemplars. The excited state properties are fully investigated in solids and in THF/H2 O mixtures. Hence, a new series of photofunctional materials with variable photophysical properties is reported, with potential applications for sensing, bioimaging, and optoelectronics.
Collapse
Affiliation(s)
- Guangying Tan
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieCeNTechCiMICSoNWestfälische Wilhelms‐Universität MünsterHeisenbergstraße 11Münster48149Germany
| | - Felix Strieth‐Kalthoff
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Xiaolong Zhang
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Constantin Daniliuc
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCeNTechCiMICSoNWestfälische Wilhelms‐Universität MünsterHeisenbergstraße 11Münster48149Germany
| | - Frank Glorius
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| |
Collapse
|
238
|
Oxidation-promoted synthesis of ferrocenyl planar chiral rhodium(iii) complexes for C–H functionalization catalysis. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
239
|
Karishma P, Mandal SK, Sakhuja R. Rhodium‐Catalyzed Spirocyclization of Maleimide with
N
‐Aryl‐2,3‐dihydrophthalazine‐1,4‐dione to Access Pentacyclic Spiro‐Succinimides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
240
|
Pannilawithana N, Pudasaini B, Baik MH, Yi CS. Experimental and Computational Studies on the Ruthenium-Catalyzed Dehydrative C-H Coupling of Phenols with Aldehydes for the Synthesis of 2-Alkylphenol, Benzofuran, and Xanthene Derivatives. J Am Chem Soc 2021; 143:13428-13440. [PMID: 34428913 DOI: 10.1021/jacs.1c06887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) was found to be an effective catalyst for the dehydrative C-H coupling reaction of phenols and aldehydes to form 2-alkylphenol products. The coupling reaction of phenols with branched aldehydes selectively formed 1,1-disubstituted benzofurans, while the coupling reaction with salicylaldehydes yielded xanthene derivatives. A normal deuterium isotope effect was observed from the coupling reaction of 3-methoxyphenol with benzaldehyde and 2-propanol/2-propanol-d8 (kH/kD = 2.3 ± 0.3). The carbon isotope effect was observed on the benzylic carbon of the alkylation product from the coupling reaction of 3-methoxyphenol with 4-methoxybenzaldehyde (C(3) 1.021(3)) and on both benzylic and ortho-arene carbons from the coupling reaction with 4-trifluorobenzaldehdye (C(2) 1.017(3), C(3) 1.011(2)). The Hammett plot from the coupling reaction of 3-methoxyphenol with para-substituted benzaldehydes p-X-C6H4CHO (X = OMe, Me, H, F, Cl, CF3) displayed a V-shaped linear slope. Catalytically relevant Ru-H complexes were observed by NMR from a stoichiometric reaction mixture of 1, 3-methoxyphenol, benzaldehyde, and 2-propanol in CD2Cl2. The DFT calculations provided a detailed catalysis mechanism featuring an electrophilic aromatic substitution of the aldehyde followed by the hydrogenolysis of the hydroxy group. The calculations also revealed a mechanistic rationale for the strong electronic effect of the benzaldehdye substrates p-X-C6H4CHO (X = OMe, CF3) in controlling the turnover-limiting step. The catalytic C-H coupling method provides an efficient synthetic protocol for 2-alkylphenols, 1,1-disubstituted benzofurans, and xanthene derivatives without employing any reactive reagents or forming wasteful byproducts.
Collapse
Affiliation(s)
- Nuwan Pannilawithana
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 United States
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 United States
| |
Collapse
|
241
|
Liu W, Ke J, He C. Sulfur stereogenic centers in transition-metal-catalyzed asymmetric C-H functionalization: generation and utilization. Chem Sci 2021; 12:10972-10984. [PMID: 34522294 PMCID: PMC8386673 DOI: 10.1039/d1sc02614c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Transition-metal-catalyzed enantioselective C–H functionalization has emerged as a powerful tool for the synthesis of enantioenriched compounds in chemical and pharmaceutical industries. Sulfur-based functionalities are ubiquitous in many of the biologically active compounds, medicinal agents, functional materials, chiral auxiliaries and ligands. This perspective highlights recent advances in sulfur functional group enabled transition-metal-catalyzed enantioselective C–H functionalization for the construction of sulfur stereogenic centers, as well as the utilization of chiral sulfoxides to realize stereoselective C–H functionalization. This perspective highlights sulfur functional groups enabled enantioselective C–H functionalization for the construction of sulfur stereogenic centers, and the utilization of chiral sulfoxide to realize stereoselective C–H functionalization.![]()
Collapse
Affiliation(s)
- Wentan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
242
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)‐Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
243
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)-Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021; 60:19297-19305. [PMID: 34137152 PMCID: PMC8456945 DOI: 10.1002/anie.202105776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| |
Collapse
|
244
|
Lin S, Chen Y, Luo X, Li Y. Sustainable Cascades to Difluoroalkylated Polycyclic Imidazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sheng‐Nan Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 China
| | - Yu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiao‐Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
245
|
Hatridge TA, Wei B, Davies HML, Jones CW. Copper-Catalyzed, Aerobic Oxidation of Hydrazone in a Three-Phase Packed Bed Reactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taylor A. Hatridge
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
246
|
Ko GH, Maeng C, Jeong H, Han SH, Han GU, Lee K, Noh HC, Lee PH. Rhodium(III)-Catalyzed Sequential C-H Activation and Cyclization from N-Methoxyarylamides and 3-Diazooxindoles for the Synthesis of Isochromenoindolones. Chem Asian J 2021; 16:3179-3187. [PMID: 34387948 DOI: 10.1002/asia.202100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Indexed: 12/22/2022]
Abstract
An efficient synthetic method for structurally various isochromenoindolones has been demonstrated through Rh(III)-catalyzed C-H activation followed by a cyclization reaction of N-methoxyarylamides with 3-diazooxindoles. The sequential reaction involves the streamlined formation of C-C and C-O bonds in one pot. The present method provides a broad range of isochromenoindolones as a new privileged scaffold in moderate to good yields with the release of methoxyamine and molecular nitrogen and has the benefits of a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Haneal Jeong
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| |
Collapse
|
247
|
Ouyang W, Cai X, Chen X, Wang J, Rao J, Gao Y, Huo Y, Chen Q, Li X. Sequential C-H activation enabled expedient delivery of polyfunctional arenes. Chem Commun (Camb) 2021; 57:8075-8078. [PMID: 34296709 DOI: 10.1039/d1cc03243g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modular construction of polyfunctional arenes from abundant feedstocks stands as an unremitting pursue in synthetic chemistry, accelerating the discovery of drugs and materials. Herein, using the multiple C-H activation strategy with versatile imidate esters, the expedient delivery of molecular libraries of densely functionalized sulfur-containing arenes was achieved, which enabled the concise construction of biologically active molecules, such as Bipenamol.
Collapse
Affiliation(s)
- Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaojian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jie Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
248
|
Liu W, Liu Z, Liu X, Dang Y. Mechanism of Pd-catalysed C(sp 3)-H arylation of thioethers with Ag(I) additives. Org Biomol Chem 2021; 19:6766-6770. [PMID: 34286794 DOI: 10.1039/d1ob00704a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanistic studies reveal that Pd-catalyzed C(sp3)-H arylation of thioethers with silver(i) additives takes place via C(sp3)-H activation, oxidative addition and reductive elimination, wherein all steps proceed via the heterodimeric Pd-Ag pathway. Besides, the active heterodimeric Pd-Ag species are detected by mass spectrometry via control experiments.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China.
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
249
|
Sakamoto S, Taniguchi T, Sakata Y, Akine S, Nishimura T, Maeda K. Rhodium(I) Complexes Bearing an Aryl-Substituted 1,3,5-Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5-Hexatrienes. Angew Chem Int Ed Engl 2021; 60:22201-22206. [PMID: 34355472 DOI: 10.1002/anie.202108032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/06/2022]
Abstract
Unique and bench-stable rhodium(I) complexes bearing an aryl-substituted 1,3,5-hexatriene chain have been synthesized by the reactions of bicyclo[2.2.1]hepta-2,5-diene-rhodium(I) chloride dimer ([Rh(nbd)Cl]2) with aryl boronic acids and diphenylacetylenes in the presence of a 50% aqueous solution of KOH. X-ray crystallographic analysis of the isolated complexes indicated a square-planar structure stabilized by a strong interaction with one of the aryl groups on the 1,3,5-hexatriene chain, which has a helical structure. The helical chirality of the isolated rhodium complexes was confirmed to be sufficiently stable to be resolved by chiral HPLC at room temperature into enantiomers, which showed mirror-imaged CD spectra. It was confirmed that the isolated rhodium complex worked as an initiator for living polymerization of phenylacetylene to give cis-stereoregular poly(phenylacetylene) with a well-controlled molecular weight.
Collapse
Affiliation(s)
- Shiori Sakamoto
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka, Graduate School of Natural Science and Technology, JAPAN
| | - Tsuyoshi Taniguchi
- Kanazawa University, Institute of Medical, Pharmaceutical and Health Science, Kakuma-machi, 920-1192, Kanazawa, JAPAN
| | - Yoko Sakata
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka, Graduate School of Natural Science and Technoloty, JAPAN
| | - Shigehisa Akine
- Kanazawa University: Kanazawa Daigaku, Nano Life Science Institute, JAPAN
| | - Tatsuya Nishimura
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka, Graduate School of Natural Science and Technology, JAPAN
| | - Katsuhiro Maeda
- Kanazawa University: Kanazawa Daigaku, Nano Life Science Institute, JAPAN
| |
Collapse
|
250
|
Shi Y, Huang T, Wang T, Chen J, Liu X, Wu Z, Huang X, Zheng Y, Yang Z, Wu Y. Divergent Construction of Diverse Scaffolds through Catalyst-Controlled C-H Activation Cascades of Quinazolinones and Cyclopropenones. Chemistry 2021; 27:13346-13351. [PMID: 34350649 DOI: 10.1002/chem.202101839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/10/2022]
Abstract
A transition-metal-catalyzed C-H activation cascade strategy to rapidly construct diverse quinazolinone derivatives in a one-pot manner is reported. The catalysts play an important role in the different transformations. Additionally, the procedure is scalable, proceeds with high efficiency and good chemo-/regio-selectivity, and tolerates a range of functional groups.
Collapse
Affiliation(s)
- Yuesen Shi
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianle Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ting Wang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jian Chen
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xuexin Liu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhouping Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaofang Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yao Zheng
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhongzhen Yang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|