201
|
Hirao H, Kumar D, Que L, Shaik S. Two-State Reactivity in Alkane Hydroxylation by Non-Heme Iron−Oxo Complexes. J Am Chem Soc 2006; 128:8590-606. [PMID: 16802826 DOI: 10.1021/ja061609o] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory is used to explore the mechanisms of alkane hydroxylation for four synthetic non-heme iron(IV)-oxo complexes with three target substrates (Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde; J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc. 2004, 126, 472-473; Rohde, J.-U.; Que, L., Jr. Angew. Chem. Int. Ed. 2005, 44, 2255-2258.). The iron-oxo reagents possess triplet ground states and low-lying quintet excited states. The set of experimental and theoretical reactivity trends can be understood if the reactions proceed on the two spin states, namely two-state reactivity (TSR); an appropriate new model is presented. The TSR model makes testable predictions: (a) If crossing to the quintet state occurs, the hydroxylation will be effectively concerted; however, if the process transpires only on the triplet surface, stepwise hydroxylation will occur, and side products derived from radical intermediates would be observed (e.g., loss of stereochemistry). (b) In cases of crossing en route to the quintet transition state, one expects kinetic isotope effects (KIEs) typical of tunneling. (c) In situations where the two surfaces contribute to the rate, one expects intermediate KIEs and radical scrambling patterns that reflect the two processes. (d) Solvent effects on these reactions are expected to be very large.
Collapse
Affiliation(s)
- Hajime Hirao
- Department of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
202
|
de Visser SP. Differences in and Comparison of the Catalytic Properties of Heme and Non-Heme Enzymes with a Central Oxo–Iron Group. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503841] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
203
|
de Visser SP. Differences in and Comparison of the Catalytic Properties of Heme and Non-Heme Enzymes with a Central Oxo–Iron Group. Angew Chem Int Ed Engl 2006; 45:1790-3. [PMID: 16470900 DOI: 10.1002/anie.200503841] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sam P de Visser
- Manchester Interdisciplinary Biocentre and the School of Chemical Engineering and Analytical Science, University of Manchester, UK.
| |
Collapse
|
204
|
Wang Y, Wang H, Wang Y, Yang C, Yang L, Han K. Theoretical Study of the Mechanism of Acetaldehyde Hydroxylation by Compound I of CYP2E1. J Phys Chem B 2006; 110:6154-9. [PMID: 16553429 DOI: 10.1021/jp060033m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental studies revealed that cytochrome P450 2E1 (CYP2E1) could metabolize not only ethanol but also its primary product, acetaldehyde, accompanying the well-known acetaldehyde dehydrogenases (ALDH) in the metabolism of acetaldehyde. Mechanistic aspects of acetaldehyde hydroxylation by Compound I model active species of CYP2E1 were investigated by means of B3LYP DFT calculations in the present paper. Our study results demonstrate that acetaldehyde hydroxylation by CYP2E1 is in accord with the effectively concerted mechanisms both on the high quartet spin state (HS) and on the low doublet spin state (LS). The rate-limiting step is H-abstraction, and the activation energy is about 11.7 approximately 14.0 kcal/mol on the quartet (doublet) reaction route, which is about one-half to one-third of that needed by methane hydroxylation. The phenomenon that the HS and LS reaction routes are both effectively concerted was shown for the first time to occur in trans-2-phenyl-iso-propylcyclopropane hydroxylation by Kumar et al. (see Figure 7 in the paper of Kumar, D.; de Visser, S. P.; Sharma, P. K.; Cohen, S.; Shaik, S. J. Am. Chem. Soc. 2004, 126, 1907) and was confirmed in our work of acetaldehyde hydroxylation by cytochrome P450. Theoretical exploration of the HS O-rebound barrier degradation is also presented in the present paper on the basis of Shaik's valence bond (VB) model.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
205
|
Abstract
This essay provides a perspective on several issues in valence bond theory: the physical significance of semilocal bonding orbitals, the capability of valence bond concepts to explain systems with multireferences character, the use of valence bond theory to provide analytical representations of potential energy surfaces for chemical dynamics by the method of semiempirical valence bond potential energy surfaces (an early example of specific reaction parameters), by multiconfiguration molecular mechanics, by the combined valence bond-molecular mechanics method, and by the use of valence bond states as coupled diabatic states for describing electronically nonadiabatic processes (photochemistry). The essay includes both ab initio and semiempirical approaches.
Collapse
Affiliation(s)
- Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, USA.
| |
Collapse
|
206
|
Ericksen SS, Szklarz GD. Regiospecificity of human cytochrome P450 1A1-mediated oxidations: the role of steric effects. J Biomol Struct Dyn 2005; 23:243-56. [PMID: 16218752 DOI: 10.1080/07391102.2005.10507063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cytochrome P450 1A1 oxidizes a diverse range of substrates, including the procarcinogenic xenobiotic benzo[a]pyrene (B[a]P) and endogenous fatty acid precursors of prostaglandins, such as arachidonic acid (AA) and eicosapentaenoic acid (EA). We have investigated the extent to which enzyme-substrate interactions govern regio- and stereoselectivity of oxidation of these compounds by using docking and molecular dynamics (MD) simulations to examine the likelihood of substrate oxidation at various sites. Due to structural differences between the substrates analyzed, B[a]P and its diols (planar, rigid), and the fatty acids AA and EA (long, flexible), different docking strategies were required. B[a]P, B[a]P-7,8-diols, (+) 7S,8S- and (-) 7R,8R-diols, were docked into the active site of a homology model of P450 1A1 using an automated routine, Affinity (Accelrys, San Diego, CA). AA and EA, on the other hand, required a series of restrained MD simulations to obtain a variety of productive binding modes. All complexes were evaluated by MD-based in silico site scoring to predict product profiles based on certain geometric criteria, such as angle and distance of a given substrate atom from the ferryl oxygen. For all substrates studied, the in vitro profiles were generally reflected by the in silico scores, which suggests that steric factors play a key role in determining regiospecificity in P450 1A1-mediated oxidations. We have also shown that molecular dynamics simulations may be very useful in determination of product profiles for structurally diverse substrates of P450 enzymes.
Collapse
Affiliation(s)
- S S Ericksen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506-9530, USA
| | | |
Collapse
|
207
|
de Visser SP. The axial ligand effect of oxo-iron porphyrin catalysts. How does chloride compare to thiolate? J Biol Inorg Chem 2005; 11:168-78. [PMID: 16331402 DOI: 10.1007/s00775-005-0061-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 11/04/2005] [Indexed: 11/30/2022]
Abstract
We have performed density functional theory calculations on an oxo-iron porphyrin catalyst with chloride as an axial ligand and tested its reactivity toward propene. The reactions proceed via multistate reactivity on competing doublet and quartet spin surfaces. Close-lying epoxidation and hydroxylation mechanisms are identified, whereby in the gas phase the epoxidation reaction is dominant, while in environments with a large dielectric constant the hydroxylation pathways become competitive. By contrast to reactions with thiolate as an axial ligand all low-lying pathways have small ring-closure and rebound barriers, so it is expected that side products and rearrangements will be unlikely with Fe=O(porphyrin)Cl, whereas with Fe=O(porphyrin)SH some side products were predicted. The major differences in the electronic configurations of Fe=O(porphyrin)Cl and Fe=O(porphyrin)SH are due to strong mixing of thiolate orbitals with iron 3d orbitals, a mixing which is much less with chloride as an axial ligand. Predictions of the reactivity of ethylbenzene-h (12) versus ethylbenzene-d (12) are made.
Collapse
Affiliation(s)
- Sam P de Visser
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, P.O. Box 88, Manchester M60 1QD, UK.
| |
Collapse
|
208
|
Bathelt CM, Zurek J, Mulholland AJ, Harvey JN. Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling. J Am Chem Soc 2005; 127:12900-8. [PMID: 16159284 DOI: 10.1021/ja0520924] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytochromes P450 play a vital role in drug metabolism. The key step in substrate oxidation involves hydrogen atom abstraction or C=C bond addition by the oxygen atom of the Compound I intermediate. The latter has three unpaired electrons, two on the Fe-O center and one shared between the porphyrin ring and the proximal cysteinyl sulfur atom. Changes in its electronic structure have been suggested to affect reactivity. The electronic and geometric structure of Compound I in three important human subfamilies of cytochrome P450 (P450, 2C, 2B, and 3A) that are major contributors to drug metabolism is characterized here using combined quantum mechanical/molecular mechanical (QM/MM) calculations at the B3LYP:CHARMM27 level. Compound I is remarkably similar in all isoforms, with the third unpaired electron located mainly on the porphyrin ring, and this prediction is not very sensitive to details of the QM/MM methodology, such as the DFT functional, the basis set, or the size of the QM region. The presence of substrate also has no effect. The main source of variability in spin density on the cysteinyl sulfur (from 26 to 50%) is the details of the system setup, such as the starting protein geometry used for QM/MM minimization. This conformational effect is larger than the differences between human isoforms, which are therefore not distinguishable on electronic grounds, so it is unlikely that observed large differences in substrate selectivity can be explained to a large extent in these terms.
Collapse
Affiliation(s)
- Christine M Bathelt
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS United Kingdom
| | | | | | | |
Collapse
|
209
|
Kumar D, Derat E, Khenkin AM, Neumann R, Shaik S. The High-Valent Iron−Oxo Species of Polyoxometalate, if It Can Be Made, Will Be a Highly Potent Catalyst for C−H Hydroxylation and Double-Bond Epoxidation. J Am Chem Soc 2005; 127:17712-8. [PMID: 16351100 DOI: 10.1021/ja0542340] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study uses density functional theory (DFT) calculations to explore the reactivity of the putative high-valent iron-oxo reagent of the iron-substituted polyoxometalate (POM-FeO4-), derived from the Keggin species, PW12O40(3-). It is shown that POM-FeO4- is in principle capable of C-H hydroxylation and C=C epoxidation and that it should be a powerful oxidant, even more so than the Compound I species of cytochrome P450. The calculations indicate that in a solvent, the barriers, and especially those for epoxidation, become sufficiently small that one may expect an extremely fast reaction. An experimental investigation (by R.N. and A.M.K.) shows, however, that the formation of POM-FeO4- using the oxygen donor, F5PhI-O, leads to a persistent adduct, POM-FeO-I-PhF5(4-), which does not decompose to POM-FeO4- + F5Ph-I at the working temperature and exhibits sluggish reactivity, in accord with previous experimental results (Hill, C. L.; Brown, R. B., Jr. J. Am. Chem. Soc. 1986, 108, 536 and Mansuy, D.; Bartoli, J.-F.; Battioni, P.; Lyon, D. K.; Finke, R. G. J. Am. Chem. Soc. 1991, 113, 7222). Subsequent calculations indeed reveal that the gas-phase binding energy of F5PhI to POM-FeO4- is high (ca. 20 kcal/mol) compared to the corresponding binding energy of propene (ca. 2-3 kcal/mol). As such, the POM-FeO-I-PhF5(4-) complex is expected to be persistent toward the displacement of F5PhI by a substrate like propene, leading thereby to sluggish oxidative reactivity. According to theory, overcoming this technical difficulty may turn out to be very rewarding. The question is, can POM-FeO4- be made?
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
210
|
Abstract
Density functional theory calculations have been performed on the active species (Compound I) of cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX) models. We have calculated a large model containing oxo-iron porphyrin plus a hydrogen-bonded network of the axial bound imidazole ligand connected to an acetic acid and an indole group, which mimic the His(175), Asp(235), and Trp(191) amino acids in cytochrome c peroxidase. Our optimized geometries are in good agreement with X-ray and crystallographic structures and give an electronic ground state in agreement with EPR and ENDOR results. We show that the quartet-doublet state ordering and the charge distribution within the model are dependent on small external perturbations. In particular, a single point charge at a distance of 8.7 A is shown to cause delocalization of the charge and radical characters within the model, thereby creating either a pure porphyrin cation radical state or a tryptophan cation radical state. Thus, our calculations show that small external perturbations are sufficient to change the electronic state of the active species and subsequently its catalytic properties. Similar effects are possible with the addition of an electric field strength along a specific coordination axis of the system. The differences between the electronic ground states of CcP and APX Cpd I are analyzed on the basis of external perturbations.
Collapse
Affiliation(s)
- Sam P de Visser
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, P.O. Box 88, Manchester M60 1QD, United Kingdom.
| |
Collapse
|
211
|
Kumar D, Hirao H, de Visser SP, Zheng J, Wang D, Thiel W, Shaik S. New Features in the Catalytic Cycle of Cytochrome P450 during the Formation of Compound I from Compound 0. J Phys Chem B 2005; 109:19946-51. [PMID: 16853579 DOI: 10.1021/jp054754h] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (DFT) is applied to the dark section of the catalytic cycle of the enzyme cytochrome P450, namely, the formation of the active species, Compound I (Cpd I), from the ferric-hydroperoxide species (Cpd 0) by a protonation-assisted mechanism. The chosen 96-atom model includes the key functionalities deduced from experiment: Asp(251), Thr(252), Glu(366), and the water channels that relay the protons. The DFT model calculations show that (a) Cpd I is not formed spontaneously from Cpd 0 by direct protonation, nor is the process very exothermic. The process is virtually thermoneutral and involves a significant barrier such that formation of Cpd I is not facile on this route. (b) Along the protonation pathway, there exists an intermediate, a protonated Cpd 0, which is a potent oxidant since it is a ferric complex of water oxide. Preliminary quantum mechanical/molecular mechanical calculations confirm that Cpd 0 and Cpd I are of similar energy for the chosen model and that protonated Cpd 0 may exist as an unstable intermediate. The paper also addresses the essential role of Thr(252) as a hydrogen-bond acceptor (in accord with mutation studies of the OH group to OMe).
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
212
|
Hirao H, Kumar D, Thiel W, Shaik S. Two States and Two More in the Mechanisms of Hydroxylation and Epoxidation by Cytochrome P450. J Am Chem Soc 2005; 127:13007-18. [PMID: 16159296 DOI: 10.1021/ja053847+] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Past studies have shown that oxidation reactions by P450 Compound I (Cpd I) can be described by two competing quartet and doublet spin states, which possess three unpaired electrons, hence tri-radicals. One electron excitation from the delta orbital to sigma* xy generates two states that possess five unpaired electrons, so-called penta-radicals, in sextet and quartet situations, and which were shown by theory to lie only approximately 12-14 kcal/mol higher in energy than the tri-radical ground states (ref 7). The present study focuses on the C-H hydroxylation and C=C epoxidation of propene by these penta-radical states. It is shown that the initial energy differences, between the penta-radical and tri-radical states, diminish along the reaction pathway, due to the favorable and cumulative exchange stabilization of the more open-shell species. Furthermore, theory suggests that hydrogen bonding to the thiolate ligand, and general polarity of the environment, reduce these gaps further, thereby making the penta-radical states accessible to ground-state reactivity. The interconversion between the tri-radical and penta-radical states along the reaction coordinate will depend on the dynamics of spin-flips and energy barriers between the states. Especially interesting should be the region of the reaction intermediates; for both epoxidation and hydroxylation, this region is typified by a dense manifold of spin states and electromeric states (that differ by the oxidation state of iron), such that the total reactivity would be expected to reflect the interplay of these states, giving rise to multistate reactivity.
Collapse
Affiliation(s)
- Hajime Hirao
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
213
|
Kumar D, de Visser SP, Shaik S. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase. J Am Chem Soc 2005; 127:8204-13. [PMID: 15926850 DOI: 10.1021/ja0446956] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
214
|
Oda A, Yamaotsu N, Hirono S. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. J Comput Chem 2005; 26:818-26. [PMID: 15812779 DOI: 10.1002/jcc.20221] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The heme protein, cytochrome P450, is an oxidoreductase that plays an important role in drug metabolism. To model P450s using molecular mechanics methods and classical molecular dynamics simulations, force field parameters and atomic charges are required. Because these parameters are generally obtained by quantum chemical methods, an appropriate simplified model for the iron-porphyrin system was needed. In this study, two models with a five-coordinated Fe(III) mimicking the sextet spin state of P450s are proposed, which are optimized by semiempirical and ab initio unrestricted Hartree-Fock methods. The results produced using the simpler of the two models were similar to those of the more complex model; therefore, the more simplified model of P450 can be used without a loss of accuracy. Furthermore, several quantum chemical calculations were carried out on the simpler model to investigate which method was most suitable for iron-porphyrin systems. The results calculated by hybrid density functional theory (DFT), with the MIDI basis set for iron, reproduced the three-dimensional structures determined by X-ray diffraction and extended X-ray absorption fine-structure experiments. From these results, atomic charges and force-field parameters for molecular mechanics and molecular dynamics calculations were obtained.
Collapse
Affiliation(s)
- Akifumi Oda
- Discovery Laboratories, Toyama Chemical Co, Ltd, 2-4-1 Shimookui, Toyama 930-8508, Japan.
| | | | | |
Collapse
|
215
|
Kumar D, de Visser SP, Sharma PK, Hirao H, Shaik S. Sulfoxidation Mechanisms Catalyzed by Cytochrome P450 and Horseradish Peroxidase Models: Spin Selection Induced by the Ligand,. Biochemistry 2005; 44:8148-58. [PMID: 15924434 DOI: 10.1021/bi050348c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sulfoxidation of dimethyl sulfide (DMS), by two different heme-type enzyme models (without the protein), namely, horseradish peroxidase (HRP) and cytochrome P450 (P450), was studied using density functional theory. The models differ from each other by the axial ligand of the iron, which is imidazole in the case of HRP and thiolate in the case of P450. The computational results reveal a concerted oxygen atom transfer to sulfur, with spin-state selection dependent upon the identity of the proximal ligand. In the case of thiolate, the mechanism prefers the high-spin quartet pathway; whereas in the case of imidazole, the mechanism involves two-state reactivity (TSR), with competing quartet and doublet spin states. Furthermore, with thiolate the high-spin transition state, (4)TS(P450), has an upright conformation with a large Fe-O-S(DMS) angle of 147 degrees , whereas the low-spin species, (2)TS(P450), has a small angle and its Fe-O moiety makes an O-N(Por) bond with one of the nitrogen atoms of the porphine macrocycle. By contrast, when the proximal ligand is imidazole, both transition states possess a bent Fe-O bond and an O-N(Por) bond. These spin-state selection patterns obey simple orbital-selection rules, which are manifestations of the electronic nature of the ligand, i.e., the electron-releasing effect of the thiolate vis-a-vis the electron-withdrawal effect of imidazole. Other possible reactivity expressions of the spin-selection patterns are discussed [Dowers, T. S., Rock, D. A., Rock, D. A., Jones, J. P. (2004) J. Am. Chem. Soc. 126, 8868-8869]. Theory shows that intrinsically, HRP should be as reactive as P450 toward sulfoxidation.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
216
|
Theoretical study on monooxygenation mechanism by cytochrome P450: an ultimate species in the substrate oxidation process. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.11.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
217
|
Song WJ, Ryu YO, Song R, Nam W. Oxoiron(IV) porphyrin π-cation radical complexes with a chameleon behavior in cytochrome P450 model reactions. J Biol Inorg Chem 2005; 10:294-304. [PMID: 15827730 DOI: 10.1007/s00775-005-0641-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
There is an intriguing, current controversy on the involvement of multiple oxidizing species in oxygen transfer reactions by cytochromes P450 and iron porphyrin complexes. The primary evidence for the "multiple oxidants" theory was that products and/or product distributions obtained in the catalytic oxygenations were different depending on reaction conditions such as catalysts, oxidants, and solvents. In the present work, we carried out detailed mechanistic studies on competitive olefin epoxidation, alkane hydroxylation, and C=C epoxidation versus allylic C-H hydroxylation in olefin oxygenation with in situ generated oxoiron(IV) porphyrin pi-cation radicals (1) under various reaction conditions. We found that the products and product distributions were markedly different depending on the reaction conditions. For example, 1 bearing different axial ligands showed different product selectivities in competitive epoxidations of cis-olefins and trans-olefins and of styrene and para-substituted styrenes. The hydroxylation of ethylbenzene by 1 afforded different products, such as 1-phenylethanol and ethylbenzoquinone, depending on the axial ligands of 1 and substrates. Moreover, the regioselectivity of C=C epoxidation versus C-H hydroxylation in the oxygenation of cyclohexene by 1 changed dramatically depending on the reaction temperatures, the electronic nature of the iron porphyrins, and substrates. These results demonstrate that 1 can exhibit diverse reactivity patterns under different reaction conditions, leading us to propose that the different products and/or product distributions observed in the catalytic oxygenation reactions by iron porphyrin models might not arise from the involvement of multiple oxidizing species but from 1 under different circumstances. This study provides strong evidence that 1 can behave like a "chameleon oxidant" that changes its reactivity and selectivity under the influence of environmental changes.
Collapse
Affiliation(s)
- Woon Ju Song
- Division of Nano Sciences, and Center for Biomimetic Systems, Department of Chemistry, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | |
Collapse
|
218
|
Hackett JC, Brueggemeier RW, Hadad CM. The Final Catalytic Step of Cytochrome P450 Aromatase: A Density Functional Theory Study. J Am Chem Soc 2005; 127:5224-37. [PMID: 15810858 DOI: 10.1021/ja044716w] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
B3LYP density functional theory calculations are used to unravel the mysterious third step of aromatase catalysis. The feasibility of mechanisms in which the reduced ferrous dioxygen intermediate mediates androgen aromatization is explored and determined to be unlikely. However, proton-assisted homolysis of the peroxo hemiacetal intermediate to produce P450 compound I and the C19 gem-diol likely proceeds with a low energetic barrier. Mechanisms for the aromatization and deformylation sequence which are initiated by 1beta-hydrogen atom abstraction by P450 compound I are considered. 1beta-Hydrogen atom abstraction from substrates in the presence of the 2,3-enol encounters strikingly low barriers (5.3-7.8 kcal/mol), whereas barriers for this same process rise to 17.0-27.1 kcal/mol in the keto tautomer. Transition states for 1beta-hydrogen atom abstraction from enolized substrates in the presence of the 19-gem-diol decayed directly to the experimentally observed products. If the C19 aldehyde remains unhydrated, aromatization occurs with concomitant decarbonylation and therefore does not support dehydration of the C19 aldehyde prior to the final catalytic step. On the doublet surface, the transition state connects to a potentially labile 1(10) dehydrogenated product, which may undergo rapid aromatization, as well as formic acid. Ab initio molecular dynamics confirmed that the 1beta-hydrogen atom abstraction and deformylation or decarbonylation occur in a nonsynchronous, coordinated manner. These calculations support a dehydrogenase behavior of aromatase in the final catalytic step, which can be summarized by 1beta-hydrogen atom abstraction followed by gem-diol deprotonation.
Collapse
Affiliation(s)
- John C Hackett
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
219
|
Shaik S, Kumar D, de Visser SP, Altun A, Thiel W. Theoretical Perspective on the Structure and Mechanism of Cytochrome P450 Enzymes. Chem Rev 2005; 105:2279-328. [PMID: 15941215 DOI: 10.1021/cr030722j] [Citation(s) in RCA: 964] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
220
|
Kumar D, de Visser SP, Sharma PK, Derat E, Shaik S. The intrinsic axial ligand effect on propene oxidation by horseradish peroxidase versus cytochrome P450 enzymes. J Biol Inorg Chem 2005; 10:181-9. [PMID: 15723206 DOI: 10.1007/s00775-004-0622-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 12/20/2004] [Indexed: 11/25/2022]
Abstract
The axial ligand effect on reactivity of heme enzymes is explored by means of density functional theoretical calculations of the oxidation reactions of propene by a model compound I species of horseradish peroxidase (HRP). The results are assessed vis-a-vis those of cytochrome P450 compound I. It is shown that the two enzymatic species perform C=C epoxidation and C-H hydroxylation in a multistate reactivity scenario with Fe(III) and Fe(IV) electromeric situations and two different spin states, doublet and quartet. However, while the HRP species preferentially keeps the iron in a low oxidation state (Fe(III)), the cytochrome P450 species prefers the higher oxidation state (Fe(IV)). It is found that HRP compound I has somewhat lower barriers than those obtained by the cytochrome P450 species. Furthermore, in agreement with experimental observations and studies on model systems, HRP prefers C=C epoxidation, whereas cytochrome P450 prefers C-H hydroxylation. Thus, had the compound I species of HRP been by itself, it would have been an epoxidizing agent, and at least as reactive as cytochrome P450. In the enzyme, HRP is much less reactive than cytochrome P450, presumably because HRP reactivity is limited by the access of the substrate to compound I.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
221
|
Manojkumar TK, Cui C, Kim KS. Theoretical insights into the mechanism of acetylcholinesterase-catalyzed acylation of acetylcholine. J Comput Chem 2005; 26:606-11. [PMID: 15739192 DOI: 10.1002/jcc.20199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acylation of acetylcholine (ACh) catalyzed by acetylcholinesterase (AChE) has been studied using high-level theoretical calculations on a model system that mimics the reaction center of the enzyme, and compared with uncatalyzed acylation reaction. The geometries of all the intermediates and transition states, activation energies, and solvent effects have been calculated. The calculations predict simultaneous formation of two short-strong hydrogen bonds (SSHB) in the rate-determining transition state structures [the first SSHB involves the hydrogen atom of Ser-200 (H(s)) and another involves the hydrogen atom of His-440 (H(h))]. In the intermediate states, the H-bond corresponding to H(h) involves SSHB, whereas the one corresponding to H(s) does not.
Collapse
Affiliation(s)
- T K Manojkumar
- Creative Research Initiative Center for Superfunctional Materials, Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea
| | | | | |
Collapse
|
222
|
de Visser SP, Kumar D, Cohen S, Shacham R, Shaik S. A predictive pattern of computed barriers for C-h hydroxylation by compound I of cytochrome p450. J Am Chem Soc 2004; 126:8362-3. [PMID: 15237977 DOI: 10.1021/ja048528h] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The communication presents DFT calculations of 10 different C-H hydroxylation barriers by the active species of the enzyme cytochrome P450. The work demonstrates the existence of an excellent barrier-bond energy correlation. The so-obtained equation of the straight line is demonstrated to be useful for predicting barriers of related C-H activation processes, as well as for assessing barrier heights within the protein environment. This facility is demonstrated be estimating the barrier of camphor hydroxylation by P450cam.
Collapse
Affiliation(s)
- Sam P de Visser
- Department of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
223
|
Shaik S, de Visser SP, Kumar D. External Electric Field Will Control the Selectivity of Enzymatic-Like Bond Activations. J Am Chem Soc 2004; 126:11746-9. [PMID: 15366922 DOI: 10.1021/ja047432k] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling the selectivity of a chemical reaction is a Holy Grail in chemistry. This paper reports theoretical results of unprecedented effects induced by moderately strong electric fields on the selectivity of two competing nonpolar bond activation processes, C-H hydroxylation vs C=C epoxidation, promoted by an active species that is common to heme-enzymes and to metallo-organic catalysts. The molecular system by itself shows no selectivity whatsoever. However, the presence of an electric field induces absolute selectivity that can be controlled at will. Thus, the choice of the orientation and direction of the field vis-à-vis the molecular axes drives the reaction in the direction of complete C-H hydroxylation or complete C=C epoxidation.
Collapse
Affiliation(s)
- Sason Shaik
- Contribution from the Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, the Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
224
|
Abstract
Proton-coupled electron transfer (PCET) reactions involve the concerted transfer of an electron and a proton. Such reactions play an important role in many areas of chemistry and biology. Concerted PCET is thermochemically more favorable than the first step in competing consecutive processes involving stepwise electron transfer (ET) and proton transfer (PT), often by >=1 eV. PCET reactions of the form X-H + Y X + H-Y can be termed hydrogen atom transfer (HAT). Another PCET class involves outersphere electron transfer concerted with deprotonation by another reagent, Y+ + XH-B Y + X-HB+. Many PCET/HAT rate constants are predicted well by the Marcus cross relation. The cross-relation calculation uses rate constants for self-exchange reactions to provide information on intrinsic barriers. Intrinsic barriers for PCET can be comparable to or larger than those for ET. These properties are discussed in light of recent theoretical treatments of PCET.
Collapse
Affiliation(s)
- James M Mayer
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, USA.
| |
Collapse
|
225
|
Meunier B, de Visser SP, Shaik S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem Rev 2004; 104:3947-80. [PMID: 15352783 DOI: 10.1021/cr020443g] [Citation(s) in RCA: 1747] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | | | | |
Collapse
|
226
|
Jin S, Bryson TA, Dawson JH. Hydroperoxoferric heme intermediate as a second electrophilic oxidant in cytochrome P450-catalyzed reactions. J Biol Inorg Chem 2004; 9:644-53. [PMID: 15365901 DOI: 10.1007/s00775-004-0575-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
Experimental evidence supporting the catalytic activity of the peroxoferric and hydroperoxoferric cytochrome P450 intermediates as alternative oxidants to the compound I (ferryl) state in the oxygenation of organic substrates is reviewed. The peroxoferric P450 state is proposed to function as a nucleophile in the lyase step of the P450-aromatase reaction. Several systems are reviewed in which the hydroperoxoferric P450 intermediate likely functions as a second electrophilic oxidant, the "two-oxidants" model. These include alkene epoxidation, sulfoxidation, and hydroxylation of methyl groups on cyclopropane rings. The key use of the P450 mutants from different sources in which the conserved threonine in the distal substrate binding pocket is replaced with alanine, in order to minimize the formation of the compound I intermediate and unmask the reactivity of the hydroperoxoferric state, is emphasized. These data are discussed in the context of the "two-states" model, which proposes that the compound I P450 intermediate has both high- and low-spin states with different reactivities. A complicated reaction profile emerges for the wide range of P450 reactions involving up to three reactive intermediates, of which the most reactive, the compound I P450 state, has two spin states with different reactivities.
Collapse
Affiliation(s)
- Shengxi Jin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
227
|
Hata M, Hirano Y, Hoshino T, Nishida R, Tsuda M. Theoretical Study on Compound I Formation in Monooxygenation Mechanism by Cytochrome P450. J Phys Chem B 2004. [DOI: 10.1021/jp0496248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masayuki Hata
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Yoshinori Hirano
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Rie Nishida
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Minoru Tsuda
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
228
|
Kumar D, de Visser SP, Sharma PK, Cohen S, Shaik S. Radical clock substrates, their C-H hydroxylation mechanism by cytochrome P450, and other reactivity patterns: what does theory reveal about the clocks' behavior? J Am Chem Soc 2004; 126:1907-20. [PMID: 14871124 DOI: 10.1021/ja039439s] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an ongoing and tantalizing controversy regarding the mechanism of a key process in nature, C-H hydroxylation, by the enzyme cytochrome P450 (Auclaire, K.; Hu, Z.; Little, D. M.; Ortiz de Montellano, P. R.; Groves, J. T. J. Am. Chem. Soc. 2002, 124, 6020-6027. Newcomb, M.; Aebisher, D.; Shen, R.; Esala, R.; Chandrasena, P.; Hollenberg, P. F.; Coon, M. J. J. Am. Chem. Soc. 2003, 125, 6064-6065). To definitely resolve this controversy, theory must first address the actual systems that have been used by experiment, and that generated the controversy. This is done in the present paper, which constitutes the first extensive theoretical study of such two experimental systems, trans-2-phenylmethyl-cyclopropane (1) and trans-2-phenyl-iso-propylcyclopropane (4). The theoretical study of these substrates reveals that the only low energy pathway for C-H hydroxylation is the two-state rebound mechanism described originally for methane hydroxylation (Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989). The paper shows that the scenario of a two-state rebound mechanism accommodates much of the experimental data. The computational results provide a good match to experimental results concerning the very different extents of rearrangement for 1 (20-30%) vs 4 (virtually none), lead to product isotope effect for the reaction of 1, in the direction of the experimental result, and predict as well the observed metabolic switching from methyl to phenyl hydroxylation, which occurs upon deuteration of the methyl group. Furthermore, the study reveals that an intimate ion pair species involving an alkyl carbocation derived from 4 gives no rearranged products, again in accord with experiment. This coherent match between theory and experiment cannot be merely accidental; it comes close to being aproof that the actual mechanism of C-H hydroxylation involves the two-state reactivity revealed by theory. Analysis of the rearrangement modes of the carbocations derived from 1 and 4 excludes the participation of free carbocations during the hydroxylation of these substrates. Finally, the mechanistic significance of product isotope effect (different isotope effects for the rearranged and unrearranged alcohol products) is analyzed. It is shown to be a sensitive probe of two-state reactivity; the size of the intrinsic product isotope effect and its direction reveal the structural differences of the hydrogen abstraction transition states in the low-spin vs high-spin reaction manifolds.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
229
|
de Visser SP, Shaik S, Sharma PK, Kumar D, Thiel W. Active species of horseradish peroxidase (HRP) and cytochrome P450: two electronic chameleons. J Am Chem Soc 2004; 125:15779-88. [PMID: 14677968 DOI: 10.1021/ja0380906] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The active site of HRP Compound I (Cpd I) is modeled using hybrid density functional theory (UB3LYP). The effects of neighboring amino acids and of environmental polarity are included. The low-lying states have porphyrin radical cationic species (Por(*)(+)). However, since the Por(*)(+) species is a very good electron acceptor, other species, which can be either the ligand or side chain amino acid residues, may participate in electron donation to the Por(*)(+) moiety, thereby making Cpd I behave like a chemical chameleon. Thus, this behavior that was noted before for Cpd I of P450 is apparently much more wide ranging than initially appreciated. Since chemical chameleonic behavior property was found to be expressed not only in the properties of Cpd I itself, but also in its reactivity, the roots of this phenomenon are generalized. A comparative discussion of Cpd I species follows for the enzymes HRP, CcP, APX, CAT (catalase), and P450.
Collapse
Affiliation(s)
- Sam P de Visser
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
230
|
Schöneboom JC, Cohen S, Lin H, Shaik S, Thiel W. Quantum Mechanical/Molecular Mechanical Investigation of the Mechanism of C−H Hydroxylation of Camphor by Cytochrome P450cam: Theory Supports a Two-State Rebound Mechanism. J Am Chem Soc 2004; 126:4017-34. [PMID: 15038756 DOI: 10.1021/ja039847w] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stereospecific cytochrome P450-catalyzed hydroxylation of the C(5)-H((5-exo)) bond in camphor has been studied theoretically by a combined quantum mechanical/molecular mechanical (QM/MM) approach. Density functional theory is employed to treat the electronic structure of the active site (40-100 atoms), while the protein and solvent environment (ca. 24,000 atoms) is described by the CHARMM force field. The calculated energy profile of the hydrogen-abstraction oxygen-rebound mechanism indicates that the reaction takes place in two spin states (doublet and quartet), as has been suggested earlier on the basis of calculations on simpler models ("two-state reactivity"). While the reaction on the doublet potential energy surface is nonsynchronous, yet effectively concerted, the quartet pathway is truly stepwise, including formation of a distinct intermediate substrate radical and a hydroxo-iron complex. Comparative calculations in the gas phase demonstrate the effect of the protein environment on the geometry and relative stability of intermediates (in terms of spin states and redox electromers) through steric constraints and electronic polarization.
Collapse
Affiliation(s)
- Jan C Schöneboom
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
231
|
Collman JP, Zeng L, Brauman JI. Donor Ligand Effect on the Nature of the Oxygenating Species in MnIII(salen)-Catalyzed Epoxidation of Olefins: Experimental Evidence for Multiple Active Oxidants. Inorg Chem 2004; 43:2672-9. [PMID: 15074985 DOI: 10.1021/ic035360c] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stereoselectivity of olefin epoxidation catalyzed by Mn(III)(salen)X (1a, X = Cl(-); 1b, X = BF(4)(-)) complexes is examined in the presence of neutral donor ligands, employing various iodosylarenes (ArIO: PhIO, C(6)F(5)IO, and MesIO) as the oxygen atom source. The cis/trans ratios of stilbene oxides and the enantiomeric excesses of styrene oxide and 1,2-dihydronaphthalene oxide are found to be strongly dependent on the nature of the iodosylarenes under certain conditions. In other cases, olefin epoxidation is shown to proceed with essentially identical diastereoselectivities or enantioselectivities, regardless of the oxygen atom source used. We propose that a Mn(V)(salen)-oxo intermediate and a complex between the catalyst and the terminal oxidant competitively effect the epoxidation when the stereoselectivities are markedly dependent on the oxygen atom source. A single Mn(V)(salen)-oxo species is considered to be the sole oxygenating intermediate when the terminal oxidants do not exert a notable influence on the product selectivities. Our results clearly demonstrate the existence of multiple oxidizing species and the conditions in which only a single oxygenating intermediate is involved. The axial donor ligands (both anionic ligands and neutral ligands) are shown to strongly influence both the identity and the reactivity of the oxygenating species.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
232
|
Chen Z, Ost TWB, Schelvis JPM. Phe393 Mutants of Cytochrome P450 BM3 with Modified Heme Redox Potentials Have Altered Heme Vinyl and Propionate Conformations. Biochemistry 2004; 43:1798-808. [PMID: 14967021 DOI: 10.1021/bi034920g] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been well established that the heme redox potential is affected by many different factors. Among others, it is sensitive to the proximal heme ligand and the conformation of the propionate and vinyl groups. In the cytochrome P450 BM3 heme domain, substitution of the highly conserved phenylalanine 393 results in a dramatic change in the heme redox potential [Ost, T. W. B., Miles, C. S., Munro, A. W., Murdoch, J., Reid, G. A., and Chapman, S. K. (2001) Biochemistry 40, 13421-13429]. We have used resonance Raman spectroscopy to characterize heme structural changes and modification of heme interactions with the protein matrix that are induced by the F393 substitutions and to determine their correlation with the heme redox potential. Our results show that the Fe-S stretching frequency of the 5-coordinated, high-spin ferric heme is not affected by the mutations, suggesting that the electron density in the Fe-S bond in this state is not affected by the F393 mutation and is not a good indicator of the heme redox potential. Substrate binding perturbs the hydrogen bonding between one propionate group and the protein matrix and correlates to both the size of residue 393 and the heme redox potential. However, heme reduction does not affect the conformation of the propionate groups. Although the conformation of the vinyl groups is not affected much by substrate binding, their conformation changes from mainly out-of-plane to predominantly in-plane upon heme reduction. The extent of these conformational changes correlates strongly with the size of the 393 residue and the heme redox potential, suggesting that steric interaction between this residue and the vinyl groups may be of importance in regulating the heme redox potential in the P450 BM3 heme domain. Further implications of our findings for the change in redox potential upon mutation of F393 will be discussed.
Collapse
Affiliation(s)
- Zhucheng Chen
- Department of Chemistry, New York University, 31 Washington Place, Room 1001, New York, New York 10003, USA
| | | | | |
Collapse
|
233
|
Rydberg P, Sigfridsson E, Ryde U. On the role of the axial ligand in heme proteins: a theoretical study. J Biol Inorg Chem 2004; 9:203-23. [PMID: 14727167 DOI: 10.1007/s00775-003-0515-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 12/04/2003] [Indexed: 11/29/2022]
Abstract
We present a systematic investigation of how the axial ligand in heme proteins influences the geometry, electronic structure, and spin states of the active site, and the energies of the reaction cycles. Using the density functional B3LYP method and medium-sized basis sets, we have compared models with His, His+Asp, Cys, Tyr, and Tyr+Arg as found in myoglobin and hemoglobin, peroxidases, cytochrome P450, and heme catalases, respectively. We have studied 12 reactants and intermediates of the reaction cycles of these enzymes, including complexes with H(2)O, OH(-), O(2-), CH(3)OH, O(2), H(2)O(2), and HO(2)(-) in various formal oxidation states of the iron ion (II to V). The results show that His gives ~0.6 V higher reduction potentials than the other ligands. In particular, it is harder to reduce and protonate the O(2) complex with His than with the other ligands, in accordance with the O(2) carrier function of globins and the oxidative chemistry of the other proteins. For most properties, the trend Cys<Tyr<Tyr+Arg<His+Asp<His is found, reflecting the donor capacity of the various ligands. Thus, it is easier to reduce compound I with a His+Asp ligand than with a Cys ligand, in accordance with the one-electron chemistry of peroxidases and the hydroxylation reactions of cytochromes P450. However, the Tyr complexes have an unusually low affinity for all neutral ligands, giving them a slightly enhanced driving force in the oxidation of H(2)O(2) by compound I.
Collapse
Affiliation(s)
- Patrik Rydberg
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | | | | |
Collapse
|
234
|
Shaik S, Cohen S, de Visser S, Sharma P, Kumar D, Kozuch S, Ogliaro F, Danovich D. The “Rebound Controversy”: An Overview and Theoretical Modeling of the Rebound Step in C−H Hydroxylation by Cytochrome P450. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200300448] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - Shimrit Cohen
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - Samuël P. de Visser
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - Pankaz K. Sharma
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - Sebastian Kozuch
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - François Ogliaro
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| | - David Danovich
- Department of Organic Chemistry and the Lise Meitner‐Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel Fax: (internat.) + 972‐2‐658‐4680
| |
Collapse
|
235
|
Bathelt CM, Ridder L, Mulholland AJ, Harvey JN. Mechanism and structure–reactivity relationships for aromatic hydroxylation by cytochrome P450. Org Biomol Chem 2004; 2:2998-3005. [PMID: 15480465 DOI: 10.1039/b410729b] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 enzymes play a central role in drug metabolism, and models of their mechanism could contribute significantly to pharmaceutical research and development of new drugs. The mechanism of cytochrome P450 mediated hydroxylation of aromatics and the effects of substituents on reactivity have been investigated using B3LYP density functional theory computations in a realistic porphyrin model system. Two different orientations of substrate approach for addition of Compound I to benzene, and also possible subsequent rearrangement pathways have been explored. The rate-limiting Compound I addition to an aromatic carbon atom proceeds on the doublet potential energy surface via a transition state with mixed radical and cationic character. Subsequent formation of epoxide, ketone and phenol products is shown to occur with low barriers, especially starting from a cation-like rather than a radical-like tetrahedral adduct of Compound I with benzene. Effects of ring substituents were explored by calculating the activation barriers for Compound I addition in the meta and para-position for a range of monosubstituted benzenes and for more complex polysubstituted benzenes. Two structure-reactivity relationships including 8 and 10 different substituted benzenes have been determined using (i) experimentally derived Hammett sigma-constants and (ii) a theoretical scale based on bond dissociation energies of hydroxyl adducts of the substrates, respectively. In both cases a dual-parameter approach that employs a combination of radical and cationic electronic descriptors gave good relationships with correlation coefficients R2 of 0.96 and 0.82, respectively. These relationships can be extended to predict the reactivity of other substituted aromatics, and thus can potentially be used in predictive drug metabolism models.
Collapse
Affiliation(s)
- Christine M Bathelt
- School of Chemistry and Centre for Computational Chemistry, University of Bristol, UK
| | | | | | | |
Collapse
|
236
|
Bathelt CM, Ridder L, Mulholland AJ, Harvey JN. Aromatic Hydroxylation by Cytochrome P450: Model Calculations of Mechanism and Substituent Effects. J Am Chem Soc 2003; 125:15004-5. [PMID: 14653732 DOI: 10.1021/ja035590q] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.
Collapse
Affiliation(s)
- Christine M Bathelt
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | |
Collapse
|
237
|
Kumar D, de Visser SP, Shaik S. How Does Product Isotope Effect Prove the Operation of a Two-State “Rebound” Mechanism in C−H Hydroxylation by Cytochrome P450? J Am Chem Soc 2003; 125:13024-5. [PMID: 14570465 DOI: 10.1021/ja036906x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-H hydroxylation is a fundamental process. In Nature it is catalyzed by the enzyme cytochrome P450, in a still-debated mechanism that poses a major intellectual challenge for both experiment and theory; currently, the opinions keep swaying between the original single-state rebound mechanism, a two-oxidant mechanism (where ferric peroxide participates as a second oxidant, in addition to the primary active species, the high-valent iron-oxo species), and two-state reactivity (TSR) mechanism (where two spin states are involved). Recent product isotope effect (PIE) measurements for the trans-2-phenyl-methyl cyclopropane probe (1), led Newcomb and co-workers (Newcomb, M.; Aebisher, D.; Shen, R.; Esala, R.; Chandrasena, P.; Hollenberg, P.; Coon, M. J. J. Am. Chem. Soc. 2003, 125, 6064-6065) to rule out TSR in favor of the two-oxidant scenario, since the direction of the PIE was at odds with the one predicted from calculations on methane hydroxylation. The present report describes a density functional theoretical study of C-H hydroxylation of the Newcomb probe, 1, leading to rearranged (3) and unrearranged (2) products. Our study shows that the reaction occurs via TSR in which the high-spin pathway gives dominant rearranged products, whereas the low-spin pathway favors unrearranged products. The calculated PIE(2/3) values based on TSR are found to be in excellent agreement with the experimental data of Newcomb and co-workers. This match between experiment and theory makes a strong case that the reaction occurs via TSR mechanism.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
238
|
Veige AS, Slaughter LM, Lobkovsky EB, Wolczanski PT, Matsunaga N, Decker SA, Cundari TR. Symmetry and Geometry Considerations of Atom Transfer: Deoxygenation of (silox)3WNO and R3PO (R = Me, Ph, tBu) by (silox)3M (M = V, NbL (L = PMe3, 4-Picoline), Ta; silox = tBu3SiO). Inorg Chem 2003; 42:6204-24. [PMID: 14514296 DOI: 10.1021/ic0300114] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxygenations of (silox)(3)WNO (12) and R(3)PO (R = Me, Ph, (t)Bu) by M(silox)(3) (1-M; M = V, NbL (L = PMe(3), 4-picoline), Ta; silox = (t)Bu(3)SiO) reflect the consequences of electronic effects enforced by a limiting steric environment. 1-Ta rapidly deoxygenated R(3)PO (23 degrees C; R = Me (DeltaG degrees (rxn)(calcd) = -47 kcal/mol), Ph) but not (t)Bu(3)PO (85 degrees, >2 days), and cyclometalation competed with deoxygenation of 12 to (silox)(3)WN (11) and (silox)(3)TaO (3-Ta; DeltaG degrees (rxn)(calcd) = -100 kcal/mol). 1-V deoxygenated 12 slowly and formed stable adducts (silox)(3)V-OPR(3) (3-OPR(3)) with OPR(3). 1-Nb(4-picoline) (S = 0) and 1-NbPMe(3) (S = 1) deoxygenated R(3)PO (23 degrees C; R = Me (DeltaG degrees (rxn)(calcd from 1-Nb) = -47 kcal/mol), Ph) rapidly and 12 slowly (DeltaG degrees (rxn)(calcd) = -100 kcal/mol), and failed to deoxygenate (t)Bu(3)PO. Access to a triplet state is critical for substrate (EO) binding, and the S --> T barrier of approximately 17 kcal/mol (calcd) hinders deoxygenations by 1-Ta, while 1-V (S = 1) and 1-Nb (S --> T barrier approximately 2 kcal/mol) are competent. Once binding occurs, significant mixing with an (1)A(1) excited state derived from population of a sigma-orbital is needed to ensure a low-energy intersystem crossing of the (3)A(2) (reactant) and (1)A(1) (product) states. Correlation of a reactant sigma-orbital with a product sigma-orbital is required, and the greater the degree of bending in the (silox)(3)M-O-E angle, the more mixing energetically lowers the intersystem crossing point. The inability of substrates EO = 12 and (t)Bu(3)PO to attain a bent 90 degree angle M-O-E due to sterics explains their slow or negligible deoxygenations. Syntheses of relevant compounds and ramifications of the results are discussed. X-ray structural details are provided for 3-OPMe(3) (90 degree angle V-O-P = 157.61(9) degrees), 3-OP(t)Bu(3) ( 90 degree angle V-O-P = 180 degrees ), 1-NbPMe(3), and (silox)(3)ClWO (9).
Collapse
Affiliation(s)
- Adam S Veige
- Department of Chemistry & Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Sharma PK, De Visser SP, Shaik S. Can a single oxidant with two spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome p450. J Am Chem Soc 2003; 125:8698-9. [PMID: 12862444 DOI: 10.1021/ja035135u] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional calculations were performed on the sulfoxidation reaction by a model compound I (Cpd I) of cytochrome P450. By contrast to previous alkane hydroxylation studies, which exhibit a dominant low-spin (LS) pathway, the sulfoxidation follows a dominant high-spin (HS) reaction. Thus, competing hydroxylation and sulfoxidation processes as observed for instance by Jones et al. (Volz, T. J.; Rock, D. A.; Jones, J. P. J. Am. Chem. Soc. 2002, 124, 9724) are the result of a two-state reactivity scenario, whereby the hydroxylation originates from the LS pathway and the sulfoxidation from the HS pathway. In this manner, two spin states of a single oxidant (Cpd I) can be disguised as two different oxidants. The calculations rule out the possibility that a second oxidant (the ferric peroxide, Cpd 0 species) interferes in the observed results of Jones et al.
Collapse
Affiliation(s)
- Pankaz K Sharma
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram 91904, Jerusalem, Israel
| | | | | |
Collapse
|
240
|
de Visser SP, Shaik S. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. J Am Chem Soc 2003; 125:7413-24. [PMID: 12797816 DOI: 10.1021/ja034142f] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzene hydroxylation is a fundamental process in chemical catalysis. In nature, this reaction is catalyzed by the enzyme cytochrome P450 via oxygen transfer in a still debated mechanism of considerable complexity. The paper uses hybrid density functional calculations to elucidate the mechanisms by which benzene is converted to phenol, benzene oxide, and ketone, by the active species of the enzyme, the high-valent iron-oxo porphyrin species. The effects of the protein polarity and hydrogen-bonding donation to the active species are mimicked, as before (Ogliaro, F.; Cohen, S.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 12892-12893). It is verified that the reaction does not proceed either by hydrogen abstraction or by initial electron transfer (Ortiz de Montellano, P. R. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; Chapter 8, pp 245-303). In accord with the latest experimental conclusions, the theoretical calculations show that the reactivity is an interplay of electrophilic and radicalar pathways, which involve an initial attack on the pi-system of the benzene to produce sigma-complexes (Korzekwa, K. R.; Swinney, D. C.; Trager, W. T. Biochemistry 1989, 28, 9019-9027). The dominant reaction channel is electrophilic and proceeds via the cationic sigma-complex,( 2)3, that involves an internal ion pair made from a cationic benzene moiety and an anionic iron porphyrin. The minor channel proceeds by intermediacy of the radical sigma-complex, (2)2, in which the benzene moiety is radicalar and the iron-porphyrin moiety is neutral. Ring closure in these intermediates produces the benzene oxide product ((2)4), which does not rearrange to phenol ((2)7) or cyclohexenone ((2)6). While such a rearrangement can occur post-enzymatically under physiological conditions by acid catalysis, the computations reveal a novel mechanism whereby the active species of the enzyme catalyzes directly the production of phenol and cyclohexenone. This enzymatic mechanism involves proton shuttles mediated by the porphyrin ring through the N-protonated intermediate, (2)5, which relays the proton either to the oxygen atom to form phenol ((2)7) or to the ortho-carbon atom to produce cyclohexenone product ((2)6). The formation of the phenol via this proton-shuttle mechanism will be competitive with the nonenzymatic conversion of benzene oxide to phenol by external acid catalysis. With the assumption that (2)5 is not fully thermalized, this novel mechanism would account also for the observation that there is a partial skeletal retention of the original hydrogen of the activated C-H bond, due to migration of the hydrogen from the site of hydroxylation to the adjacent carbon (so-called "NIH shift" (Jerina, D. M.; Daly, J. W. Science 1974, 185, 573-582)). Thus, in general, the computationally discovered mechanism of a porphyrin proton shuttle suggests thatthere is an enzymatic pathway that converts benzene directly to a phenol and ketone, in addition to nonenzymatic production of these species by conversion of arene oxide to phenol and ketone. The potential generality of protonated porphyrin intermediates in P450 chemistry is discussed in the light of the H/D exchange observed during some olefin epoxidation reactions (Groves, J. T.; Avaria-Neisser, G. E.; Fish, K. M.; Imachi, M.; Kuczkowski, R. J. Am. Chem. Soc. 1986, 108, 3837-3838) and the general observation of heme alkylation products (Kunze, K. L.; Mangold, B. L. K.; Wheeler, C.; Beilan, H. S.; Ortiz de Montellano, P. R. J. Biol. Chem. 1983, 258, 4202-4207). The competition, similarities, and differences between benzene oxidation viz. olefin epoxidation and alkanyl C-H hydroxylation are discussed, and comparison is made with relevant experimental and computational data. The dominance of low-spin reactivity in benzene hydroxylation viz. two-state reactivity (Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556-567) in olefin epoxidation and alkane hydroxylation is traced to the loss of benzene resonance energy during the bond activation step.
Collapse
Affiliation(s)
- Sam P de Visser
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | |
Collapse
|
241
|
de Visser SP, Kaneti J, Neumann R, Shaik S. Fluorinated alcohols enable olefin epoxidation by H2O2: template catalysis. J Org Chem 2003; 68:2903-12. [PMID: 12662068 DOI: 10.1021/jo034087t] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental observations show that direct olefin epoxidation by H(2)O(2), which is extremely sluggish otherwise, occurs in fluorinated alcohol (R(f)OH) solutions under mild conditions requiring no additional catalysts. Theoretical calculations of ethene and propene epoxidation by H(2)O(2) in the gas phase and in the presence of methanol and of two fluorinated alcohols, presented in this paper, show that the fluoro alcohol itself acts as a catalyst for the reaction by providing a template that stabilizes specifically the transition state (TS) of the reaction. Thus, much like an enzyme, the fluoro alcohol provides a complementary charge template that leads to the reduction of the barrier by 5-8 kcal mol(-)(1). Additionally, the fluoro alcohol template keeps the departing OH and hydroxyalkenyl moieties in close proximity and, by polarizing them, facilitates the hydrogen migration from the latter to form water and the epoxide product. The reduced activation energy and structural confinement of the TS over the fluoro alcohol template render the epoxidation reaction observable under mild synthetic conditions.
Collapse
Affiliation(s)
- Samuël P de Visser
- Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University, Givat Ram Campus, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
242
|
Sharma PK, De Visser SP, Ogliaro F, Shaik S. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. J Am Chem Soc 2003; 125:2291-300. [PMID: 12590559 DOI: 10.1021/ja0282487] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent metal-oxo complexes catalyze C-H bond activation by oxygen insertion, with an efficiency that depends on the identity of the transition metal and its oxidation state. Our study uses density functional calculations and theoretical analysis to derive fundamental factors of catalytic activity, by comparison of a ruthenium-oxo catalyst with its iron-oxo analogue toward methane hydroxylation. The study focuses on the ruthenium analogue of the active species of the enzyme cytochrome P450, which is known to be among the most potent catalysts for C-H activation. The computed reaction pathways reveal one high-spin (HS) and two low-spin (LS) mechanisms, all nascent from the low-lying states of the ruthenium-oxo catalyst (Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem. Int. Ed. 2001, 40, 2874-2878). These mechanisms involve a bond activation phase, in which the transition states (TS's) appear as hydrogen abstraction species, followed by a C-O bond making phase, through a rebound of the methyl radical on the metal-hydroxo complex. However, while the HS mechanism has a significant rebound barrier, and hence a long lifetime of the radical intermediate, by contrast, the LS ones are effectively concerted with small barriers to rebound, if at all. Unlike the iron catalyst, the hydroxylation reaction for the ruthenium analogue is expected to follow largely a single-state reactivity on the LS surface, due to a very large rebound barrier of the HS process and to the more efficient spin crossover expected for ruthenium. As such, ruthenium-oxo catalysts (Groves, J. T.; Shalyaev, K.; Lee, J. In The Porphyrin Handbook; Biochemistry and Binding: Activation of Small Molecules, Vol. 4; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; pp 17-40) are expected to lead to more stereoselective hydroxylations compared with the corresponding iron-oxo reactions. It is reasoned that the ruthenium-oxo catalyst should have larger turnover numbers compared with the iron-oxo analogue, due to lesser production of suicidal side products that destroy the catalyst (Ortiz de Montellano, P. R.; Beilan, H. S.; Kunze, K. L.; Mico, B. A. J. Biol. Chem. 1981, 256, 4395-4399). The computations reveal also that the ruthenium complex is more electrophilic than its iron analogue, having lower hydrogen abstraction barriers. These reactivity features of the ruthenium-oxo system are analyzed and shown to originate from a key fundamental factor, namely, the strong 4d(Ru)-2p(O,N) overlaps, which produce high-lying pi(Ru-O), sigma(Ru-O), and sigma(Ru-N) orbitals and thereby to lead to a preference of ruthenium for higher-valent oxidation states with higher electrophilicity, for the effectively concerted LS hydroxylation mechanism, and for less suicidal complexes. As such, the ruthenium-oxo species is predicted to be a more robust catalyst than its iron-oxo analogue.
Collapse
Affiliation(s)
- Pankaz K Sharma
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
243
|
Shaik S, de Visser SP, Ogliaro F, Schwarz H, Schröder D. Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr Opin Chem Biol 2002; 6:556-67. [PMID: 12413538 DOI: 10.1016/s1367-5931(02)00363-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent computational studies of alkane hydroxylation and alkene epoxidation by a model active species of the enzyme cytochrome P-450 reveal a two-state reactivity (TSR) scenario in which the information content of the product distribution is determined jointly by two states. TSR is used to reconcile the dilemma of the consensus 'rebound mechanism' of alkane hydroxylation, which emerged from experimental studies of ultra-fast radical clocks. The dilemma, stated succinctly as 'radicals are both present and absent and the rebound mechanism is both right and wrong', is simply understood once one is cognizant that the mechanism operates by two states, one low-spin (LS) the other high-spin (HS). In both states, bond activation proceeds in a manner akin to the rebound mechanism, but the LS mechanism is effectively concerted, whereas the HS is stepwise with incursion of radical intermediates.
Collapse
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|