201
|
Association of X Chromosome Aberrations with Male Infertility. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Male infertility is caused by spermatogenetic failure, clinically noted as oligoor azoospermia. Approximately 20% of infertile patients carry a genetic defect. The most frequent genetic defect leading to azoospermia (or severe oligozoospermia) is Klinefelter syndrome (47, XXY), which is numerical chromosomal abnormality and Y- structural chromosome aberration. The human X chromosome is the most stable of all human chromosomes. The X chromosome is loaded with regions of acquired, rapidly evolving genes. The X chromosome may actually play an essential role in male infertility and sperm production. Here we will describe X chromosome aberrations, which are associated with male infertility.
Collapse
|
202
|
Okamoto I, Nakamura T, Sasaki K, Yabuta Y, Iwatani C, Tsuchiya H, Nakamura SI, Ema M, Yamamoto T, Saitou M. The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science 2021; 374:eabd8887. [PMID: 34793202 DOI: 10.1126/science.abd8887] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotaro Sasaki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Shin-Ichiro Nakamura
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masatsugu Ema
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.,Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
203
|
Kalotychou V, Mermigkis D, Kanariou MG, Tzanoudaki M, Georgakopoulou V, Kourbeti I, Daikos GL. Pneumocystis jirovecii pneumonia in a X-linked chronic granulomatous disease female carrier. IDCases 2021; 26:e01323. [PMID: 34786342 PMCID: PMC8577472 DOI: 10.1016/j.idcr.2021.e01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The X-chromosome linked (XL) female carriers of chronic granulomatous disease (CGD) are considered to have no risk for infection. Herein we present a female CGD XL-carrier who developed Pneumocystis jirovecii pneumonia and Serratia marcescens infection associated with age-related skewing of X-chromosome inactivation.
Collapse
Affiliation(s)
- Vasiliki Kalotychou
- First Department of Medicine, National and Kapodistrian University of Athens, Laikon, General Hospital, Greece
| | | | - Maria G Kanariou
- Department of Immunology-Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies-Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology-Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies-Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Irene Kourbeti
- First Department of Medicine, National and Kapodistrian University of Athens, Laikon, General Hospital, Greece
| | - George L Daikos
- First Department of Medicine, National and Kapodistrian University of Athens, Laikon, General Hospital, Greece
| |
Collapse
|
204
|
Enervald E, Powell LM, Boteva L, Foti R, Blanes Ruiz N, Kibar G, Piszczek A, Cavaleri F, Vingron M, Cerase A, Buonomo SBC. RIF1 and KAP1 differentially regulate the choice of inactive versus active X chromosomes. EMBO J 2021; 40:e105862. [PMID: 34786738 DOI: 10.15252/embj.2020105862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry. We found that at the onset of differentiation of mouse embryonic stem cells (mESCs), biallelic up-regulation of the long non-coding RNA Tsix weakens the symmetric association of RIF1 with the Xist promoter. The Xist allele maintaining the association with RIF1 goes on to up-regulate Xist RNA expression in a RIF1-dependent manner. Conversely, the promoter that loses RIF1 gains binding of KAP1, and KAP1 is required for the increase in Tsix levels preceding the choice. We propose that the mutual exclusion of Tsix and RIF1, and of RIF1 and KAP1, at the Xist promoters establish a self-sustaining loop that transforms an initially stochastic event into a stably inherited asymmetric X-chromosome state.
Collapse
Affiliation(s)
- Elin Enervald
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Lynn Marie Powell
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lora Boteva
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rossana Foti
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Nerea Blanes Ruiz
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gözde Kibar
- Max-Planck-Institut fuer molekulare Genetik, Berlin, Germany
| | - Agnieszka Piszczek
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Fatima Cavaleri
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Martin Vingron
- Max-Planck-Institut fuer molekulare Genetik, Berlin, Germany
| | - Andrea Cerase
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sara B C Buonomo
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| |
Collapse
|
205
|
Gata-Garcia A, Porat A, Brimberg L, Volpe BT, Huerta PT, Diamond B. Contributions of Sex Chromosomes and Gonadal Hormones to the Male Bias in a Maternal Antibody-Induced Model of Autism Spectrum Disorder. Front Neurol 2021; 12:721108. [PMID: 34721260 PMCID: PMC8548617 DOI: 10.3389/fneur.2021.721108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a group of neurodevelopmental conditions that is four times more commonly diagnosed in males than females. While susceptibility genes located in the sex chromosomes have been identified in ASD, it is unclear whether they are sufficient to explain the male bias or whether gonadal hormones also play a key role. We evaluated the sex chromosomal and hormonal influences on the male bias in a murine model of ASD, in which mice are exposed in utero to a maternal antibody reactive to contactin-associated protein-like 2 (Caspr2), which was originally cloned from a mother of a child with ASD (termed C6 mice henceforth). In this model, only male mice are affected. We used the four-core-genotypes (FCG) model in which the Sry gene is deleted from the Y chromosome (Y−) and inserted into autosome 3 (TgSry). Thus, by combining the C6 and FCG models, we were able to differentiate the contributions of sex chromosomes and gonadal hormones to the development of fetal brain and adult behavioral phenotypes. We show that the presence of the Y chromosome, or lack of two X chromosomes, irrespective of gonadal sex, increased the susceptibility to C6-induced phenotypes including the abnormal growth of the developing fetal cerebral cortex, as well as a behavioral pattern of decreased open-field exploration in adult mice. Our results indicate that sex chromosomes are the main determinant of the male bias in the maternal C6-induced model of ASD. The less dominant hormonal effect may be due to modulation by sex chromosome genes of factors involved in gonadal hormone pathways in the brain.
Collapse
Affiliation(s)
- Adriana Gata-Garcia
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Amit Porat
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Lior Brimberg
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Bruce T Volpe
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Patricio T Huerta
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,Laboratory of Immune and Neural Networks, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
206
|
Lin Y, Li C, Xiong W, Fan L, Pan H, Li Y. ARSD, a novel ERα downstream target gene, inhibits proliferation and migration of breast cancer cells via activating Hippo/YAP pathway. Cell Death Dis 2021; 12:1042. [PMID: 34725332 PMCID: PMC8560752 DOI: 10.1038/s41419-021-04338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Advanced breast cancer (BC), especially basal like triple-negative BC (TNBC), is a highly malignant tumor without viable treatment option, highlighting the urgent need to seek novel therapeutic targets. Arylsulfatase D (ARSD), localized at Xp22.3, is a female-biased gene due to its escaping from X chromosome inactivation (XCI). Unfortunately, no systematic investigation of ARSD on BC has been reported. In this study, we observed that ARSD expression was positively related to ERα status either in BC cells or tissue specimens, which were associated with good prognosis. Furthermore, we found a set of hormone-responsive lineage-specific transcription factors, FOXA1, GATA3, ERα, directly drove high expression of ARSD through chromatin looping in luminal subtype BC cells. Opposingly, ARSD still subjected to XCI in TNBC cells mediated by Xist, CpG islands methylation, and inhibitory histone modification. Unexpectedly, we also found that ectopic ARSD overexpression could inhibit proliferation and migration of TNBC cells by activating Hippo/YAP pathway, indicating that ARSD may be a molecule brake on ERα signaling pathway, which restricted ERα to be an uncontrolled active status. Combined with other peoples' researches that Hippo signaling maintained ER expression and ER + BC growth, we believed that there should exist a regulative feedback loop formation among ERα, ARSD, and Hippo/YAP pathway. Collectively, our findings will help filling the knowledge gap about the influence of ARSD on BC and providing evidence that ARSD may serve as a potential marker to predict prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Chun Li
- Faculty of Health science, Hull York Medical School, University of Hull, Hull, UK, HU6 7RX
| | - Wei Xiong
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
207
|
Matsuura R, Nakajima T, Ichihara S, Sado T. Ectopic Splicing Disturbs the Function of Xist RNA to Establish the Stable Heterochromatin State. Front Cell Dev Biol 2021; 9:751154. [PMID: 34722536 PMCID: PMC8551810 DOI: 10.3389/fcell.2021.751154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Non-coding Xist RNA plays an essential role in X chromosome inactivation (XCI) in female mammals. It coats the X chromosome in cis and mediates the recruitment of many proteins involved in gene silencing and heterochromatinization. The molecular basis of how Xist RNA initiates chromosomal silencing and what proteins participate in this process has been extensively studied and elucidated. Its involvement in the establishment and maintenance of the X-inactivated state is, however, less understood. The XistIVS allele we previously reported is peculiar in that it can initiate XCI but fails to establish the inactive state that is stably maintained and, therefore, may provide an opportunity to explore how Xist RNA contributes to establish a robust heterochromatin state. Here we demonstrate that ectopic splicing taking place to produce XistIVS RNA disturbs its function to properly establish stable XCI state. This finding warrants the potential of XistIVS RNA to provide further insight into our understanding of how Xist RNA contributes to establish sustainable heterochromatin.
Collapse
Affiliation(s)
- Ruka Matsuura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tatsuro Nakajima
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
208
|
Fu R, Qin P, Zou X, Hu Z, Hong N, Wang Y, Jin W. A Comprehensive Characterization of Monoallelic Expression During Hematopoiesis and Leukemogenesis via Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:702897. [PMID: 34722498 PMCID: PMC8548578 DOI: 10.3389/fcell.2021.702897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate monoallelic expression (MAE) in various developmental and pathological processes. However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited. In this study, we conducted a systematic interrogation of MAEs in bone marrow mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of BMMCs. We identified 1,020 constitutive MAEs in BMMCs, which included imprinted genes such as MEG8, NAP1L5, and IRAIN. We classified the BMMCs into six cell types and identified 74 cell type specific MAEs including MTSS1, MOB1A, and TCF12. We further identified 114 random MAEs (rMAEs) at single-cell level, with 78.1% single-allele rMAE and 21.9% biallelic mosaic rMAE. Many MAEs identified in BMMCs have not been reported and are potentially hematopoietic specific, supporting MAEs are functional relevance. Comparison of BMMC samples from a leukemia patient with multiple clinical stages showed the fractions of constitutive MAE were correlated with fractions of leukemia cells in BMMCs. Further separation of the BMMCs into leukemia cells and normal cells showed that leukemia cells have much higher constitutive MAE and rMAEs than normal cells. We identified the leukemia cell-specific MAEs and relapsed leukemia cell-specific MAEs, which were enriched in immune-related functions. These results indicate MAE is prevalent and is an important gene regulation mechanism during hematopoiesis and leukemogenesis. As the first systematical interrogation of constitutive MAEs, cell type specific MAEs, and rMAEs during hematopoiesis and leukemogenesis, the study significantly increased our knowledge about the features and functions of MAEs.
Collapse
Affiliation(s)
- Ruiqing Fu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pengfei Qin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ni Hong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yun Wang
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
209
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
210
|
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
211
|
The Cytogenetics of the Water Buffalo: A Review. Animals (Basel) 2021; 11:ani11113109. [PMID: 34827841 PMCID: PMC8614332 DOI: 10.3390/ani11113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
The water buffalo (Bubalus bubalis), also known as the Asian buffalo, is an essential domestic bovid. Indeed, although its world population (~209 million heads) is approximately one-ninth that of cattle, the management of this species involves a larger human population than that involved with raising cattle. Compared with cattle, water buffalo have been understudied for many years, but interest in this species has been increasing, especially considering that the world population of these bovids grows every year-particularly that of the river buffalo. There are two genera of buffalo worldwide: the Syncerus (from the African continent), and the Bubalus (from the southwest Asian continent, Mediterranean area, southern America, and Australia). All species belonging to these two genera have specific chromosome numbers and shapes. Because of such features, the study of chromosomes is a fascinating biological basis for differentiating various species (and hybrids) of buffaloes and characterizing their karyotypes in evolutionary, clinical, and molecular studies. In this review, we report an update on essential cytogenetic studies in which various buffalo species were described from evolutionary, clinical, and molecular perspectives-particularly considering the river buffalo (Bubalus bubalis 2n = 50). In addition, we show new data on swamp buffalo chromosomes.
Collapse
|
212
|
Four-dimensional chromosome reconstruction elucidates the spatiotemporal reorganization of the mammalian X chromosome. Proc Natl Acad Sci U S A 2021; 118:2107092118. [PMID: 34645712 DOI: 10.1073/pnas.2107092118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Chromosomes are segmented into domains and compartments, but how these structures are spatially related in three dimensions (3D) is unclear. Here, we developed tools that directly extract 3D information from Hi-C experiments and integrate the data across time. With our "4DHiC" method, we use X chromosome inactivation (XCI) as a model to examine the time evolution of 3D chromosome architecture during large-scale changes in gene expression. Our modeling resulted in several insights. Both A/B and S1/S2 compartments divide the X chromosome into hemisphere-like structures suggestive of a spatial phase-separation. During the XCI, the X chromosome transits through A/B, S1/S2, and megadomain structures by undergoing only partial mixing to assume new structures. Interestingly, when an active X chromosome (Xa) is reorganized into an inactive X chromosome (Xi), original underlying compartment structures are not fully eliminated within the Xi superstructure. Our study affirms slow mixing dynamics in the inner chromosome core and faster dynamics near the surface where escapees reside. Once established, the Xa and Xi resemble glassy polymers where mixing no longer occurs. Finally, Xist RNA molecules initially reside within the A compartment but transition to the interface between the A and B hemispheres and then spread between hemispheres via both surface and core to establish the Xi.
Collapse
|
213
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
214
|
X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell Mol Life Sci 2021; 78:7043-7060. [PMID: 34633482 PMCID: PMC8558156 DOI: 10.1007/s00018-021-03945-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022]
Abstract
Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17β-estradiol treatment in culture. Kdm6a pharmacological blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization.
Collapse
|
215
|
Tang C, Liu J, Hu Q, Zeng S, Yu L. Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol 2021; 908:174367. [PMID: 34303661 DOI: 10.1016/j.ejphar.2021.174367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
216
|
Subrini J, Turner J. Y chromosome functions in mammalian spermatogenesis. eLife 2021; 10:67345. [PMID: 34606444 PMCID: PMC8489898 DOI: 10.7554/elife.67345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian Y chromosome is critical for male sex determination and spermatogenesis. However, linking each Y gene to specific aspects of male reproduction has been challenging. As the Y chromosome is notoriously hard to sequence and target, functional studies have mostly relied on transgene-rescue approaches using mouse models with large multi-gene deletions. These experimental limitations have oriented the field toward the search for a minimum set of Y genes necessary for male reproduction. Here, considering Y-chromosome evolutionary history and decades of discoveries, we review the current state of research on its function in spermatogenesis and reassess the view that many Y genes are disposable for male reproduction.
Collapse
Affiliation(s)
- Jeremie Subrini
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
217
|
Kobayashi H, Nakai T, Nakanishi Y, Esumi M, Masuda S. Phylogenetic analysis of combined lobular and ductal carcinoma of the breast. Mol Med Rep 2021; 24:718. [PMID: 34396426 PMCID: PMC8383046 DOI: 10.3892/mmr.2021.12357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Breast cancer manifests in diverse forms, with particular reference to various cell types harboring different mutations and gene expression profiles. To elucidate the clonal relationship between cancer cells in tumors composed of both ductal and lobular phenotypes, two combined lobular and ductal carcinoma (CLDC) cases were analyzed, including one mixed ductal‑lobular carcinoma (MDL) lesion, by direct sequencing of the mitochondrial DNA D‑loop, digital PCR targeting of chromosomes 1q and 16q, as well as next‑generation sequencing. DNA was extracted from formalin‑fixed paraffin‑embedded tissue sections of different histological types, including invasive ductal carcinoma, invasive lobular carcinoma, ductal carcinoma in situ, lobular carcinoma in situ, flat epithelial atypia, non‑neoplastic mammary gland and extramammary organs, using laser‑assisted microdissection. Mutations detected by the comprehensive cancer panel were validated by SYBR green allele‑specific quantitative PCR (RRM1, AKT1, PIK3CA, RALGDS, EGFR, TP53, IL21R, DPYD, SGK1, CDH1, TIMP3 and KMT2C). CLDC, which shared the basic genetic alterations of 1q gain or 16q loss, progresses to invasive lobular or ductual carcinoma with the accumulation of further mutations. Cancer cells contained in an MDL lesion shared closely related genetic alterations, suggesting that these cells have the same origin, despite different histological features, namely 'lobular' or 'ductal'. By contrast, multiple lesions located away from the main tumor, diagnosed as CLDC (excluding an MDL lesion) were not always identical with different genetic alterations, despite being diagnosed as ductal carcinoma in situ. Thus, MDL should be defined as a distinct category separate from CLDC, whose components of 'lobular' and 'ductal' may have the same cellular origin.
Collapse
MESH Headings
- Adult
- Breast
- Breast Neoplasms/classification
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/classification
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Lobular/classification
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Female
- Genotype
- High-Throughput Nucleotide Sequencing
- Humans
- Middle Aged
- Mutation
- Phylogeny
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Hiroko Kobayashi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tokiko Nakai
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mariko Esumi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
218
|
Lakhotia SC. Dosage compensation in Drosophila in the 1960s: a personal historical perspective. J Genet 2021. [DOI: 10.1007/s12041-021-01322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
219
|
Bonora G, Ramani V, Singh R, Fang H, Jackson DL, Srivatsan S, Qiu R, Lee C, Trapnell C, Shendure J, Duan Z, Deng X, Noble WS, Disteche CM. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biol 2021; 22:279. [PMID: 34579774 PMCID: PMC8474932 DOI: 10.1186/s13059-021-02432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
220
|
Semicoordinated allelic-bursting shape dynamic random monoallelic expression in pregastrulation embryos. iScience 2021; 24:102954. [PMID: 34458702 PMCID: PMC8379509 DOI: 10.1016/j.isci.2021.102954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
Recently, allele-specific single-cell RNA-seq analysis has demonstrated widespread dynamic random monoallelic expression of autosomal genes (aRME) in different cell types. However, the prevalence of dynamic aRME during pregastrulation remains unknown. Here, we show that dynamic aRME is widespread in different lineages of pregastrulation embryos. Additionally, the origin of dynamic aRME remains elusive. It is believed that independent transcriptional bursting from each allele leads to dynamic aRME. Here, we show that allelic burst is not perfectly independent; instead it happens in a semicoordinated fashion. Importantly, we show that semicoordinated allelic bursting of genes, particularly with low burst frequency, leads to frequent asynchronous allelic bursting, thereby contributing to dynamic aRME. Furthermore, we found that coordination of allelic bursting is lineage specific and genes regulating the development have a higher degree of coordination. Altogether, our study provides significant insights into the prevalence and origin of dynamic aRME and their developmental relevance during early development. Dynamic aRME is widespread in different lineages of pregastrulation embryos Semicoordinated bursting of genes with low burst frequency leads to dynamic aRME Degree of coordination of allelic bursting is lineage specific Developmental genes have higher degree of coordination of allelic bursting
Collapse
|
221
|
Rajan JN, Ireland K, Johnson R, Stepien KM. Review of Mechanisms, Pharmacological Management, Psychosocial Implications, and Holistic Treatment of Pain in Fabry Disease. J Clin Med 2021; 10:4168. [PMID: 34575277 PMCID: PMC8472766 DOI: 10.3390/jcm10184168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Fabry disease is a progressive X-linked lysosomal storage disease caused by a mutation in the GLA gene, encoding the lysosomal hydrolase α-galactosidase A. The consequent reduced enzyme activity results in the toxic accumulation of glycosphingolipids, particularly globortriaosylceramide (Gb3 or GL3), in blood vessels, renal epithelia, myocardium, peripheral nervous system, cornea and skin. Neuropathic pain is the most common manifestation of Fabry disease and can be extremely debilitating. This often develops during childhood and presents with episodes of burning and sharp pain in the hands and feet, especially during exercise and it is worse with increased heat or fever. It is thought to be due to ischaemic injury and metabolic failure, leading to the disruption of neuronal membranes and small fibre neuropathy, caused by a reduced density of myelinated Aδ and unmyelinated C-fibres and alterations in the function of ion channels, mediated by Gb3 and lyso Gb3. It is important to confirm small fibre neuropathy before any Fabry disease treatment modality is considered. There is a clinical need for novel techniques for assessing small fibre function to improve detection of small fibre neuropathy and expand the role of available therapies. The current Fabry disease guidelines are in favour of pharmacological management as the first-line treatment for pain associated with Fabry disease. Refractory cases would benefit from a rehabilitation approach with interdisciplinary input, including medical, physiotherapy and psychological disciplines and including a Pain Management Programme.
Collapse
Affiliation(s)
- Jonathan Niranjan Rajan
- Pain Medicine and Anaesthesia Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
| | - Katharine Ireland
- Pain Medicine and Anaesthesia Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
| | - Richard Johnson
- Manchester & Salford Pain Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK;
- Division of Diabetes, Endocrinology & Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
222
|
Mallard TT, Liu S, Seidlitz J, Ma Z, Moraczewski D, Thomas A, Raznahan A. X-chromosome influences on neuroanatomical variation in humans. Nat Neurosci 2021; 24:1216-1224. [PMID: 34294918 DOI: 10.1038/s41593-021-00890-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
The X-chromosome has long been hypothesized to have a disproportionate influence on the brain based on its enrichment for genes that are expressed in the brain and associated with intellectual disability. Here, we verify this hypothesis through partitioned heritability analysis of X-chromosome influences (XIs) on human brain anatomy in 32,256 individuals from the UK Biobank. We first establish evidence for dosage compensation in XIs on brain anatomy-reflecting larger XIs in males compared to females, which correlate with regional sex-biases in neuroanatomical variance. XIs are significantly larger than would be predicted from X-chromosome size for the relative surface area of cortical systems supporting attention, decision-making and motor control. Follow-up association analyses implicate X-linked genes with pleiotropic effects on cognition. Our study reveals a privileged role for the X-chromosome in human neurodevelopment and urges greater inclusion of this chromosome in future genome-wide association studies.
Collapse
Affiliation(s)
- Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Jakob Seidlitz
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Zhiwei Ma
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Adam Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| |
Collapse
|
223
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
224
|
Gerri C, Menchero S, Mahadevaiah SK, Turner JMA, Niakan KK. Human Embryogenesis: A Comparative Perspective. Annu Rev Cell Dev Biol 2021; 36:411-440. [PMID: 33021826 DOI: 10.1146/annurev-cellbio-022020-024900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
225
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
226
|
The Role of lncRNA in the Development of Tumors, including Breast Cancer. Int J Mol Sci 2021; 22:ijms22168427. [PMID: 34445129 PMCID: PMC8395147 DOI: 10.3390/ijms22168427] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.
Collapse
|
227
|
Djigo OKM, Ould Khalef Y, Ould Ahmedou Salem MS, Gomez N, Basco L, Briolant S, Ould Mohamed Salem Boukhary A. Assessment of CareStart G6PD rapid diagnostic test and CareStart G6PD biosensor in Mauritania. Infect Dis Poverty 2021; 10:105. [PMID: 34353361 PMCID: PMC8340529 DOI: 10.1186/s40249-021-00889-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The elimination of Plasmodium vivax malaria requires 8-aminoquinolines, which are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency due to the risk of acute haemolytic anaemia. Several point-of-care devices have been developed to detect G6PD deficiency. The objective of the present study was to evaluate the performance of two of these devices against G6PD genotypes in Mauritania. METHODS Outpatients were screened for G6PD deficiency using CareStart™ rapid diagnostic test (RDT) and CareStart™ G6PD biosensor in Nouakchott, Mauritania, in 2019-2020. African-type and Mediterranean-type G6PD genotypes commonly observed in Africa were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing. Qualitative variables were compared using Fisher's exact test. RESULTS Of 323 patients (74 males and 249 females), 5 males and 2 homozygous females had the African-type A- genotype: A-(202) in 3 males and 2 females and G6PD A-(968) in 2 males. Among heterozygous females, 13 carried G6PD A-(202), 12 G6PD A-(968), and 3 G6PD A-(542) variants. None had the Mediterranean-type G6PD genotype. Eight had a positive G6PD RDT result, including all 7 hemizygous males and homozygous females with A- or A-A- (0.12 to 2.34 IU/g haemoglobin, according to G6PD biosensor), but RDT performed poorly (sensitivity, 11.1% at the cut-off level of < 30%) and yielded many false negative tests. Thirty-seven (50.0%) males and 141 (56.6%) females were anaemic. The adjusted median values of G6PD activity were 5.72 and 5.34 IU/g haemoglobin in non-anaemic males (n = 35) and non-anaemic males and females (n = 130) with normal G6PD genotypes using G6PD biosensor, respectively. Based on the adjusted median of 5.34 IU/g haemoglobin, the performance of G6PD biosensor against genotyping was as follows: at 30% cut-off, the sensitivity and specificity were 85.7% and 91.7%, respectively, and at 80% cut-off, the sensitivity was 100% while the specificity was 64.9%. CONCLUSIONS Although this pilot study supports the utility of biosensor to screen for G6PD deficiency in patients, further investigation in parallel with spectrophotometry is required to promote and validate a more extensive use of this point-of-care device in areas where P. vivax is highly prevalent in Mauritania.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche "Génomes et Milieux" (Jeune Equipe Associée à l'Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania
| | - Yacoub Ould Khalef
- Service de Pédiatrie, Centre Hospitalier Mère et Enfant, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche "Génomes et Milieux" (Jeune Equipe Associée à l'Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania
| | - Nicolas Gomez
- IHU, Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Leonardo Basco
- IHU, Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Sébastien Briolant
- IHU, Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche "Génomes et Milieux" (Jeune Equipe Associée à l'Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania.
| |
Collapse
|
228
|
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The Emerging Role of Long Non-Coding RNAs and MicroRNAs in Neurodegenerative Diseases: A Perspective of Machine Learning. Biomolecules 2021; 11:1132. [PMID: 34439798 PMCID: PMC8391852 DOI: 10.3390/biom11081132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction and death of brain cells population. As the early manifestations of NDs are similar, their symptoms are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative disorder a priority. Several investigations have revealed the importance of microRNAs and long non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well as its dysregulation involved in many types of neurological diseases. Therefore, the expression pattern of these molecules in the different NDs have gained significant attention to improve the diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization method should be applied to extract the most relevant information. Hence, machine learning is considered as an important tool for this purpose since it can classify expression profiles of non-coding RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its different methods, and its meaningful application in the diagnosis of NDs from the dysregulated non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the description of different investigations that showed an accuracy between 85% to 95% in the detection of the disease with this tool. All of these denote that artificial intelligence could be an excellent alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based on non-coding RNAs.
Collapse
Affiliation(s)
- Ángela García-Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Cynthia Martin-Jimenez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Andres Felipe Aristizábal Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| |
Collapse
|
229
|
Tamura Y, Ohhata T, Niida H, Sakai S, Uchida C, Masumoto K, Katou F, Wutz A, Kitagawa M. Homologous recombination is reduced in female embryonic stem cells by two active X chromosomes. EMBO Rep 2021; 22:e52190. [PMID: 34309165 DOI: 10.15252/embr.202052190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
The reactivation of X-linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X-linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist-inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X-linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X-linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.
Collapse
Affiliation(s)
- Yuka Tamura
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuma Masumoto
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fuminori Katou
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Anton Wutz
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
230
|
Quesada-Espinosa JF, Garzón-Lorenzo L, Lezana-Rosales JM, Gómez-Rodríguez MJ, Sánchez-Calvin MT, Palma-Milla C, Gómez-Manjón I, Hidalgo-Mayoral I, Pérez de la Fuente R, Arteche-López A, Álvarez-Mora MI, Camacho-Salas A, Cruz-Rojo J, Lázaro-Rodríguez I, Morales-Conejo M, Nuñez-Enamorado N, Bustamante-Aragones A, Simón de Las Heras R, Gomez-Cano MA, Ramos-Gómez P, Sierra-Tomillo O, Juárez-Rufián A, Gallego-Merlo J, Rausell-Sánchez L, Moreno-García M, Sánchez Del Pozo J. First female with Allan-Herndon-Dudley syndrome and partial deletion of X-inactivation center. Neurogenetics 2021; 22:343-346. [PMID: 34296368 DOI: 10.1007/s10048-021-00660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Allan-Herndon-Dudley is an X-linked recessive syndrome caused by pathogenic variants in the SLC16A2 gene. Clinical manifestations are a consequence of impaired thyroid metabolism and aberrant transport of thyroid hormones to the brain. Carrier females are generally asymptomatic and may show subtle symptoms of the disease. We describe a female with a complete Allan-Herndon-Dudley phenotype, carrying a de novo 543-kb deletion of the X chromosome. The deletion encompasses exon 1 of the SLC16A2 gene and JPX and FTX genes; it is known that the latter two genes participate in the X-inactivation process upregulating XIST gene expression. Subsequent studies in the patient demonstrated the preferential expression of the X chromosome with the JPX and FTX deletion.
Collapse
Affiliation(s)
- Juan F Quesada-Espinosa
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain. .,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.
| | - Lucía Garzón-Lorenzo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain. .,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain.
| | - José M Lezana-Rosales
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - María J Gómez-Rodríguez
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Cancer Research Network (CIBERONC), 28029, Madrid, Spain
| | - María T Sánchez-Calvin
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Carmen Palma-Milla
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Gómez-Manjón
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Hidalgo-Mayoral
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Rubén Pérez de la Fuente
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - María I Álvarez-Mora
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Fundació Clínic Per La Recerca Biomèdica, Barcelona, Spain
| | - Ana Camacho-Salas
- Pediatrics Department, Neurology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Jaime Cruz-Rojo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Lázaro-Rodríguez
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Montserrat Morales-Conejo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Internal Medicine Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Noemí Nuñez-Enamorado
- Pediatrics Department, Neurology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - María A Gomez-Cano
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Patricia Ramos-Gómez
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Ollalla Sierra-Tomillo
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Alexandra Juárez-Rufián
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Jesús Gallego-Merlo
- Department of Genetics, IIS-Fundación Jiménez Díaz UAM, CIBERER, Madrid, Spain
| | | | - Marta Moreno-García
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Jaime Sánchez Del Pozo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| |
Collapse
|
231
|
A Novel cis Regulatory Element Regulates Human XIST in a CTCF-Dependent Manner. Mol Cell Biol 2021; 41:e0038220. [PMID: 34060915 DOI: 10.1128/mcb.00382-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The long noncoding RNA XIST is the master regulator for the process of X chromosome inactivation (XCI) in mammalian females. Here, we report the existence of a hitherto-uncharacterized cis regulatory element (cRE) within the first exon of human XIST, which determines the transcriptional status of XIST during the initiation and maintenance phases of XCI. In the initiation phase, pluripotency factors bind to this cRE and keep XIST repressed. In the maintenance phase of XCI, the cRE is enriched for CTCF, which activates XIST transcription. By employing a CRISPR-dCas9-KRAB-based interference strategy, we demonstrate that binding of CTCF to the newly identified cRE is critical for regulating XIST in a YY1-dependent manner. Collectively, our study uncovers the combinatorial effect of multiple transcriptional regulators influencing XIST expression during the initiation and maintenance phases of XCI.
Collapse
|
232
|
Brashear WA, Bredemeyer KR, Murphy WJ. Genomic architecture constrained placental mammal X Chromosome evolution. Genome Res 2021; 31:1353-1365. [PMID: 34301625 PMCID: PMC8327908 DOI: 10.1101/gr.275274.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Susumu Ohno proposed that the gene content of the mammalian X Chromosome should remain highly conserved due to dosage compensation. X Chromosome linkage (gene order) conservation is widespread in placental mammals but does not fall within the scope of Ohno's prediction and may be an indirect result of selection on gene content or selection against rearrangements that might disrupt X-Chromosome inactivation (XCI). Previous comparisons between the human and mouse X Chromosome sequences have suggested that although single-copy X Chromosome genes are conserved between species, most ampliconic genes were independently acquired. To better understand the evolutionary and functional constraints on X-linked gene content and linkage conservation in placental mammals, we aligned a new, high-quality, long-read X Chromosome reference assembly from the domestic cat (incorporating 19.3 Mb of targeted BAC clone sequence) to the pig, human, and mouse assemblies. A comprehensive analysis of annotated X-linked orthologs in public databases demonstrated that the majority of ampliconic gene families were present on the ancestral placental X Chromosome. We generated a domestic cat Hi-C contact map from an F1 domestic cat/Asian leopard cat hybrid and demonstrated the formation of the bipartite structure found in primate and rodent inactivated X Chromosomes. Conservation of gene order and recombination patterns is attributable to strong selective constraints on three-dimensional genomic architecture necessary for superloop formation. Species with rearranged X Chromosomes retain the ancestral order and relative spacing of loci critical for superloop formation during XCI, with compensatory inversions evolving to maintain these long-range physical interactions.
Collapse
Affiliation(s)
- Wesley A Brashear
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Kevin R Bredemeyer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
233
|
A statistical measure for the skewness of X chromosome inactivation for quantitative traits and its application to the MCTFR data. BMC Genom Data 2021; 22:24. [PMID: 34215184 PMCID: PMC8254321 DOI: 10.1186/s12863-021-00978-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background X chromosome inactivation (XCI) is that one of two chromosomes in mammalian females is silenced during early development of embryos. There has been a statistical measure for the degree of the skewness of XCI for qualitative traits. However, no method is available for such task at quantitative trait loci. Results In this article, we extend the existing statistical measure for the skewness of XCI for qualitative traits, and the likelihood ratio, Fieller’s and delta methods for constructing the corresponding confidence intervals, and make them accommodate quantitative traits. The proposed measure is a ratio of two linear regression coefficients when association exists. Noting that XCI may cause variance heterogeneity of the traits across different genotypes in females, we obtain the point estimate and confidence intervals of the measure by incorporating such information. The hypothesis testing of the proposed methods is also investigated. We conduct extensive simulation studies to assess the performance of the proposed methods. Simulation results demonstrate that the median of the point estimates of the measure is very close to the pre-specified true value. The likelihood ratio and Fieller’s methods control the size well, and have the similar test power and accurate coverage probability, which perform better than the delta method. So far, we are not aware of any association study for the X-chromosomal loci in the Minnesota Center for Twin and Family Research data. So, we apply our proposed methods to these data for their practical use and find that only the rs792959 locus, which is simultaneously associated with the illicit drug composite score and behavioral disinhibition composite score, may undergo XCI skewing. However, this needs to be confirmed by molecular genetics. Conclusions We recommend the Fieller’s method in practical use because it is a non-iterative procedure and has the similar performance to the likelihood ratio method. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00978-z.
Collapse
|
234
|
Passarge E. Origins of human genetics. A personal perspective. Eur J Hum Genet 2021; 29:1038-1044. [PMID: 33542497 PMCID: PMC8298510 DOI: 10.1038/s41431-020-00785-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Genetics evolved as a field of science after 1900 with new theories being derived from experiments obtained in fruit flies, bacteria, and viruses. This personal account suggests that the origins of human genetics can best be traced to the years 1949 to 1959. Several genetic scientific advances in genetics in 1949 yielded results directly relating to humans for the first time, except for a few earlier observations. In 1949 the first textbook of human genetics was published, the American Journal of Human Genetics was founded, and in the previous year the American Society of Human Genetics. In 1940 in Britain a textbook entitled Introduction to Medical Genetics served as a foundation for introducing genetic aspects into medicine. The introduction of new methods for analyzing chromosomes and new biochemical assays using cultured cells in 1959 and subsequent years revealed that many human diseases, including cancer, have genetic causes. It became possible to arrive at a precise cause-related genetic diagnosis. As a result the risk of occurrence or re-occurrence of a disease within a family could be assessed correctly. Genetic counseling as a new concept became a basis for improved patient care. Taken together the advances in medically orientated genetic research and patient care since 1949 have resulted in human genetics being both, a basic medical and a basic biological science. Prior to 1949 genetics was not generally viewed in a medical context. Although monogenic human diseases were recognized in 1902, their occurrence and distribution were considered mainly at the population level.
Collapse
Affiliation(s)
- Eberhard Passarge
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany.
| |
Collapse
|
235
|
Kawashima S, Hattori A, Suzuki E, Matsubara K, Toki M, Kosaki R, Hasegawa Y, Nakabayashi K, Fukami M, Kagami M. Methylation status of genes escaping from X-chromosome inactivation in patients with X-chromosome rearrangements. Clin Epigenetics 2021; 13:134. [PMID: 34193245 PMCID: PMC8244138 DOI: 10.1186/s13148-021-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-chromosome inactivation (XCI) is a mechanism in which one of two X chromosomes in females is randomly inactivated in order to compensate for imbalance of gene dosage between sexes. However, about 15% of genes on the inactivated X chromosome (Xi) escape from XCI. The methylation level of the promoter region of the escape gene is lower than that of the inactivated genes. Dxz4 and/or Firre have critical roles for forming the three-dimensional (3D) structure of Xi. In mice, disrupting the 3D structure of Xi by deleting both Dxz4 and Firre genes led to changing of the escape genes list. To estimate the impact for escape genes by X-chromosome rearrangements, including DXZ4 and FIRRE, we examined the methylation status of escape gene promoters in patients with various X-chromosome rearrangements. RESULTS To detect the breakpoints, we first performed array-based comparative genomic hybridization and whole-genome sequencing in four patients with X-chromosome rearrangements. Subsequently, we conducted array-based methylation analysis and reduced representation bisulfite sequencing in the four patients with X-chromosome rearrangements and controls. Of genes reported as escape genes by gene expression analysis using human hybrid cells in a previous study, 32 genes showed hypomethylation of the promoter region in both male controls and female controls. Three patients with X-chromosome rearrangements had no escape genes with abnormal methylation of the promoter region. One of four patients with the most complicated rearrangements exhibited abnormal methylation in three escape genes. Furthermore, in the patient with the deletion of the FIRRE gene and the duplication of DXZ4, most escape genes remained hypomethylated. CONCLUSION X-chromosome rearrangements are unlikely to affect the methylation status of the promoter regions of escape genes, except for a specific case with highly complex rearrangements, including the deletion of the FIRRE gene and the duplication of DXZ4.
Collapse
Affiliation(s)
- Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Machiko Toki
- Department of Pediatrics, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka, Kanagawa, 254-0065, Japan.,Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
236
|
Wang Y, Hannon E, Grant OA, Gorrie-Stone TJ, Kumari M, Mill J, Zhai X, McDonald-Maier KD, Schalkwyk LC. DNA methylation-based sex classifier to predict sex and identify sex chromosome aneuploidy. BMC Genomics 2021; 22:484. [PMID: 34182928 PMCID: PMC8240370 DOI: 10.1186/s12864-021-07675-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/05/2021] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Sex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. RESULTS Here we presented a novel method to predict sex using only DNA methylation beta values, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only signal intensities) uploaded to GEO. We identified 4345 significantly (p<0.01) sex-associated CpG sites present on both 450K and EPIC arrays, and constructed a sex classifier based on the two first principal components of the DNA methylation data of sex-associated probes mapped on sex chromosomes. The proposed method is constructed using whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five Turner syndrome cases and one Klinefelter syndrome case. CONCLUSIONS This proposed sex classifier not only can be used for sex predictions but also applied to identify samples with sex chromosome aneuploidy, and it is freely and easily accessible by calling the 'estimateSex' function from the newest wateRmelon Bioconductor package ( https://github.com/schalkwyk/wateRmelon ).
Collapse
Affiliation(s)
- Yucheng Wang
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
| | - Eilis Hannon
- Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Olivia A. Grant
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, UK
| | - Jonathan Mill
- Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Xiaojun Zhai
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
| | - Klaus D. McDonald-Maier
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
| | - Leonard C. Schalkwyk
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
237
|
Yin H, Wei C, Lee JT. Revisiting the consequences of deleting the X inactivation center. Proc Natl Acad Sci U S A 2021; 118:e2102683118. [PMID: 34161282 PMCID: PMC8237661 DOI: 10.1073/pnas.2102683118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells equalize X-linked dosages between the male (XY) and female (XX) sexes by silencing one X chromosome in the female sex. This process, known as "X chromosome inactivation" (XCI), requires a master switch within the X inactivation center (Xic). The Xic spans several hundred kilobases in the mouse and includes a number of regulatory noncoding genes that produce functional transcripts. Over three decades, transgenic and deletional analyses have demonstrated both the necessity and sufficiency of the Xic to induce XCI, including the steps of X chromosome counting, choice, and initiation of whole-chromosome silencing. One recent study, however, reported that deleting the noncoding sequences of the Xic surprisingly had no effect for XCI and attributed a sufficiency to drive counting to the coding gene, Rnf12/Rlim Here, we revisit the question by creating independent Xic deletion cell lines. Multiple independent clones carrying heterozygous deletions of the Xic display an inability to up-regulate Xist expression, consistent with a counting defect. This defect is rescued by a second site mutation in Tsix occurring in trans, bypassing the defect in counting. These findings reaffirm the essential nature of noncoding Xic elements for the initiation of XCI.
Collapse
Affiliation(s)
- Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
238
|
Naciri I, Lin B, Webb CH, Jiang S, Carmona S, Liu W, Mortazavi A, Sun S. Linking Chromosomal Silencing With Xist Expression From Autosomal Integrated Transgenes. Front Cell Dev Biol 2021; 9:693154. [PMID: 34222260 PMCID: PMC8250153 DOI: 10.3389/fcell.2021.693154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Xist is the master regulator of X-Chromosome Inactivation (XCI), the mammalian dosage compensation mechanism that silences one of the two X chromosomes in a female cell. XCI is established during early embryonic development. Xist transgene (Tg) integrated into an autosome can induce transcriptional silencing of flanking genes; however, the effect and mechanism of Xist RNA on autosomal sequence silencing remain elusive. In this study, we investigate an autosomal integration of Xist Tg that is compatible with mouse viability but causes male sterility in homozygous transgenic mice. We observed ectopic Xist expression in the transgenic male cells along with a transcriptional reduction of genes clustered in four segments on the mouse chromosome 1 (Chr 1). RNA/DNA Fluorescent in situ Hybridization (FISH) and chromosome painting confirmed that Xist Tg is associated with chromosome 1. To determine the spreading mechanism of autosomal silencing induced by Xist Tg on Chr 1, we analyzed the positions of the transcriptionally repressed chromosomal sequences relative to the Xist Tg location inside the cell nucleus. Our results show that the transcriptionally repressed chromosomal segments are closely proximal to Xist Tg in the three-dimensional nucleus space. Our findings therefore support a model that Xist directs and maintains long-range transcriptional silencing facilitated by the three-dimensional chromosome organization.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Benjamin Lin
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Chiu-Ho Webb
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shan Jiang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sarah Carmona
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Wenzhu Liu
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
239
|
Tian T, Bi H, Zhang D, Liu Y, Sun H, Jia C, Zheng T, Huang H, Fu J, Zhu L, Zhao Y. Methylation of three genes encoded by X chromosome in blood leukocytes and colorectal cancer risk. Cancer Med 2021; 10:4964-4976. [PMID: 34145793 PMCID: PMC8290255 DOI: 10.1002/cam4.4056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022] Open
Abstract
X chromosome change has been proved to be associated with carcinogenesis and related to gender differences in cancer risk. If aberrant methylation of genes encoded by X chromosome involve in the risk and prognosis of cancers, including colorectal cancer (CRC), remain unclear. We conducted a case–control study consisted of 432 CRC cases and 434 controls, detecting the methylation levels of FAM156B, PIH1D3, and PPP1R3F in the X chromosome in blood leukocytes using methylation‐sensitive high‐resolution melting (MS‐HRM). We analyzed the relationship between the methylation levels and CRC susceptibility and then explored the interactions with environmental factors on CRC risk with logistics regression. Moreover, we conducted a follow‐up study containing 225 CRC patients to explore the associations between the methylation of FAM156B, PPP1R3F, and PIH1D3 and CRC prognosis. The hypermethylation of FAM156B, PPP1R3F, and PIH1D3 was related to increased CRC risk (ORPS‐adj = 2.932, 95% confidence interval [CI]: 2.029–4.237; ORPS‐adj = 1.602, 95% CI: 1.078–2.382; ORPS‐adj = 1.628, 95% CI: 1.065–2.490, respectively). In the multiple CpG site methylation (MCSM) analysis, compared with non‐MCSM, a significant relationship between MCSM and increased CRC risk was found (ORPS‐adj = 2.202, 95% CI: 1.512–3.208). We observed synergistic interaction between PPP1R3F hypermethylation and fried food consumption on CRC risk (ORi = 2.682, 95% CI: 1.321–5.446). However, there were no associations between the methylation of FAM156B, PPP1R3F, and PIH1D3 and CRC prognosis (p > 0.05). In conclusion, the methylation of FAM156B, PPP1R3F, and PIH1D3 genes in blood leukocytes is significantly related to CRC risk and may be potential biomarkers for CRC risk but not prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Haoran Bi
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Chenyang Jia
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Ting Zheng
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, The People's Republic of China
| |
Collapse
|
240
|
The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc Natl Acad Sci U S A 2021; 118:2024624118. [PMID: 34103397 DOI: 10.1073/pnas.2024624118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematous (SLE) is a female-predominant disease characterized by autoimmune B cells and pathogenic autoantibody production. Individuals with two or more X chromosomes are at increased risk for SLE, suggesting that X-linked genes contribute to the observed sex bias of this disease. To normalize X-linked gene expression between sexes, one X in female cells is randomly selected for transcriptional silencing through X-chromosome inactivation (XCI), resulting in allele-specific enrichment of epigenetic modifications, including histone methylation and the long noncoding RNA XIST/Xist on the inactive X (Xi). As we have previously shown that epigenetic regulation of the Xi in female lymphocytes from mice is unexpectedly dynamic, we used RNA fluorescence in situ hybridization and immunofluorescence to profile epigenetic features of the Xi at the single-cell level in human B cell subsets from pediatric and adult SLE patients and healthy controls. Our data reveal that abnormal XCI maintenance in B cells is a feature of SLE. Using single-cell and bulk-cell RNA sequencing datasets, we found that X-linked immunity genes escape XCI in specific healthy human B cell subsets and that human SLE B cells exhibit aberrant expression of X-linked genes and XIST RNA interactome genes. Our data reveal that mislocalized XIST RNA, coupled with a dramatic reduction in heterochromatic modifications at the Xi in SLE, predispose for aberrant X-linked gene expression from the Xi, thus defining a genetic and epigenetic pathway that affects X-linked gene expression in human SLE B cells and likely contributes to the female bias in SLE.
Collapse
|
241
|
Mutzel V, Schulz EG. Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X-Chromosome Inactivation. Bioessays 2021; 42:e1900163. [PMID: 32189388 DOI: 10.1002/bies.201900163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Indexed: 02/06/2023]
Abstract
X-chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X-linked genes might be converted to an all-or-nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| |
Collapse
|
242
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
243
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
244
|
Ferguson-Smith MA. Human cytogenetics at Johns Hopkins Hospital, 1959-1962. Am J Med Genet A 2021; 185:3236-3241. [PMID: 34056828 DOI: 10.1002/ajmg.a.62366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
An account is given of the introduction of human cytogenetics to the Division of Medical Genetics at Johns Hopkins Hospital, and the first 3 years' work of the chromosome diagnostic laboratory that was established at the time. Research on human sex chromosome disorders, including novel discoveries in the Turner and Klinefelter syndromes, is described together with original observations on chromosome behavior at mitosis. It is written in celebration of the centenary of the birth of Victor McKusick, the acknowledged father of Medical Genetics, who established the Division and had the foresight to ensure that it included the investigation of human chromosomes.
Collapse
|
245
|
de la Filia AG, Mongue AJ, Dorrens J, Lemon H, Laetsch DR, Ross L. Males That Silence Their Father's Genes: Genomic Imprinting of a Complete Haploid Genome. Mol Biol Evol 2021; 38:2566-2581. [PMID: 33706381 PMCID: PMC8136510 DOI: 10.1093/molbev/msab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Mongue
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Dorrens
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Lemon
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R Laetsch
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
246
|
Blyth U, Craciunas L, Hudson G, Choudhary M. Maternal germline factors associated with aneuploid pregnancy loss: a systematic review. Hum Reprod Update 2021; 27:866-884. [PMID: 33969392 DOI: 10.1093/humupd/dmab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Miscarriage describes the spontaneous loss of pregnancy before the threshold of viability; the vast majority occur before 12 weeks of gestation. Miscarriage affects one in four couples and is the most common complication of pregnancy. Chromosomal abnormalities of the embryo are identified in ∼50% of first trimester miscarriages; aneuploidy accounts for 86% of these cases. The majority of trisomic miscarriages are of maternal origin with errors occurring during meiotic division of the oocytes. Chromosome segregation errors in oocytes may be sporadic events secondary to advancing maternal age; however, there is increasing evidence to suggest possible maternal germline contributions to this. OBJECTIVE AND RATIONALE The objective of this review was to appraise critically the existing evidence relating to maternal germline factors associated with pregnancy loss secondary to embryo aneuploidy, identify limitations in the current evidence base and establish areas requiring further research. SEARCH METHODS The initial literature search was performed in September 2019 and updated in January 2021 using the electronic databases OVID MEDLINE, EMBASE and the Cochrane Library. No time or language restrictions were applied to the searches and only primary research was included. Participants were women who had suffered pregnancy loss secondary to numerical chromosomal abnormalities of the embryo. Study identification and subsequent data extraction were performed by two authors independently. The Newcastle-Ottawa Scale was used to judge the quality of the included studies. The results were synthesized narratively. OUTCOMES The literature search identified 2198 titles once duplicates were removed, of which 21 were eligible for inclusion in this systematic review. They reported on maternal germline factors having variable degrees of association with pregnancy loss of aneuploid origin. The Online Mendelian Inheritance in Man (OMIM) gene ontology database was used as a reference to establish the functional role currently attributed to the genes reported. The majority of the cases reported and included were secondary to the inheritance of maternal structural factors such as Robertsonian translocations, deletions and insertions. Germline factors with a plausible role in aneuploid pregnancy loss of maternal origin included skewed X-inactivation and CGG repeats in the fragile X mental retardation (FMR1) gene. Studies that reported the association of single gene mutations with aneuploid pregnancy loss were conflicting. Single gene mutations with an uncertain or no role in aneuploid pregnancy loss included mutations in synaptonemal complex protein 3 (SYCP3), mitotic polo-like kinase 4 (PLK4) and meiotic stromal antigen 3 (STAG3) spindle integrity variants and 5,10-methylenetetrahydrofolate reductase (MTHFR). WIDER IMPLICATIONS Identifying maternal genetic factors associated with an increased risk of aneuploidy will expand our understanding of cell division, non-disjunction and miscarriage secondary to embryo aneuploidy. The candidate germline factors identified may be incorporated in a screening panel for women suffering miscarriage of aneuploidy aetiology to facilitate counselling for subsequent pregnancies.
Collapse
Affiliation(s)
- Ursula Blyth
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laurentiu Craciunas
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
247
|
Oh JK, Lima de Carvalho JR, Nuzbrokh Y, Ryu J, Chemudupati T, Mahajan VB, Sparrow JR, Tsang SH. Retinal Manifestations of Mitochondrial Oxidative Phosphorylation Disorders. Invest Ophthalmol Vis Sci 2021; 61:12. [PMID: 33049060 PMCID: PMC7571321 DOI: 10.1167/iovs.61.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this paper was to discuss manifestations of primary mitochondrial dysfunctions and whether the retinal pigment epithelium or the photoreceptors are preferentially affected. Methods A retrospective analysis was performed of patients with clinically and laboratory confirmed diagnoses of maternally inherited diabetes and deafness (MIDD) or Kearns–Sayre syndrome (KSS). Patients underwent full ophthalmic examination, full-field electroretinogram, and multimodal imaging studies, including short-wavelength autofluorescence, spectral domain-optical coherence tomography, and color fundus photography. Results A total of five patients with MIDD and four patients with KSS were evaluated at two tertiary referral centers. Mean age at initial evaluation was 50.3 years old. Nascent outer retinal tubulations corresponding with faint foci of autofluorescence were observed in two patients with MIDD. Characteristic features of this cohort included a foveal sparing phenotype observed in 13 of 18 eyes (72%), global absence of intraretinal pigment migration, and preserved retinal function on full-field electroretinogram testing in 12 of 16 eyes (75%). One patient diagnosed with MIDD presented with an unusual pattern of atrophy surrounding the parapapillary region and one patient with KSS presented with an atypical choroideremia-like phenotype. Conclusions MIDD and KSS are phenotypically heterogeneous disorders. Several features of disease suggest that primary mitochondrial dysfunction may first affect the retinal pigment epithelium followed by secondary photoreceptor loss. Similarities between primary mitochondrial degenerations and retinal disorders, such as age-related macular degeneration may suggest a primary role of mitochondria in the pathogenesis of these oligogenic disorders.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,State University of New York at Downstate Medical Center, Brooklyn, New York, United States
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Yan Nuzbrokh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States
| | - Joseph Ryu
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States
| | - Teja Chemudupati
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Janet R Sparrow
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
248
|
trans-Acting Factors and cis Elements Involved in the Human Inactive X Chromosome Organization and Compaction. Genet Res (Camb) 2021; 2021:6683460. [PMID: 34035662 PMCID: PMC8121581 DOI: 10.1155/2021/6683460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
During X chromosome inactivation, many chromatin changes occur on the future inactive X chromosome, including acquisition of a variety of repressive covalent histone modifications, heterochromatin protein associations, and DNA methylation of promoters. Here, we summarize trans-acting factors and cis elements that have been shown to be involved in the human inactive X chromosome organization and compaction.
Collapse
|
249
|
MOSAICISM AS A PROPOSED MECHANISM FOR ASYMMETRIC RETINAL TESSELLATIONS. Retin Cases Brief Rep 2021; 15:214-217. [PMID: 30004998 DOI: 10.1097/icb.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND/PURPOSE Report a case of markedly asymmetric retinal tessellations and propose mosaicism as a mechanism. METHODS AND RESULTS A 59-year-old pseudophakic woman presented with uncorrected 20/20 vision and was found to have markedly different retinal tessellation appearances in both eyes. The axial lengths were 25.66 mm and 25.88 mm in the right and left eyes, respectively, and no significant asymmetrical choroidal thinning was seen on optical coherence tomography or optical coherence tomography angiography. Fluorescein angiogram showed significant hyperfluorescence, representing the underlying choroid, which correlated with the tessellation patterns in the left eye. She had no other ocular or systemic findings such as stripes or whorled skin. CONCLUSION This is the first reported case of markedly asymmetric retinal tessellation patterns that are not due to asymmetric axial myopia or choroidal thinning. We propose that mosaicism is a possible mechanism causing this finding.
Collapse
|
250
|
Foresta C, Rocca MS, Di Nisio A. Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. J Endocrinol Invest 2021; 44:951-956. [PMID: 32936429 PMCID: PMC7492232 DOI: 10.1007/s40618-020-01383-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The recent emergence of COVID-19 poses a global health emergency. One of the most frequently reported data is sex-related severity and mortality: according to the last available analysis on 239,709 patients in Italy, lethality is 17.7% in men and 10.8% in women, with 59% of total deaths being men. Interestingly, the infection rate is lower in males than in females, with 45.8% and 54.2% of positive cases, respectively, suggesting that gender-related factor may worsen disease evolution. A tentative hypothesis to explain these findings is the role of angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 involved in viral infection. PURPOSE In this review, we summarize the available evidence pointing to gender-related differences in ACE2 and TMPRSS2 expression, from both genetic and endocrine points of view. RESULTS Altogether, available evidence points toward two not-mutually exclusive mechanisms in gender susceptibility to COVID-19 by sex hormonal regulation of ACE2 and TMPRSS2. On one hand, ACE2 expression could be increased in women, either by estrogens or constitutively by X chromosome inactivation escape or by reduced methylation, providing a larger reservoir of ACE2 to maintain the fundamental equilibrium of RAS regulatory axis. On the other, low levels of androgens in women may keep at low levels TMPRSS2 expression, representing a further protective factor for the development of COVID-19 infection, despite the increased expression of ACE2, which represents the Trojan horse for SARS-CoV-2 entry. CONCLUSIONS Both mechanisms consistently point to the role of sex hormones and sex chromosomes in the differential severity and lethality of COVID-19 in men and women.
Collapse
Affiliation(s)
- C Foresta
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| | - M S Rocca
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|