201
|
Thacker J. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1986; 50:1-30. [PMID: 3522463 DOI: 10.1080/09553008614550391] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A brief Introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light (u.v.) and ionizing radiation (i.r.) and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The section on the Molecular distribution of DNA damage (section 2) focuses on the use of defined DNA molecules to assess the nature, sites and frequency of radiation damage. Recombinant DNA techniques have also been used in the study of enzyme-DNA interactions, to comment upon the rôle of specific types and sites of damage in producing cellular responses. The use of DNA-mediated gene transfer to assess damage and repair (section 3) indicates that recombinant DNA molecules can be used to implicate (or reject) specific types of DNA damage in gene inactivation. Some gene-transfer assays may also be able to confirm the presence of specific repair functions in mammalian cells. Restriction endonucleases are essential for the construction of recombinant DNA molecules, but their ability to cut DNA at specific sequences is also being exploited to implicate the double-strand break as an important type of damage leading to the well-characterized responses of irradiated cells. The DNA double strand break: use of restriction endonucleases to model radiation damage (section 4) documents experiments showing that blunt-ended cuts introduced into cellular DNA are able to produce chromosome aberrations and cell death. Assays based upon the introduction of restriction endonuclease-cut plasmids into radiosensitive and normal cells suggest that sensitivity is in some instances, e.g. the radiosensitive disorder ataxia-telangiectasia, a result of excessive degradation of DNA around broken ends. Identification and cloning of DNA repair genes (section 5) reviews the successful cloning of one human repair gene and the putative identification of others, as well as the lack of success in identifying genes complementing radiosensitive human disorders. Analysis of radiation-induced genetic change (section 6) links the types of DNA damage observed in defined DNA molecules with the types of mutations occurring in irradiated prokaryotes. In mammalian cells recombinant DNA techniques have allowed the nature of mutational changes to be determined for the first time: to date it seems that u.v. produces mainly small (point) mutations while i.r. produces mainly large changes (deletions/rearrangements).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
202
|
Zdzienicka MZ, Simons JW. Analysis of repair processes by the determination of the induction of cell killing and mutations in two repair-deficient Chinese hamster ovary cell lines. Mutat Res 1986; 166:59-69. [PMID: 2425254 DOI: 10.1016/0167-8817(86)90041-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.
Collapse
|
203
|
Chaney WG, Howard DR, Pollard JW, Sallustio S, Stanley P. High-frequency transfection of CHO cells using polybrene. SOMATIC CELL AND MOLECULAR GENETICS 1986; 12:237-44. [PMID: 3459255 DOI: 10.1007/bf01570782] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-frequency transfection of CHO cells has been achieved for several plasmids, a cosmid library, and genomic DNA using Polybrene and dimethyl sulfoxide. All plasmid transfectants examined were stable and exhibited plasmid sequences in genomic DNA. The method is simple, reproducible, and succeeded with several independent CHO clones in the presence or the absence of carrier DNA, even at very low concentrations of plasmid DNA.
Collapse
|
204
|
Canaani D, Naiman T, Teitz T, Berg P. Immortalization of xeroderma pigmentosum cells by simian virus 40 DNA having a defective origin of DNA replication. SOMATIC CELL AND MOLECULAR GENETICS 1986; 12:13-20. [PMID: 3003928 DOI: 10.1007/bf01560723] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A simian virus 40 (SV40) DNA fragment, encompassing the whole early region and having a defective origin of DNA replication, has been used to transform human fibroblast cells derived from two xeroderma pigmentosum (XP) patients. Two of the SV40-transformed XP cell lines, belonging to complementation group C, had acquired the characteristic of indefinite life-span in culture. These XP cell lines synthesize T antigen as shown by immunofluorescence and retain the high sensitivity to UV irradiation. Detailed karyotype analysis shows very few chromosomal changes, while the transfecting SV40 DNA is integrated into cellular DNA sequences. These are the first immortalized XP cell lines derived from complementation group C. In view of the extreme difficulty in obtaining immortalized human fibroblasts, we suggest a possible advantage of replication defective SV40 DNA molecules for immortalizing human fibroblast cells of any source.
Collapse
|
205
|
Cleaver JE. DNA repair and replication in xeroderma pigmentosum and related disorders. BASIC LIFE SCIENCES 1986; 39:425-38. [PMID: 3767846 DOI: 10.1007/978-1-4684-5182-5_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Xeroderma pigmentosum (XP), ataxia telangiectasia (AT), and Cockayne syndrome (CS) are human diseases that exhibit increased sensitivity to environmental carcinogens [e.g., ultraviolet (UV) light, ionizing radiations, chemicals] because of genetic defects in the patient's capacity to repair and replicate damaged DNA accurately. The major defect in XP is a failure to repair UV damage to DNA; in AT, the failure is in repair or replication of double-strand breaks in DNA; in CS, the failure is in recovery of DNA replication after UV irradiation. Cancer is a major clinical feature of XP and AT, but not of CS. Each disease is complex, with multiple groups defined by complementation in cell-cell hybridization. Overlap is reported between some XP and CS groups. UV-sensitive hamster cell mutants are also known: most of these complement XP groups, and a human gene on chromosome 19 can correct the defects in hamster mutants, but not XP. XP group C is distinct from the other groups in exhibiting a strongly clustered mode of repair, as if only certain regions of the genome can be mended. This mode mainly occurs in confluent group C cells under conditions that permit much greater survival than in exponential growth, and therefore represents a more efficient mode of repair. These diseases all represent important examples of perturbation in the way carcinogen damage in DNA is metabolized, and further research aimed at identifying the kinds of molecular changes involved in the malignancy will be important.
Collapse
|
206
|
Abstract
A number of human genetic diseases have come to be described as being defective in DNA repair. The minimum criterion on which this assignment is based is hypersensitivity to the clastogenic or lethal action of specific DNA damaging agents. In one disease, xeroderma pigmentosum, the molecular evidence for a defect in DNA repair is unequivocal. This condition then acts as a model for dissecting others. For the other diseases the formal evidence for defects in repair is less secure or even lacking. The evidence for repair in each disease is assembled together with any methods that have been used to support the differential diagnosis or for prenatal diagnosis. Attempts to clone human DNA repair genes are in hand and may provide the necessary evidence to decide if all the putative DNA repair defective diseases are genuine. Neoplastic disease and neurological degeneration together with immune defects are frequent clinical features linking this set of diseases, suggesting that effective DNA repair may be important in many aspects of human health.
Collapse
|
207
|
|
208
|
Stefanini M, Keijzer W, Westerveld A, Bootsma D. Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells. Exp Cell Res 1985; 161:373-80. [PMID: 4065224 DOI: 10.1016/0014-4827(85)90094-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complementation analysis was performed 24 h after fusion of UV-sensitive CHO cells (CHO 12 RO) with XP cells of complementation groups A, B, C, D, F and G. The parental cells are characterized by low levels of unscheduled DNA synthesis (UDS). In all combinations, the UDS levels observed in heterokaryons were higher than those in parental mutant cells, clearly indicating cooperation of human and Chinese hamster repair functions. In heterokaryons of CHO 12 RO with XP-A and XP-C cells, the UDS values reached about the normal human level, whereas in heterokaryons with XP-B, XP-D and XP-F, UDS was restored at a level approaching that in wild-type CHO cells. The results obtained after fusion of CHO cells with two representative cell strains from the XP-G group, XP 2 BI and XP 3 BR, were inconsistent. Fusion with XP 3 BR cells yielded UDS levels ranging from wild-type Chinese hamster to normal human, whereas fusion with XP 2 BI cells resulted in a slight increase in UDS which even after 48 h remained below the level found in wild-type CHO cells. The occurrence of complementation in these interspecies heterokaryons indicates that the genetic defect in the CHO 12 RO cells is different from the defects in the XP complementation groups tested.
Collapse
|
209
|
Valerie K, de Riel JK, Henderson EE. Genetic complementation of UV-induced DNA repair in Chinese hamster ovary cells by the denV gene of phage T4. Proc Natl Acad Sci U S A 1985; 82:7656-60. [PMID: 3865186 PMCID: PMC391392 DOI: 10.1073/pnas.82.22.7656] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The denV gene of phage T4, encoding the pyrimidine dimer-specific DNA repair enzyme endonuclease V, has been introduced by DNA transfection into the UV-sensitive DNA repair-deficient Chinese hamster ovary (CHO) cell line UV5. Transformants were first selected for resistance to the antibiotic G418 conferred by the neo gene from Tn5 carried by the same plasmid. A majority of the isolated G418-resistant UV5 clones also showed an increased resistance to 254-nm UV light. One clone, designated I-A1, was found to have an intermediate level of colony-forming ability after UV irradiation when compared to UV5 and wild-type AA8 cells. A Southern blot showed that I-A1 carries a single integrated intact copy of the denV gene. Alkaline sucrose gradients revealed a dose-dependent appearance of breaks in the DNA of I-A1 cells following UV-irradiation, while unirradiated cells did not exhibit any significant breaks. Analysis of DNA repair by isopycnic sedimentation showed that DNA excision repair by I-A1 was at least equal to the level of repair in AA8 cells. These results show that the prokaryotic denV gene can restore UV repair capabilities in vivo to CHO UV5 cells defective in repair of UV-induced damage.
Collapse
|
210
|
Ding R, Ghosh K, Eastman A, Bresnick E. DNA-mediated transfer and expression of a human DNA repair gene that demethylates O6-methylguanine. Mol Cell Biol 1985; 5:3293-6. [PMID: 3018513 PMCID: PMC369147 DOI: 10.1128/mcb.5.11.3293-3296.1985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human liver DNA was transfected into CHO cells (mex-) along with pSV2gpt and colonies were selected first for resistance to mycophenolic acid and then to chloroethylnitrosourea. Transformants were obtained that contained approximately 10,000 molecules of O6-alkylguanine alkyltransferase (mex+) per cell. Their genome contained at least three copies of the human Alu sequence.
Collapse
|
211
|
Bacteriophage lambda vector for transducing a cDNA clone library into mammalian cells. Mol Cell Biol 1985. [PMID: 3158804 DOI: 10.1128/mcb.5.5.1136] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a bacteriophage lambda vector (lambda NMT) that permits efficient transduction of mammalian cells with a cDNA clone library constructed with the pcD expression vector (H. Okayama and P. Berg, Mol. Cell. Biol. 3:280-289, 1983). The phage vector contains a bacterial gene (neo) fused to the simian virus 40 early-region promoter and RNA processing signals, providing a dominant-acting selectable marker for mammalian transformation. The phage DNA can accommodate pcD-cDNA recombinants with cDNA of up to about 9 kilobases without impairing the ability of the phage DNA to be packaged in vitro and propagated in vivo. Transfecting cells with the lambda NMT-pcD-cDNA recombinant phage yielded G418-resistant clones at high frequency (approximately 10(-2]. Cells that also acquired a particular cDNA segment could be detected among the G418-resistant transformants by a second selection or by a variety of screening protocols. Reconstitution experiments indicated that the vector could transduce 1 in 10(6) cells for a particular phenotype if the corresponding cDNA was present as 1 functional cDNA clone per 10(5) clones in the cDNA library. This expectation was confirmed by obtaining two hypoxanthine-guanine phosphoribosyltransferase (HPRT)-positive transductants after transfecting 10(7) HPRT-deficient mouse L cells with a simian virus 40-transformed human fibroblast cDNA library incorporated into the lambda NMT phage vector. These transductants contained the human HPRT cDNA sequences and expressed active human HPRT.
Collapse
|
212
|
Thacker J, Stretch A. Responses of 4 X-ray-sensitive CHO cell mutants to different radiations and to irradiation conditions promoting cellular recovery. Mutat Res 1985; 146:99-108. [PMID: 4000151 DOI: 10.1016/0167-8817(85)90060-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Four X-ray-sensitive mutants of CHO cells, described previously by Jeggo and Kemp (1983), showed enhanced sensitivity to both 60Co gamma-rays and 238Pu alpha-particles relative to the responses of the parent line. The enhanced response to a densely ionising radiation (alpha-particles) was less than that to X- or gamma-rays, suggesting that these mutants are deficient mainly in the repair of damage from relatively sparsely ionising radiation tracks. Plateau-phase cultures of the parental CHO cells showed considerable recovery upon irradiation with low-dose-rate gamma-rays, compared to irradiation at 'high' dose rates, but little or no recovery was seen for the mutants. Similarly, preliminary data on recovery during post-irradiation holding of plateau-phase cultures show that this process is also absent in the mutants. These responses have several similarities to those of cells from patients with the radiosensitive disorder ataxia telangiectasia (AT), and are discussed with reference to AT cells and other radiosensitive mutants.
Collapse
|
213
|
Abstract
Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. No stimulation was found after damaging vector DNA by treatment with DNase or gamma rays. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome.
Collapse
|
214
|
Thompson LH, Mooney CL, Brookman KW. Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Mutat Res 1985; 150:423-9. [PMID: 4000167 DOI: 10.1016/0027-5107(85)90139-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to determine the feasibility of doing complementation analysis between DNA-repair mutants of CHO cells and human fibroblasts based on the recovery of hybrid cells resistant to DNA damage. Two UV-sensitive CHO mutant lines, UV20 and UV41, which belong to different genetic complementation groups, were fused with fibroblasts of xeroderma pigmentosum in various complementation groups. Selection for complementing hybrids was performed using a combination of ouabain to kill the XP cells and mitomycin C to kill the CHO mutants. Because the frequency of viable hybrid clones was generally less than 10(-6) and the frequency of revertants of each CHO mutant was approximately 2 X 10(-7), putative hybrids required verification. The hybrid character of clones was established by testing for the presence of human DNA in a dot-blot procedure. Hybrid clones were obtained from 9 of the 10 different crosses involving 5 complementation groups of XP cells. The 4 attempted crosses with 2 other XP groups yielded no hybrid colonies. Thus, a definitive complementation analysis was not possible. Hybrids were evaluated for their UV resistance using a rapid assay that measures differential cytotoxicity (DC). All 9 hybrids were more resistant than the parental mutant CHO and XP cells, indicating that in each case complementation of the CHO repair defect by a human gene had occurred. 3 hybrids were analyzed for their UV-radiation survival curves and shown to be much more resistant that the CHO mutants but less resistant than normal CHO cells. With 2 of these hybrids, sensitive subclones, which had presumably lost the complementing gene, were found to have similar sensitivity to the parental CHO mutants. We conclude that the extremely low frequency of viable hybrids in this system limits the usefulness of the approach. The possibility remains that each of the nonhybridizing XP strains could be altered in the same locus as one of the CHO mutants.
Collapse
|
215
|
Lehmann AR. Use of recombinant DNA techniques in cloning DNA repair genes and in the study of mutagenesis in mammalian cells. Mutat Res 1985; 150:61-7. [PMID: 3889621 DOI: 10.1016/0027-5107(85)90101-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
216
|
Okayama H, Berg P. Bacteriophage lambda vector for transducing a cDNA clone library into mammalian cells. Mol Cell Biol 1985; 5:1136-42. [PMID: 3158804 PMCID: PMC366832 DOI: 10.1128/mcb.5.5.1136-1142.1985] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have developed a bacteriophage lambda vector (lambda NMT) that permits efficient transduction of mammalian cells with a cDNA clone library constructed with the pcD expression vector (H. Okayama and P. Berg, Mol. Cell. Biol. 3:280-289, 1983). The phage vector contains a bacterial gene (neo) fused to the simian virus 40 early-region promoter and RNA processing signals, providing a dominant-acting selectable marker for mammalian transformation. The phage DNA can accommodate pcD-cDNA recombinants with cDNA of up to about 9 kilobases without impairing the ability of the phage DNA to be packaged in vitro and propagated in vivo. Transfecting cells with the lambda NMT-pcD-cDNA recombinant phage yielded G418-resistant clones at high frequency (approximately 10(-2]. Cells that also acquired a particular cDNA segment could be detected among the G418-resistant transformants by a second selection or by a variety of screening protocols. Reconstitution experiments indicated that the vector could transduce 1 in 10(6) cells for a particular phenotype if the corresponding cDNA was present as 1 functional cDNA clone per 10(5) clones in the cDNA library. This expectation was confirmed by obtaining two hypoxanthine-guanine phosphoribosyltransferase (HPRT)-positive transductants after transfecting 10(7) HPRT-deficient mouse L cells with a simian virus 40-transformed human fibroblast cDNA library incorporated into the lambda NMT phage vector. These transductants contained the human HPRT cDNA sequences and expressed active human HPRT.
Collapse
|
217
|
Molecular cloning and chromosomal localization of DNA sequences associated with a human DNA repair gene. Mol Cell Biol 1985. [PMID: 2983193 DOI: 10.1128/mcb.5.2.398] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.
Collapse
|
218
|
van Duin M, Westerveld A, Hoeijmakers JH. UV stimulation of DNA-mediated transformation of human cells. Mol Cell Biol 1985; 5:734-41. [PMID: 3990693 PMCID: PMC366777 DOI: 10.1128/mcb.5.4.734-741.1985] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. No stimulation was found after damaging vector DNA by treatment with DNase or gamma rays. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome.
Collapse
|
219
|
Establishment of Cockayne syndrome fibroblast cell line belonging to complementation group B by SV40 transformation. JINRUI IDENGAKU ZASSHI. THE JAPANESE JOURNAL OF HUMAN GENETICS 1985; 30:21-9. [PMID: 2989592 DOI: 10.1007/bf01883670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
220
|
Abstract
The coding sequence of the uvrA gene from Escherichia coli has been fused to the early promoter, enhancer and origin of replication of the simian virus SV40, and was supplemented with splicing and polyadenylation sites arising from the same virus. Introduction of this hybrid gene into simian cos-1 cells results in the synthesis of a full length UvrA protein (114 kD) which has retained its ability to bind to single-stranded DNA.
Collapse
|
221
|
Molecular cloning and chromosomal localization of DNA sequences associated with a human DNA repair gene. Mol Cell Biol 1985; 5:398-405. [PMID: 2983193 PMCID: PMC366723 DOI: 10.1128/mcb.5.2.398-405.1985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.
Collapse
|
222
|
|
223
|
Thompson LH, Mooney CL, Burkhart-Schultz K, Carrano AV, Siciliano MJ. Correction of a nucleotide-excision-repair mutation by human chromosome 19 in hamster-human hybrid cells. SOMATIC CELL AND MOLECULAR GENETICS 1985; 11:87-92. [PMID: 3919454 DOI: 10.1007/bf01534738] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A UV-sensitive mutant line of CHO cells, UV20, was shown to be phenotypically corrected to resistance by fusion with human lymphocytes or fibroblasts. Only human chromosome 19 correlated with the DNA repair phenotype of resistant hybrid clones and their resistant or sensitive subclones. This study demonstrates the mapping of a human repair gene by direct selection of complementing hybrids in the presence of a DNA-damaging agent (mitomycin C).
Collapse
|