201
|
Liu FC, Kirk SR, Bleiholder C. On the structural denaturation of biological analytes in trapped ion mobility spectrometry – mass spectrometry. Analyst 2016; 141:3722-30. [DOI: 10.1039/c5an02399h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trapped ion mobility spectra recorded for ubiquitin are consistent with structures reported for the native state by NMR.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Samuel R. Kirk
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
- Institute of Molecular Biophysics
| |
Collapse
|
202
|
Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large Proteins. J Mol Biol 2016; 428:522-32. [DOI: 10.1016/j.jmb.2016.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/23/2023]
|
203
|
Feig M. Kinetics from Implicit Solvent Simulations of Biomolecules as a Function of Viscosity. J Chem Theory Comput 2015; 3:1734-48. [PMID: 26627618 DOI: 10.1021/ct7000705] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic properties of alanine dipeptide, the B1 domain of streptococcal protein G, and ubiquitin are compared between explicit solvent and implicit solvent simulations with the generalized Born molecular volume (GBMV) method. The results indicate that kinetics from explicit solvent simulations and experiments can be matched closely when the implicit solvent simulations are combined with Langevin dynamics and a friction coefficient near 10 ps(-1). Smaller and larger friction coefficients accelerate and slow down conformational sampling. It is found that local conformational exploration without the crossing of significant barriers can be accelerated by a factor of 4-5; however, the acceleration of barrier crossings is limited to about a factor of 2. The use of a Nosé-Hoover thermostat instead of Langevin dynamics greatly enhances local conformational sampling but slows down the crossing of barriers by at least an order of magnitude because of the lack of solute-solvent stochastic collisions.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, and Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
204
|
Schmid FFF, Meuwly M. Direct Comparison of Experimental and Calculated NMR Scalar Coupling Constants for Force Field Validation and Adaptation. J Chem Theory Comput 2015; 4:1949-58. [PMID: 26620337 DOI: 10.1021/ct800241d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to measure scalar coupling constants across hydrogen bonds ((3h)JNC') from high-resolution NMR experiments allows the characterization of detailed structural properties of biomolecules. To analyze those, a parametrized model based on the linear combination of atomic orbitals relates H-bond geometries with the measured (3h)JNC' coupling magnitude. In the present study the dependence of calculated (3h)JNC' coupling constants on force field parameters is assessed. It is shown that increased polarity of the hydrogen bond improves the calculated (3h)JNC' coupling constants and shifts the conformational ensemble sampled from the molecular dynamics (MD) simulations toward the experimentally measured one. Increased charges lead to more narrow distance and angle distributions and improve the agreement between calculated and measured (3h)JNC' couplings. However, different secondary structures are better represented by different magnitudes of electrostatic interactions-different atomic partial charges in the present work-as indicated by root-mean square deviations (rsmds) between observed and calculated coupling constants (3h)JNC'. The parametrization of the empirical formula is found to be meaningful and robust, but the parameter values are not universal across different proteins and different secondary structural elements (α-helices, β-sheets and loops). Using standard and slightly increased CHARMM charges, predictions for the as-yet unknown scalar coupling constants for the V54A and I6A mutants of protein G are made.
Collapse
Affiliation(s)
- Franziska F-F Schmid
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
205
|
Salmon L, Blackledge M. Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:126601. [PMID: 26517337 DOI: 10.1088/0034-4885/78/12/126601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy is exquisitely sensitive to protein dynamics. In particular inter-nuclear dipolar couplings, that become measurable in solution when the protein is dissolved in a dilute liquid crystalline solution, report on all conformations sampled up to millisecond timescales. As such they provide the opportunity to describe the Boltzmann distribution present in solution at atomic resolution, and thereby to map the conformational energy landscape in unprecedented detail. The development of analytical methods and approaches based on numerical simulation and their application to numerous biologically important systems is presented.
Collapse
Affiliation(s)
- Loïc Salmon
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France. CEA, DSV, IBS, F-38027 Grenoble, France. CNRS, IBS, F-38027 Grenoble, France
| | | |
Collapse
|
206
|
Kolmer A, Edwards LJ, Kuprov I, Thiele CM. Conformational analysis of small organic molecules using NOE and RDC data: A discussion of strychnine and α-methylene-γ-butyrolactone. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:101-109. [PMID: 26556179 DOI: 10.1016/j.jmr.2015.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
To understand the properties and/or reactivity of an organic molecule, an understanding of its three-dimensional structure is necessary. Simultaneous determination of configuration and conformation often poses a daunting challenge. Thus, the more information accessible for a given molecule, the better. Additionally to (3)J-couplings, two sources of information, quantitative NOE and more recently also RDCs, are used for conformational analysis by NMR spectroscopy. In this paper, we compare these sources of conformational information in two molecules: the configurationally well-characterized strychnine 1, and the only recently configurationally and conformationally characterized α-methylene-γ-butyrolactone 2. We discuss possible sources of error in the measurement and analysis process, and how to exclude them. By this means, we are able to bolster the previously proposed flexibility for these two molecules.
Collapse
Affiliation(s)
- Andreas Kolmer
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 16, 64287 Darmstadt, Germany
| | - Luke J Edwards
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QG, United Kingdom
| | - Ilya Kuprov
- School of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 16, 64287 Darmstadt, Germany.
| |
Collapse
|
207
|
Vammi V, Song G. Ensembles of a small number of conformations with relative populations. JOURNAL OF BIOMOLECULAR NMR 2015; 63:341-351. [PMID: 26474790 DOI: 10.1007/s10858-015-9993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
In our previous work, we proposed a new way to represent protein native states, using ensembles of a small number of conformations with relative Populations, or ESP in short. Using Ubiquitin as an example, we showed that using a small number of conformations could greatly reduce the potential of overfitting and assigning relative populations to protein ensembles could significantly improve their quality. To demonstrate that ESP indeed is an excellent alternative to represent protein native states, in this work we compare the quality of two ESP ensembles of Ubiquitin with several well-known regular ensembles or average structure representations. Extensive amount of significant experimental data are employed to achieve a thorough assessment. Our results demonstrate that ESP ensembles, though much smaller in size comparing to regular ensembles, perform equally or even better sometimes in all four different types of experimental data used in the assessment, namely, the residual dipolar couplings, residual chemical shift anisotropy, hydrogen exchange rates, and solution scattering profiles. This work further underlines the significance of having relative populations in describing the native states.
Collapse
Affiliation(s)
- Vijay Vammi
- Bioinformatics and Computational Biology Program, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA.
| | - Guang Song
- Bioinformatics and Computational Biology Program, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA
- Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA, USA
| |
Collapse
|
208
|
Newby FN, De Simone A, Yagi-Utsumi M, Salvatella X, Dobson CM, Vendruscolo M. Structure-Free Validation of Residual Dipolar Coupling and Paramagnetic Relaxation Enhancement Measurements of Disordered Proteins. Biochemistry 2015; 54:6876-86. [DOI: 10.1021/acs.biochem.5b00670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco N. Newby
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Alfonso De Simone
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Maho Yagi-Utsumi
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Institute
for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
209
|
Martin RW, Kelly JE, Collier KA. Spatial reorientation experiments for NMR of solids and partially oriented liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:92-122. [PMID: 26592947 PMCID: PMC6936739 DOI: 10.1016/j.pnmrs.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Kelsey A Collier
- Department of Physics and Astronomy, University of California, Irvine 92697-4575, United States
| |
Collapse
|
210
|
Larsen AS, Bratholm LA, Christensen AS, Channir M, Jensen JH. ProCS15: a DFT-based chemical shift predictor for backbone and Cβ atoms in proteins. PeerJ 2015; 3:e1344. [PMID: 26623185 PMCID: PMC4662583 DOI: 10.7717/peerj.1344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
We present ProCS15: a program that computes the isotropic chemical shielding values of backbone and Cβ atoms given a protein structure in less than a second. ProCS15 is based on around 2.35 million OPBE/6-31G(d,p)//PM6 calculations on tripeptides and small structural models of hydrogen-bonding. The ProCS15-predicted chemical shielding values are compared to experimentally measured chemical shifts for Ubiquitin and the third IgG-binding domain of Protein G through linear regression and yield RMSD values of up to 2.2, 0.7, and 4.8 ppm for carbon, hydrogen, and nitrogen atoms. These RMSD values are very similar to corresponding RMSD values computed using OPBE/6-31G(d,p) for the entire structure for each proteins. These maximum RMSD values can be reduced by using NMR-derived structural ensembles of Ubiquitin. For example, for the largest ensemble the largest RMSD values are 1.7, 0.5, and 3.5 ppm for carbon, hydrogen, and nitrogen. The corresponding RMSD values predicted by several empirical chemical shift predictors range between 0.7–1.1, 0.2–0.4, and 1.8–2.8 ppm for carbon, hydrogen, and nitrogen atoms, respectively.
Collapse
Affiliation(s)
- Anders S Larsen
- Department of Pharmacy, University of Copenhagen , Copenhagen , Denmark
| | - Lars A Bratholm
- Department of Chemistry, University of Copenhagen , Copenhagen , Denmark
| | | | - Maher Channir
- Department of Chemistry, University of Copenhagen , Copenhagen , Denmark
| | - Jan H Jensen
- Department of Chemistry, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
211
|
Niklas T, Steinmetzger C, Liu W, Zell D, Stalke D, Ackermann L, John M. Determination of the Relative Configuration of β-Amino Acid Esters Based on Residual Dipolar Couplings. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
212
|
Morozova OB, Yurkovskaya AV. Assessment of Nanosecond Time Scale Motions in Native and Non-Native States of Ubiquitin. J Phys Chem B 2015; 119:12644-52. [DOI: 10.1021/acs.jpcb.5b07333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center of SB RAS, Institutskaya
3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center of SB RAS, Institutskaya
3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| |
Collapse
|
213
|
Thiagarajan-Rosenkranz P, Draney AW, Smrt ST, Lorieau JL. A Positively Charged Liquid Crystalline Medium for Measuring Residual Dipolar Couplings in Membrane Proteins by NMR. J Am Chem Soc 2015; 137:11932-4. [PMID: 26348133 DOI: 10.1021/jacs.5b07515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pallavi Thiagarajan-Rosenkranz
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Adrian W. Draney
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Sean T. Smrt
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin L. Lorieau
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
214
|
Worch JC, Hellemann E, Pros G, Gayathri C, Pintauer T, Gil RR, Noonan KJT. Stability and Reactivity of 1,3-Benzothiaphosphole: Metalation and Diels–Alder Chemistry. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua C. Worch
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Erich Hellemann
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabrielle Pros
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Chakicherla Gayathri
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomislav Pintauer
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Roberto R. Gil
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin J. T. Noonan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
215
|
Subedi GP, Barb AW. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Structure 2015; 23:1573-1583. [PMID: 26211613 PMCID: PMC4558368 DOI: 10.1016/j.str.2015.06.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 01/06/2023]
Abstract
Asparagine(N)297-linked glycosylation of immunoglobulin G (IgG) Fc is required for binding to FcγRIIa, IIb, and IIIa, although it is unclear how it contributes. We found the quaternary structure of glycosylated Fc was indistinguishable from aglycosylated Fc, indicating that N-glycosylation does not maintain relative Fc Cγ2/Cγ3 domain orientation. However, the conformation of the C'E loop, which contains N297, was significantly perturbed in the aglycosylated Fc variant. The conformation of the C'E loop as measured with a range of Fc variants shows a strong correlation with FcγRIIIa affinity. These results indicate that the primary role of the IgG1 Fc N-glycan is to stabilize the C'E loop through intramolecular interactions between carbohydrate and amino acid residues, and preorganize the FcγRIIIa interface for optimal binding affinity. The features that contribute to the capacity of the IgG1 Fc N-glycan to restrict protein conformation and tune binding affinity are conserved in other antibodies including IgG2-IgG4, IgD, IgE, and IgM.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA 50011, USA.
| |
Collapse
|
216
|
Raval A, Piana S, Eastwood MP, Shaw DE. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations. Protein Sci 2015; 25:19-29. [PMID: 26266489 PMCID: PMC4815320 DOI: 10.1002/pro.2770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred.
Collapse
Affiliation(s)
- Alpan Raval
- D. E. Shaw Research, New York, New York, 10036
| | | | | | - David E Shaw
- D. E. Shaw Research, New York, New York, 10036.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| |
Collapse
|
217
|
Jaremko Ł, Jaremko M, Nowakowski M, Ejchart A. The Quest for Simplicity: Remarks on the Free-Approach Models. J Phys Chem B 2015; 119:11978-87. [PMID: 26301699 DOI: 10.1021/acs.jpcb.5b07181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear magnetic relaxation provides a powerful method giving insight into molecular motions at atomic resolution on a broad time scale. Dynamics of biological macromolecules has been widely exploited by measuring (15)N and (13)C relaxation data. Interpretation of these data relies almost exclusively on the use of the model-free approach (MFA) and its extended version (EMFA) which requires no particular physical model of motion and a small number of parameters. It is shown that EMFA is often unable to cope with three different time scales and fails to describe slow internal motions properly. In contrast to EMFA, genuine MFA with two time scales can reproduce internal motions slower than the overall tumbling. It is also shown that MFA and simplified EMFA are equivalent with respect to the values of the N-H bond length and chemical shift anisotropy. Therefore, the vast majority of (15)N relaxation data for proteins can be satisfactorily interpreted solely with MFA.
Collapse
Affiliation(s)
- Łukasz Jaremko
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Am Fassberg 11, 37077 Göttingen, Germany
| | - Mariusz Jaremko
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Michał Nowakowski
- Centre of New Technologies, University of Warsaw , Banacha 2C, 02-097 Warsaw, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
218
|
Fredersdorf M, Göstl R, Kolmer A, Schmidts V, Monecke P, Hecht S, Thiele CM. Exploring the Conformational Space of Bridge-Substituted Dithienylcyclopentenes. Chemistry 2015; 21:14545-54. [DOI: 10.1002/chem.201501842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 11/08/2022]
|
219
|
Chen PC, Hub JS. Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data. Biophys J 2015; 107:435-447. [PMID: 25028885 DOI: 10.1016/j.bpj.2014.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022] Open
Abstract
Wide-angle x-ray scattering (WAXS) experiments of biomolecules in solution have become increasingly popular because of technical advances in light sources and detectors. However, the structural interpretation of WAXS profiles is problematic, partly because accurate calculations of WAXS profiles from structural models have remained challenging. In this work, we present the calculation of WAXS profiles from explicit-solvent molecular dynamics (MD) simulations of five different proteins. Using only a single fitting parameter that accounts for experimental uncertainties because of the buffer subtraction and dark currents, we find excellent agreement to experimental profiles both at small and wide angles. Because explicit solvation eliminates free parameters associated with the solvation layer or the excluded solvent, which would require fitting to experimental data, we minimize the risk of overfitting. We further find that the influence from water models and protein force fields on calculated profiles are insignificant up to q≈15nm(-1). Using a series of simulations that allow increasing flexibility of the proteins, we show that incorporating thermal fluctuations into the calculations significantly improves agreement with experimental data, demonstrating the importance of protein dynamics in the interpretation of WAXS profiles. In addition, free MD simulations up to one microsecond suggest that the calculated profiles are highly sensitive with respect to minor conformational rearrangements of proteins, such as an increased flexibility of a loop or an increase of the radius of gyration by < 1%. The present study suggests that quantitative comparison between MD simulations and experimental WAXS profiles emerges as an accurate tool to validate solution ensembles of biomolecules.
Collapse
Affiliation(s)
- Po-Chia Chen
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Jochen S Hub
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
220
|
Lloyd NR, Wuttke DS. Less is more: structures of difficult targets with minimal constraints. Structure 2015; 22:1223-1224. [PMID: 25185825 DOI: 10.1016/j.str.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
By merging recent experimental and computational methodology advances, resolution-adapted structural recombination Rosetta has emerged as a powerful strategy for solving the structure of traditionally challenging targets. In this issue of Structure, Sgourakis and colleagues solve the structure of one such target, the immunoevasin protein m04, using this approach.
Collapse
Affiliation(s)
- Neil R Lloyd
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
221
|
Pilla KB, Leman JK, Otting G, Huber T. Capturing conformational States in proteins using sparse paramagnetic NMR data. PLoS One 2015; 10:e0127053. [PMID: 25992808 PMCID: PMC4436263 DOI: 10.1371/journal.pone.0127053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Capturing conformational changes in proteins or protein-protein complexes is a challenge for both experimentalists and computational biologists. Solution nuclear magnetic resonance (NMR) is unique in that it permits structural studies of proteins under greatly varying conditions, and thus allows us to monitor induced structural changes. Paramagnetic effects are increasingly used to study protein structures as they give ready access to rich structural information of orientation and long-range distance restraints from the NMR signals of backbone amides, and reliable methods have become available to tag proteins with paramagnetic metal ions site-specifically and at multiple sites. In this study, we show how sparse pseudocontact shift (PCS) data can be used to computationally model conformational states in a protein system, by first identifying core structural elements that are not affected by the environmental change, and then computationally completing the remaining structure based on experimental restraints from PCS. The approach is demonstrated on a 27 kDa two-domain NS2B-NS3 protease system of the dengue virus serotype 2, for which distinct closed and open conformational states have been observed in crystal structures. By changing the input PCS data, the observed conformational states in the dengue virus protease are reproduced without modifying the computational procedure. This data driven Rosetta protocol enables identification of conformational states of a protein system, which are otherwise difficult to obtain either experimentally or computationally.
Collapse
Affiliation(s)
- Kala Bharath Pilla
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States of America
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- * E-mail:
| |
Collapse
|
222
|
Nasedkin A, Marcellini M, Religa TL, Freund SM, Menzel A, Fersht AR, Jemth P, van der Spoel D, Davidsson J. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation. PLoS One 2015; 10:e0125662. [PMID: 25946337 PMCID: PMC4422743 DOI: 10.1371/journal.pone.0125662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Chemistry-Ångström laboratory, Uppsala University, Box 523, SE-75110 Uppsala, Sweden
| | - Moreno Marcellini
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - Tomasz L. Religa
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Stefan M. Freund
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström laboratory, Uppsala University, Box 523, SE-75110 Uppsala, Sweden
| |
Collapse
|
223
|
Anosova I, Melnik S, Tripsianes K, Kateb F, Grummt I, Sattler M. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucleic Acids Res 2015; 43:5208-20. [PMID: 25916849 PMCID: PMC4446428 DOI: 10.1093/nar/gkv365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/03/2015] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA.
Collapse
Affiliation(s)
- Irina Anosova
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| | - Svitlana Melnik
- Division of Molecular Biology of the Cell II, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg D-69120, Germany
| | - Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| | - Fatiha Kateb
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg D-69120, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| |
Collapse
|
224
|
Fasshuber HK, Lakomek NA, Habenstein B, Loquet A, Shi C, Giller K, Wolff S, Becker S, Lange A. Structural heterogeneity in microcrystalline ubiquitin studied by solid-state NMR. Protein Sci 2015; 24:592-8. [PMID: 25644665 DOI: 10.1002/pro.2654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/07/2023]
Abstract
By applying [1-(13) C]- and [2-(13) C]-glucose labeling schemes to the folded globular protein ubiquitin, a strong reduction of spectral crowding and increase in resolution in solid-state NMR (ssNMR) spectra could be achieved. This allowed spectral resonance assignment in a straightforward manner and the collection of a wealth of long-range distance information. A high precision solid-state NMR structure of microcrystalline ubiquitin was calculated with a backbone rmsd of 1.57 to the X-ray structure and 1.32 Å to the solution NMR structure. Interestingly, we can resolve structural heterogeneity as the presence of three slightly different conformations. Structural heterogeneity is most significant for the loop region β1-β2 but also for β-strands β1, β2, β3, and β5 as well as for the loop connecting α1 and β3. This structural polymorphism observed in the solid-state NMR spectra coincides with regions that showed dynamics in solution NMR experiments on different timescales.
Collapse
Affiliation(s)
- Hannes Klaus Fasshuber
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Institut für Biologie, Humboldt-Universität, zu Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Ming F. Tam
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Virgil Simplaceanu
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Chien Ho
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| |
Collapse
|
226
|
Loh CT, Graham B, Abdelkader EH, Tuck KL, Otting G. Generation of pseudocontact shifts in proteins with lanthanides using small "clickable" nitrilotriacetic acid and iminodiacetic acid tags. Chemistry 2015; 21:5084-92. [PMID: 25676727 DOI: 10.1002/chem.201406274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 01/07/2023]
Abstract
Pseudocontact shifts (PCS) induced by paramagnetic lanthanide ions provide unique long-range structural information in nuclear magnetic resonance (NMR) spectra, but the site-specific attachment of lanthanide tags to proteins remains a challenge. Here we incorporated p-azido-phenylalanine (AzF) site-specifically into the proteins ubiquitin and GB1, and ligated the AzF residue with alkyne derivatives of small nitrilotriacetic acid and iminodiacetic acid tags using the Cu(I) -catalysed "click" reaction. These tags form lanthanide complexes with no or only a small net charge and produced sizeable PCSs with paramagnetic lanthanide ions in all mutants tested. The PCSs were readily fitted by single magnetic susceptibility anisotropy tensors. Protein precipitation during the click reaction was greatly alleviated by the presence of 150 mM NaCl.
Collapse
Affiliation(s)
- Choy-Theng Loh
- Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)
| | | | | | | | | |
Collapse
|
227
|
Ihms EC, Foster MP. MESMER: minimal ensemble solutions to multiple experimental restraints. Bioinformatics 2015; 31:1951-8. [PMID: 25673340 DOI: 10.1093/bioinformatics/btv079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/03/2015] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which predicted data computed from a collection of models is compared to the observed experimental results. By simultaneously fitting orthogonal structural data (e.g. small-angle X-ray scattering, nuclear magnetic resonance residual dipolar couplings, dipolar electron-electron resonance spectra), the range and population of accessible macromolecule structures can be probed. RESULTS We have developed MESMER, software that enables the user to identify ensembles that can recapitulate experimental data by refining thousands of component collections selected from an input pool of potential structures. The MESMER suite includes a powerful graphical user interface (GUI) to streamline usage of the command-line tools, calculate data from structure libraries and perform analyses of conformational and structural heterogeneity. To allow for incorporation of other data types, modular Python plugins enable users to compute and fit data from nearly any type of quantitative experimental data. RESULTS Conformational heterogeneity in three macromolecular systems was analyzed with MESMER, demonstrating the utility of the streamlined, user-friendly software. AVAILABILITY AND IMPLEMENTATION https://code.google.com/p/mesmer/
Collapse
Affiliation(s)
- Elihu C Ihms
- Ohio State University Biophysics Program, Department of Chemistry and Biochemistry, and Center for RNA Biology, The Ohio State University, Columbus, OH, USA Ohio State University Biophysics Program, Department of Chemistry and Biochemistry, and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Mark P Foster
- Ohio State University Biophysics Program, Department of Chemistry and Biochemistry, and Center for RNA Biology, The Ohio State University, Columbus, OH, USA Ohio State University Biophysics Program, Department of Chemistry and Biochemistry, and Center for RNA Biology, The Ohio State University, Columbus, OH, USA Ohio State University Biophysics Program, Department of Chemistry and Biochemistry, and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
228
|
Hass MAS, Liu WM, Agafonov RV, Otten R, Phung LA, Schilder JT, Kern D, Ubbink M. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2015; 61:123-136. [PMID: 25563704 DOI: 10.1007/s10858-014-9894-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.
Collapse
Affiliation(s)
- Mathias A S Hass
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Rinaldelli M, Carlon A, Ravera E, Parigi G, Luchinat C. FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data. JOURNAL OF BIOMOLECULAR NMR 2015; 61:21-34. [PMID: 25416616 DOI: 10.1007/s10858-014-9877-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/15/2014] [Indexed: 05/17/2023]
Abstract
Pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) arising from the presence of paramagnetic metal ions in proteins as well as RDCs due to partial orientation induced by external orienting media are nowadays routinely measured as a part of the NMR characterization of biologically relevant systems. PCSs and RDCs are becoming more and more popular as restraints (1) to determine and/or refine protein structures in solution, (2) to monitor the extent of conformational heterogeneity in systems composed of rigid domains which can reorient with respect to one another, and (3) to obtain structural information in protein-protein complexes. The use of both PCSs and RDCs proceeds through the determination of the anisotropy tensors which are at the origin of these NMR observables. A new user-friendly web tool, called FANTEN (Finding ANisotropy TENsors), has been developed for the determination of the anisotropy tensors related to PCSs and RDCs and has been made freely available through the WeNMR ( http://fanten-enmr.cerm.unifi.it:8080 ) gateway. The program has many new features not available in other existing programs, among which the possibility of a joint analysis of several sets of PCS and RDC data and the possibility to perform rigid body minimizations.
Collapse
Affiliation(s)
- Mauro Rinaldelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, Sesto Fiorentino, Florence, Italy
| | | | | | | | | |
Collapse
|
230
|
Roche J, Louis JM, Bax A. Conformation of inhibitor-free HIV-1 protease derived from NMR spectroscopy in a weakly oriented solution. Chembiochem 2014; 16:214-8. [PMID: 25470009 DOI: 10.1002/cbic.201402585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/06/2022]
Abstract
Flexibility of the glycine-rich flaps is known to be essential for catalytic activity of the HIV-1 protease, but their exact conformations at the different stages of the enzymatic pathway remain subject to much debate. Although hundreds of crystal structures of protease-inhibitor complexes have been solved, only about a dozen inhibitor-free protease structures have been reported. These latter structures reveal a large diversity of flap conformations, ranging from closed to semi-open to wide open. To evaluate the average structure in solution, we measured residual dipolar couplings (RDCs) and compared these to values calculated for crystal structures representative of the closed, semi-open, and wide-open states. The RDC data clearly indicate that the inhibitor-free protease, on average, adopts a closed conformation in solution that is very similar to the inhibitor-bound state. By contrast, a highly drug-resistant protease mutant, PR20, adopts the wide-open flap conformation.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (USA).
| | | | | |
Collapse
|
231
|
Simin M, Irausquin S, Cole CA, Valafar H. Improvements to REDCRAFT: a software tool for simultaneous characterization of protein backbone structure and dynamics from residual dipolar couplings. JOURNAL OF BIOMOLECULAR NMR 2014; 60:241-64. [PMID: 25403759 PMCID: PMC11817919 DOI: 10.1007/s10858-014-9871-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
Within the past two decades, there has been an increase in the acquisition of residual dipolar couplings (RDC) for investigations of biomolecular structures. Their use however is still not as widely adopted as the traditional methods of structure determination by NMR, despite their potential for extending the limits in studies that examine both the structure and dynamics of biomolecules. This is in part due to the difficulties associated with the analysis of this information-rich data type. The software analysis tool REDCRAFT was previously introduced to address some of these challenges. Here we describe and evaluate a number of additional features that have been incorporated in order to extend its computational and analytical capabilities. REDCRAFT's more traditional enhancements integrate a modified steric collision term, as well as structural refinement in the rotamer space. Other, non-traditional improvements include: the filtering of viable structures based on relative order tensor estimates, decimation of the conformational space based on structural similarity, and forward/reverse folding of proteins. Utilizing REDCRAFT's newest features we demonstrate de-novo folding of proteins 1D3Z and 1P7E to within less than 1.6 Å of the corresponding X-ray structures, using as many as four RDCs per residue and as little as two RDCs per residue, in two alignment media. We also show the successful folding of a structure to less than 1.6 Å of the X-ray structure using {C(i-1)-N(i), N(i)-H(i), and C(i-1)-H(i)} RDCs in one alignment medium, and only {N(i)-H(i)} in the second alignment medium (a set of data which can be collected on deuterated samples). The program is available for download from our website at http://ifestos.cse.sc.edu .
Collapse
Affiliation(s)
- Mikhail Simin
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | | | | | | |
Collapse
|
232
|
Paraskevopoulos K, Kriegenburg F, Tatham MH, Rösner HI, Medina B, Larsen IB, Brandstrup R, Hardwick KG, Hay RT, Kragelund BB, Hartmann-Petersen R, Gordon C. Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell 2014; 56:453-461. [PMID: 25306921 PMCID: PMC4232310 DOI: 10.1016/j.molcel.2014.09.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/20/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Abstract
The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked by K63 and K48. Atomic resolution data show that Dss1 is disordered and binds ubiquitin by binding sites characterized by acidic and hydrophobic residues. The complementary binding region in ubiquitin is composed of a hydrophobic patch formed by I13, I44, and L69 flanked by two basic regions. Mutations in the ubiquitin-binding site of Dss1 cause growth defects and accumulation of ubiquitylated proteins. Dss1 is a ubiquitin-binding protein Dss1 binds ubiquitin via an intrinsically disordered region The ubiquitin-binding activity of Dss1 is required for function
Collapse
Affiliation(s)
- Konstantinos Paraskevopoulos
- Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK
| | - Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Heike I Rösner
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Bethan Medina
- Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK
| | - Ida B Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rikke Brandstrup
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | | - Colin Gordon
- Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK.
| |
Collapse
|
233
|
Vranken WF. NMR structure validation in relation to dynamics and structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:27-38. [PMID: 25444697 DOI: 10.1016/j.pnmrs.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 06/04/2023]
Abstract
NMR spectroscopy is a key technique for understanding the behaviour of proteins, especially highly dynamic proteins that adopt multiple conformations in solution. Overall, protein structures determined from NMR spectroscopy data constitute just over 10% of the Protein Data Bank archive. This review covers the validation of these NMR protein structures, but rather than describing currently available methodology, it focuses on concepts that are important for understanding where and how validation is most relevant. First, the inherent characteristics of the protein under study have an influence on quality and quantity of the distinct types of data that can be acquired from NMR experiments. Second, these NMR data are necessarily transformed into a model for use in a structure calculation protocol, and the protein structures that result from this reflect the types of NMR data used as well as the protein characteristics. The validation of NMR protein structures should therefore take account, wherever possible, of the inherent behavioural characteristics of the protein, the types of available NMR data, and the calculation protocol. These concepts are discussed in the context of 'knowledge based' and 'model versus data' validation, with suggestions for questions to ask and different validation categories to consider. The principal aim of this review is to stimulate discussion and to help the reader understand the relationships between the above elements in order to make informed decisions on which validation approaches are the most relevant in particular cases.
Collapse
Affiliation(s)
- Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Department of Structural Biology, VIB, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, BC Building, 6th Floor, CP 263, 1050 Brussels, Belgium.
| |
Collapse
|
234
|
Parimal S, Cramer SM, Garde S. Application of a Spherical Harmonics Expansion Approach for Calculating Ligand Density Distributions around Proteins. J Phys Chem B 2014; 118:13066-76. [DOI: 10.1021/jp506849k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth Parimal
- Howard
P. Isermann Department
of Chemical and Biological Engineering and Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Steven M. Cramer
- Howard
P. Isermann Department
of Chemical and Biological Engineering and Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Shekhar Garde
- Howard
P. Isermann Department
of Chemical and Biological Engineering and Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
235
|
Russo L, Palmieri M, Caso JV, D'Abrosca G, Diana D, Malgieri G, Baglivo I, Isernia C, Pedone PV, Fattorusso R. Towards understanding the molecular recognition process in prokaryotic zinc-finger domain. Eur J Med Chem 2014; 91:100-8. [PMID: 25240418 DOI: 10.1016/j.ejmech.2014.09.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Eukaryotic Cys2His2 zinc finger domain is one of the most common and important structural motifs involved in protein-DNA interaction. The recognition motif is characterized by the tetrahedral coordination of a zinc ion by conserved cysteine and histidine residues. We have characterized the prokaryotic Cys2His2 zinc finger motif, included in the DNA binding region (Ros87) of Ros protein from Agrobacterium tumefaciens, demonstrating that, although possessing a similar zinc coordination sphere, this domain presents significant differences from its eukaryotic counterpart. Furthermore, basic residues flanking the zinc binding region on either side have been demonstrated, by Electrophoretic Mobility Shift Assay (EMSA) experiments, to be essential for Ros DNA binding. In spite of this wealth of knowledge, the structural details of the mechanism through which the prokaryotic zinc fingers recognize their target genes are still unclear. Here, to gain insights into the molecular DNA recognition process of prokaryotic zinc finger domains we applied a strategy in which we performed molecular docking studies using a combination of Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD) simulations data. The results demonstrate that the MD ensemble provides a reasonable picture of Ros87 backbone dynamics in solution. The Ros87-DNA model indicates that the interaction involves the first two residue of the first α-helix, and several residues located in the basic regions flanking the zinc finger domain. Interestingly, the prokaryotic zinc finger domain, mainly with the C-terminal tail that is wrapped around the DNA, binds a more extended recognition site than the eukaryotic counterpart. Our analysis demonstrates that the introduction of the protein flexibility in docking studies can improve, in terms of accuracy, the quality of the obtained models and could be particularly useful for protein showing high conformational heterogeneity as well as for computational drug design applications.
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jolanda Valentina Caso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Donatella Diana
- Institute of Biostructures and Bioimaging -CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
236
|
Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, Sattler M. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature 2014; 515:287-90. [DOI: 10.1038/nature13693] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/16/2014] [Indexed: 01/16/2023]
|
237
|
Andrałojć W, Luchinat C, Parigi G, Ravera E. Exploring regions of conformational space occupied by two-domain proteins. J Phys Chem B 2014; 118:10576-87. [PMID: 25144917 DOI: 10.1021/jp504820w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The presence of heterogeneity in the interdomain arrangement of several biomolecules is required for their function. Here we present a method to obtain crucial clues to distinguish between different kinds of protein conformational distributions based on experimental NMR data. The method explores subregions of the conformational space and provides both upper and lower bounds of probability for the system to be in each subregion.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance, University of Florence , Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
238
|
Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2014; 22:1263-1273. [PMID: 25126960 DOI: 10.1016/j.str.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
Abstract
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beat Vogeli
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
239
|
Esteban-Martín S, Fenwick RB, Ådén J, Cossins B, Bertoncini CW, Guallar V, Wolf-Watz M, Salvatella X. Correlated inter-domain motions in adenylate kinase. PLoS Comput Biol 2014; 10:e1003721. [PMID: 25078441 PMCID: PMC4117416 DOI: 10.1371/journal.pcbi.1003721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.
Collapse
Affiliation(s)
- Santiago Esteban-Martín
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
- * E-mail: (SEM); (XS)
| | - Robert Bryn Fenwick
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
| | - Jörgen Ådén
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Benjamin Cossins
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
| | - Carlos W. Bertoncini
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats - ICREA, Barcelona, Spain
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats - ICREA, Barcelona, Spain
- * E-mail: (SEM); (XS)
| |
Collapse
|
240
|
Daubner GM, Brümmer A, Tocchini C, Gerhardy S, Ciosk R, Zavolan M, Allain FHT. Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1. Nucleic Acids Res 2014; 42:8092-105. [PMID: 24838563 PMCID: PMC4081071 DOI: 10.1093/nar/gku445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.
Collapse
Affiliation(s)
- Gerrit M Daubner
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Cristina Tocchini
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Stefan Gerhardy
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
241
|
Sokratous K, Hadjisavvas A, Diamandis EP, Kyriacou K. The role of ubiquitin-binding domains in human pathophysiology. Crit Rev Clin Lab Sci 2014; 51:280-90. [PMID: 24901807 DOI: 10.3109/10408363.2014.915287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.
Collapse
|
242
|
Camilloni C, Vendruscolo M. A tensor-free method for the structural and dynamical refinement of proteins using residual dipolar couplings. J Phys Chem B 2014; 119:653-61. [PMID: 24824082 DOI: 10.1021/jp5021824] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Residual dipolar couplings (RDCs) are parameters measured in nuclear magnetic resonance spectroscopy that can provide exquisitely detailed information about the structure and dynamics of biological macromolecules. We describe here a method of using RDCs for the structural and dynamical refinement of proteins that is based on the observation that the RDC between two atomic nuclei depends directly on the angle ϑ between the internuclear vector and the external magnetic field. For every pair of nuclei for which an RDC is available experimentally, we introduce a structural restraint to minimize the deviation from the value of the angle ϑ derived from the measured RDC and that calculated in the refinement protocol. As each restraint involves only the calculation of the angle ϑ of the corresponding internuclear vector, the method does not require the definition of an overall alignment tensor to describe the preferred orientation of the protein with respect to the alignment medium. Application to the case of ubiquitin demonstrates that this method enables an accurate refinement of the structure and dynamics of this protein to be obtained.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | | |
Collapse
|
243
|
Eichhorn CD, Al-Hashimi HM. Structural dynamics of a single-stranded RNA-helix junction using NMR. RNA (NEW YORK, N.Y.) 2014; 20:782-91. [PMID: 24742933 PMCID: PMC4024633 DOI: 10.1261/rna.043711.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch linked to the 3' end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, (13)C spin relaxation, and residual dipolar coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of structural and dynamic complexity at the ssRNA-helix junction, which involves a fine balance between order and disorder that may facilitate efficient pseudoknot formation on ligand recognition.
Collapse
Affiliation(s)
- Catherine D. Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding authorE-mail
| |
Collapse
|
244
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. A practical implicit solvent potential for NMR structure calculation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 243:54-64. [PMID: 24747742 PMCID: PMC4037354 DOI: 10.1016/j.jmr.2014.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 05/30/2023]
Abstract
The benefits of protein structure refinement in water are well documented. However, performing structure refinement with explicit atomic representation of the solvent molecules is computationally expensive and impractical for NMR-restrained structure calculations that start from completely extended polypeptide templates. Here we describe a new implicit solvation potential, EEFx (Effective Energy Function for XPLOR-NIH), for NMR-restrained structure calculations of proteins in XPLOR-NIH. The key components of EEFx are an energy term for solvation energy that works together with other nonbonded energy functions, and a dedicated force field for conformational and nonbonded protein interaction parameters. The initial results obtained with EEFx show that significant improvements in structural quality can be obtained. EEFx is computationally efficient and can be used both to fold and refine structures. Overall, EEFx improves the quality of protein conformation and nonbonded atomic interactions. Moreover, such benefits are accompanied by enhanced structural precision and enhanced structural accuracy, reflected in improved agreement with the cross-validated dipolar coupling data. Finally, implementation of EEFx calculations is straightforward and computationally efficient. Overall, EEFx provides a useful method for the practical calculation of experimental protein structures in a physically realistic environment.
Collapse
Affiliation(s)
- Ye Tian
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Building 12A, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Francesca M Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
245
|
Spiga E, Abriata LA, Piazza F, Dal Peraro M. Dissecting the effects of concentrated carbohydrate solutions on protein diffusion, hydration, and internal dynamics. J Phys Chem B 2014; 118:5310-21. [PMID: 24773474 DOI: 10.1021/jp4126705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present herein a thorough description of the effects of high glucose concentrations on the diffusion, hydration and internal dynamics of ubiquitin, as predicted from extensive molecular dynamics simulations on several systems described at fully atomistic level. We observe that the protein acts as a seed that speeds up the natural propensity of glucose to cluster at high concentration; the sugar molecules thus aggregate around the protein trapping it inside a dynamic cage. This process extensively dehydrates the protein surface, restricts the motions of the remaining water molecules, and drags the large-scale, collective motions of protein atoms slowing down the rate of exploration of the conformational space despite only a slight dampening of fast, local dynamics. We discuss how these effects could be relevant to the function of sugars as preservation agents in biological materials, and how crowding by small sticky molecules could modulate proteins across different reaction coordinates inside the cellular cytosol.
Collapse
Affiliation(s)
- Enrico Spiga
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
246
|
Rinaldelli M, Ravera E, Calderone V, Parigi G, Murshudov GN, Luchinat C. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:958-67. [PMID: 24699641 PMCID: PMC4306559 DOI: 10.1107/s1399004713034160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/18/2013] [Indexed: 11/12/2022]
Abstract
The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.
Collapse
Affiliation(s)
- Mauro Rinaldelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Vito Calderone
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
247
|
Nucci NV, Valentine KG, Wand AJ. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:137-47. [PMID: 24656086 PMCID: PMC4127067 DOI: 10.1016/j.jmr.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/11/2013] [Indexed: 05/23/2023]
Abstract
High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.
Collapse
Affiliation(s)
- Nathaniel V Nucci
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Kathleen G Valentine
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
248
|
Ying J, Roche J, Bax A. Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:97-102. [PMID: 24360766 PMCID: PMC3965638 DOI: 10.1016/j.jmr.2013.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/23/2023]
Abstract
Application of band-selective homonuclear (BASH) (1)H decoupling pulses during acquisition of the (1)H free induction decay is shown to be an efficient procedure for removal of scalar and residual dipolar couplings between amide and aliphatic protons. BASH decoupling can be applied in both dimensions of a homonuclear 2D NMR experiment and is particularly useful for enhancing spectral resolution in the H(N)-H(α) region of NOESY spectra of peptides and proteins, which contain important information on the backbone torsion angles. The method then also prevents generation of zero quantum and Hz(N)-Hz(α) terms, thereby facilitating analysis of intraresidue interactions. Application to the NOESY spectrum of a hexapeptide fragment of the intrinsically disordered protein α-synuclein highlights the considerable diffusion anisotropy present in linear peptides. Removal of residual dipolar couplings between H(N) and aliphatic protons in weakly aligned proteins increases resolution in the (1)H-(15)N HSQC region of the spectrum and allows measurement of RDCs in samples that are relatively strongly aligned. The approach is demonstrated for measurement of RDCs in protonated (15)N/(13)C-enriched ubiquitin, aligned in Pf1, yielding improved fitting to the ubiquitin structure.
Collapse
Affiliation(s)
- Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
249
|
Huang T, Li J, Byrd RA. Solution structure of lysine-free (K0) ubiquitin. Protein Sci 2014; 23:662-7. [PMID: 24591328 DOI: 10.1002/pro.2450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022]
Abstract
Lysine-free ubiquitin (K0-Ub) is commonly used to study the ubiquitin-signaling pathway, where it is assumed to have the same structure and function as wild-type ubiquitin (wt-Ub). However, the K0-Ub (15) N heteronuclear single quantum correlation NMR spectrum differs significantly from wt-Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt-Ub. The three-dimensional structure of K0-Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0-Ub adopts the same backbone structure as wt-Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations.
Collapse
Affiliation(s)
- Tao Huang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | | | | |
Collapse
|
250
|
Maltsev A, Grishaev A, Roche J, Zasloff M, Bax A. Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase. J Am Chem Soc 2014; 136:3752-5. [PMID: 24568736 PMCID: PMC3954408 DOI: 10.1021/ja4132642] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 01/13/2023]
Abstract
The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to liquid crystalline cetyl pyridinium bromide. High precision residual dipolar couplings (RDCs) measured for the backbone (1)H-(15)N, (15)N-(13)C', (1)H(α)-(13)C(α), and (13)C'-(13)C(α) one-bond interactions in the squalamine medium fit well to the static structural model previously derived from NMR data. Inclusion into the structure refinement procedure of these RDCs, together with (1)H-(15)N and (1)H(α)-(13)C(α) RDCs newly measured in Pf1, results in improved agreement between alignment-induced changes in (13)C' chemical shift, (3)JHNHα values, and (13)C(α)-(13)C(β) RDCs and corresponding values predicted by the structure, thereby validating the high quality of the single-conformer structural model. This result indicates that fitting of a single model to experimental data provides a better description of the average conformation than does averaging over previously reported NMR-derived ensemble representations. The latter can capture dynamic aspects of a protein, thus making the two representations valuable complements to one another.
Collapse
Affiliation(s)
- Alexander
S. Maltsev
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Alexander Grishaev
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Julien Roche
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Michael Zasloff
- Georgetown
University Hospital, 3800 Reservoir Road NW, Washington, D.C. 20007, United
States
| | - Ad Bax
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|