201
|
Marcoux J, Wang SC, Politis A, Reading E, Ma J, Biggin PC, Zhou M, Tao H, Zhang Q, Chang G, Morgner N, Robinson CV. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 2013; 110:9704-9. [PMID: 23690617 PMCID: PMC3683783 DOI: 10.1073/pnas.1303888110] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance is a serious barrier to successful treatment of many human diseases, including cancer, wherein chemotherapeutics are exported from target cells by membrane-embedded pumps. The most prevalent of these pumps, the ATP-Binding Cassette transporter P-glycoprotein (P-gp), consists of two homologous halves each comprising one nucleotide-binding domain and six transmembrane helices. The transmembrane region encapsulates a hydrophobic cavity, accessed by portals in the membrane, that binds cytotoxic compounds as well as lipids and peptides. Here we use mass spectrometry (MS) to probe the intact P-gp small molecule-bound complex in a detergent micelle. Activation in the gas phase leads to formation of ions, largely devoid of detergent, yet retaining drug molecules as well as charged or zwitterionic lipids. Measuring the rates of lipid binding and calculating apparent KD values shows that up to six negatively charged diacylglycerides bind more favorably than zwitterionic lipids. Similar experiments confirm binding of cardiolipins and show that prior binding of the immunosuppressant and antifungal antibiotic cyclosporin A enhances subsequent binding of cardiolipin. Ion mobility MS reveals that P-gp exists in an equilibrium between different states, readily interconverted by ligand binding. Overall these MS results show how concerted small molecule binding leads to synergistic effects on binding affinities and conformations of a multidrug efflux pump.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Ma
- Biochemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philip C. Biggin
- Biochemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | | | - Houchao Tao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093
| | | | | |
Collapse
|
202
|
Saikusa K, Fuchigami S, Takahashi K, Asano Y, Nagadoi A, Tachiwana H, Kurumizaka H, Ikeguchi M, Nishimura Y, Akashi S. Gas-Phase Structure of the Histone Multimers Characterized by Ion Mobility Mass Spectrometry and Molecular Dynamics Simulation. Anal Chem 2013; 85:4165-71. [DOI: 10.1021/ac400395j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kazumi Saikusa
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Kyohei Takahashi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Yuuki Asano
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Aritaka Nagadoi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced
Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced
Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mitsunori Ikeguchi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Yoshifumi Nishimura
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Satoko Akashi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| |
Collapse
|
203
|
Afonso JP, Chintakayala K, Suwannachart C, Sedelnikova S, Giles K, Hoyes JB, Soultanas P, Rafferty JB, Oldham NJ. Insights into the structure and assembly of the Bacillus subtilis clamp-loader complex and its interaction with the replicative helicase. Nucleic Acids Res 2013; 41:5115-26. [PMID: 23525462 PMCID: PMC3643586 DOI: 10.1093/nar/gkt173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clamp-loader complex plays a crucial role in DNA replication by loading the β-clamp onto primed DNA to be used by the replicative polymerase. Relatively little is known about the stoichiometry, structure and assembly pathway of this complex, and how it interacts with the replicative helicase, in Gram-positive organisms. Analysis of full and partial complexes by mass spectrometry revealed that a hetero-pentameric τ3-δ-δ' Bacillus subtilis clamp-loader assembles via multiple pathways, which differ from those exhibited by the Gram-negative model Escherichia coli. Based on this information, a homology model of the B. subtilis τ3-δ-δ' complex was constructed, which revealed the spatial positioning of the full C-terminal τ domain. The structure of the δ subunit was determined by X-ray crystallography and shown to differ from that of E. coli in the nature of the amino acids comprising the τ and δ' binding regions. Most notably, the τ-δ interaction appears to be hydrophilic in nature compared with the hydrophobic interaction in E. coli. Finally, the interaction between τ3 and the replicative helicase DnaB was driven by ATP/Mg(2+) conformational changes in DnaB, and evidence is provided that hydrolysis of one ATP molecule by the DnaB hexamer is sufficient to stabilize its interaction with τ3.
Collapse
Affiliation(s)
- José P Afonso
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Coupling electrospray corona discharge, charge reduction and ion mobility mass spectrometry: From peptides to large macromolecular protein complexes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12127-013-0120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
205
|
Silveira JA, Servage KA, Gamage CM, Russell DH. Cryogenic Ion Mobility-Mass Spectrometry Captures Hydrated Ions Produced During Electrospray Ionization. J Phys Chem A 2013; 117:953-61. [DOI: 10.1021/jp311278a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joshua A. Silveira
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kelly A. Servage
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Chaminda M. Gamage
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - David H. Russell
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
206
|
Rozbesky D, Sovova Z, Marcoux J, Man P, Ettrich R, Robinson CV, Novak P. Structural model of lymphocyte receptor NKR-P1C revealed by mass spectrometry and molecular modeling. Anal Chem 2013; 85:1597-604. [PMID: 23249299 DOI: 10.1021/ac302860m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NKR-P1C is an activating immune receptor expressed on the surface of mouse natural killer cells. It has been widely used as a marker for NK cell identification in different mice strains. Recently we solved a crystal structure of the C-type lectin-like domain of a homologous protein, NKR-P1A, using X-ray crystallography and also described the strategy for rapid characterization of the protein conformation in solution. This procedure utilized chemical cross-linking, hydrogen/deuterium exchange, and molecular modeling. It was found that the solution structure differs from the crystal structure in the conformation of the loop region. The loop, detached from the protein compact core in the crystal structure, is closely attached to the core of the protein in solution. Here we present and interpret the solution structure of the C-type lectin-like domain of NKR-P1C using chemical cross-linking and molecular modeling. The validation of the model and conformation of the loop region in NKR-P1C were addressed using ion-mobility mass spectrometry.
Collapse
Affiliation(s)
- Daniel Rozbesky
- Department of Biochemistry, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
207
|
López A, Tarragó T, Vilaseca M, Giralt E. Applications and future of ion mobility mass spectrometry in structural biology. NEW J CHEM 2013. [DOI: 10.1039/c3nj41051j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
208
|
Meyer T, Gabelica V, Grubmüller H, Orozco M. Proteins in the gas phase. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1130] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
209
|
Kinetic Stability of the Streptavidin–Biotin Interaction Enhanced in the Gas Phase. J Am Chem Soc 2012; 134:16586-96. [DOI: 10.1021/ja305213z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
210
|
Kükrer B, Barbu IM, Copps J, Hogan P, Taylor SS, van Duijn E, Heck AJR. Conformational isomers of calcineurin follow distinct dissociation pathways. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1534-43. [PMID: 22811075 PMCID: PMC4120237 DOI: 10.1007/s13361-012-0441-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 05/12/2023]
Abstract
In the gas-phase, ions of protein complexes typically follow an asymmetric dissociation pathway upon collisional activation, whereby an expelled small monomer takes a disproportionately large amount of the charges from the precursor ion. This phenomenon has been rationalized by assuming that upon activation, a single monomer becomes unfolded, thereby attracting charges to its newly exposed basic residues. Here, we report on the atypical gas-phase dissociation of the therapeutically important, heterodimeric calcium/calmodulin-dependent serine/threonine phosphatase calcineurin, using a combination of tandem mass spectrometry, ion mobility mass spectrometry, and computational modeling. Therefore, a hetero-dimeric calcineurin construct (62 kDa), composed of CNa (44 kDa, a truncation mutant missing the calmodulin binding and auto-inhibitory domains), and CNb (18 kDa), was used. Upon collisional activation, this hetero-dimer follows the commonly observed dissociation behavior, whereby the smaller CNb becomes highly charged and is expelled. Surprisingly, in addition, a second atypical dissociation pathway, whereby the charge partitioning over the two entities is more symmetric is observed. The presence of two gas-phase conformational isomers of calcineurin as revealed by ion mobility mass spectrometry (IM-MS) may explain the co-occurrence of these two dissociation pathways. We reveal the direct relationship between the conformation of the calcineurin precursor ion and its concomitant dissociation pathway and provide insights into the mechanisms underlying this co-occurrence of the typical and atypical fragmentation mechanisms.
Collapse
Affiliation(s)
- Basak Kükrer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Ioana M. Barbu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Jeffrey Copps
- The Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Patrick Hogan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Susan S. Taylor
- The Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
211
|
Hall Z, Politis A, Robinson C. Structural Modeling of Heteromeric Protein Complexes from Disassembly Pathways and Ion Mobility-Mass Spectrometry. Structure 2012; 20:1596-609. [DOI: 10.1016/j.str.2012.07.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/30/2022]
|
212
|
Pagel K, Natan E, Hall Z, Fersht AR, Robinson CV. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew Chem Int Ed Engl 2012; 52:361-5. [PMID: 22777995 DOI: 10.1002/anie.201203047] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/16/2012] [Indexed: 11/11/2022]
Abstract
Spontaneous shrinking: the intrinsically disordered tumor suppressor protein p53 was analyzed by using a combination of ion mobility mass spectrometry and molecular dynamics simulations. Structured p53 subdomains retain their overall topology upon transfer into the gas phase. When intrinsically disordered segments are introduced into the protein sequence, however, the complex spontaneously collapses in the gas phase to a compact conformation.
Collapse
Affiliation(s)
- Kevin Pagel
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, UK
| | | | | | | | | |
Collapse
|
213
|
Pagel K, Natan E, Hall Z, Fersht AR, Robinson CV. Intrinsically Disordered p53 and Its Complexes Populate Compact Conformations in the Gas Phase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
214
|
Hall Z, Robinson CV. Do charge state signatures guarantee protein conformations? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1161-8. [PMID: 22562394 DOI: 10.1007/s13361-012-0393-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 05/11/2023]
Abstract
The extent to which proteins in the gas phase retain their condensed-phase structure is a hotly debated issue. Closely related to this is the degree to which the observed charge state reflects protein conformation. Evidence from electron capture dissociation, hydrogen/deuterium exchange, ion mobility, and molecular dynamics shows clearly that there is often a strong correlation between the degree of folding and charge state, with the most compact conformations observed for the lowest charge states. In this article, we address recent controversies surrounding the relationship between charge states and folding, focussing also on the manipulation of charge in solution and its effect on conformation. 'Supercharging' reagents that have been used to effect change in charge state can promote unfolding in the electrospray droplet. However for several protein complexes, supercharging does not appear to perturb the structure in that unfolding is not detected. Consequently, a higher charge state does not necessarily imply unfolding. Whilst the effect of charge manipulation on conformation remains controversial, there is strong evidence that a folded, compact state of a protein can survive in the gas phase, at least on a millisecond timescale. The exact nature of the side-chain packing and secondary structural elements in these compact states, however, remains elusive and prompts further research.
Collapse
Affiliation(s)
- Zoe Hall
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | | |
Collapse
|
215
|
Zhou M, Huang C, Wysocki VH. Surface-induced dissociation of ion mobility-separated noncovalent complexes in a quadrupole/time-of-flight mass spectrometer. Anal Chem 2012; 84:6016-23. [PMID: 22747517 DOI: 10.1021/ac300810u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A custom in-line surface-induced dissociation (SID) device has been incorporated into a commercial ion mobility quadrupole/time-of-flight mass spectrometer in order to provide an alternative and potentially more informative activation method than the commonly used collision-induced dissociation (CID). Complicated sample mixtures can be fractionated by ion mobility (IM) and then dissociated by CID or SID for further structural analysis. Interpretation of SID spectra for cesium iodide clusters was greatly simplified with IM prior to dissociation because products originating from different precursors and overlapping in m/z but separated in drift time can be examined individually. Multiple conformations of two protein complexes, source-activated transthyretin tetramer and nativelike serum amyloid P decamer, were separated in ion mobility and subjected to CID and SID. CID spectra of the mobility separated conformations are similar. However, drastic differences can be observed for SID spectra of different conformations, implying different structures in the gas phase. This work highlights the potential of utilizing IM-SID to study quaternary structures of protein complexes and provides information that is complementary to our recently reported SID-IM approach.
Collapse
Affiliation(s)
- Mowei Zhou
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States
| | | | | |
Collapse
|