201
|
Streit WR, Schmitz RA, Perret X, Staehelin C, Deakin WJ, Raasch C, Liesegang H, Broughton WJ. An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234. J Bacteriol 2004; 186:535-42. [PMID: 14702322 PMCID: PMC305759 DOI: 10.1128/jb.186.2.535-542.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Secretion of proteins into the extracellular environment is important to almost all bacteria, and in particular mediates interactions between pathogenic or symbiotic bacteria with their eukaryotic hosts. The accumulation of bacterial genome sequence data in the past few years has provided great insights into the distribution and function of these secretion systems. Three systems are responsible for secretion of proteins across the bacterial cytoplasmic membrane: Sec, SRP and Tat. Many novel examples of systems for transport across the Gram-negative bacterial cell envelope have been discovered through genome sequencing and surveys, including many novel type III secretion systems and autotransporters. Similarly, genomic data mining has revealed many new potential secretion substrates and identified unsuspected domains in secretion-associated proteins. Interestingly, genomic analyses have also hinted at the existence of a dedicated protein secretion system in Gram-positive bacteria, targeting members of the WXG100/ESAT-6 family of proteins, and have revealed an unexpectedly wide distribution of sortase-driven protein-targeting systems.
Collapse
Affiliation(s)
- Mark J Pallen
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Medical School, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK.
| | | | | |
Collapse
|
203
|
Abstract
Members of the rhizobia are distinguished for their ability to establish a nitrogen-fixing symbiosis with leguminous plants. While many details of this relationship remain a mystery, much effort has gone into elucidating the mechanisms governing bacterium-host recognition and the events leading to symbiosis. Several signal molecules, including plant-produced flavonoids and bacterially produced nodulation factors and exopolysaccharides, are known to function in the molecular conversation between the host and the symbiont. Work by several laboratories has shown that an additional mode of regulation, quorum sensing, intercedes in the signal exchange process and perhaps plays a major role in preparing and coordinating the nitrogen-fixing rhizobia during the establishment of the symbiosis. Rhizobium leguminosarum, for example, carries a multitiered quorum-sensing system that represents one of the most complex regulatory networks identified for this form of gene regulation. This review focuses on the recent stream of information regarding quorum sensing in the nitrogen-fixing rhizobia. Seminal work on the quorum-sensing systems of R. leguminosarum bv. viciae, R. etli, Rhizobium sp. strain NGR234, Sinorhizobium meliloti, and Bradyrhizobium japonicum is presented and discussed. The latest work shows that quorum sensing can be linked to various symbiotic phenomena including nodulation efficiency, symbiosome development, exopolysaccharide production, and nitrogen fixation, all of which are important for the establishment of a successful symbiosis. Many questions remain to be answered, but the knowledge obtained so far provides a firm foundation for future studies on the role of quorum-sensing mediated gene regulation in host-bacterium interactions.
Collapse
Affiliation(s)
- Juan E González
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| | | |
Collapse
|
204
|
Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, Broughton WJ. Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 2003; 554:271-4. [PMID: 14623078 DOI: 10.1016/s0014-5793(03)01145-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacterial pathogens use type III secretion systems (TTSSs) to deliver virulence factors into eukaryotic cells. These effectors perturb host-defence responses, especially signal transduction pathways. A functional TTSS was identified in the symbiotic, nitrogen-fixing bacterium Rhizobium sp. NGR234. NopL (formerly y4xL) of NGR234 is a putative symbiotic effector that modulates nodulation in legumes. To test whether NopL could interact with plant proteins, in vitro phosphorylation experiments were performed using recombinant nopL protein purified from Escherichia coli as well as protein extracts from Lotus japonicus and tobacco plants. NopL serves as a substrate for plant protein kinases as well as purified protein kinase A. Phosphorylation of NopL was inhibited by the Ser/Thr kinase inhibitor K252a as well as by PD98059, a mitogen-activated protein (MAP) kinase kinase inhibitor. It thus seems likely that, after delivery into the plant cell, NopL modulates MAP kinase pathways.
Collapse
Affiliation(s)
- Alexander V Bartsev
- Laboratorie de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1 chemin de l'Impératrice, 1292 Chambésy, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
205
|
Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 2003; 185:6658-65. [PMID: 14594840 PMCID: PMC262107 DOI: 10.1128/jb.185.22.6658-6665.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Accepted: 08/17/2003] [Indexed: 11/20/2022] Open
Abstract
The deduced amino acid sequences of the flagellins of Pseudomonas syringae pv. tabaci and P. syringae pv. glycinea are identical; however, their abilities to induce a hypersensitive reaction are clearly different. The reason for the difference seems to depend on the posttranslational modification of the flagellins. To investigate the role of this posttranslational modification in the interactions between plants and bacterial pathogens, we isolated genes that are potentially involved in the posttranslational modification of flagellin in P. syringae pv. glycinea (glycosylation island); then defective mutants with mutations in these genes were generated. There are three open reading frames in the glycosylation island, designated orf1, orf2, and orf3. orf1 and orf2 encode putative glycosyltransferases, and mutants with defects in these open reading frames, deltaorf1 and deltaorf2, secreted nonglycosylated and slightly glycosylated flagellins, respectively. Inoculation tests performed with these mutants and original nonhost tobacco leaves revealed that deltaorf1 and deltaorf2 could grow on tobacco leaves and caused symptom-like changes. In contrast, these mutants failed to cause symptoms on original host soybean leaves. These data indicate that putative glycosyltransferases encoded in the flagellin glycosylation island are strongly involved in recognition by plants and could be the specific determinants of compatibility between phytopathogenic bacteria and plant species.
Collapse
Affiliation(s)
- Kasumi Takeuchi
- Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
206
|
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis. J Mol Biol 2003; 332:369-83. [PMID: 12948488 DOI: 10.1016/s0022-2836(03)00894-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The self-transmissible megaplasmid pHG1 carries essential genetic information for the facultatively lithoautotrophic and facultatively anaerobic lifestyles of its host, the Gram-negative soil bacterium Ralstonia eutropha H16. We have determined the complete nucleotide sequence of pHG1. This megaplasmid is 452,156 bp in size and carries 429 potential genes. Groups of functionally related genes form loose clusters flanked by mobile elements. The largest functional group consists of lithoautotrophy-related genes. These include a set of 41 genes for the biosynthesis of the three previously identified hydrogenases and of a fourth, novel hydrogenase. Another large cluster carries the genetic information for denitrification. In addition to a dissimilatory nitrate reductase, both specific and global regulators were identified. Also located in the denitrification region is a set of genes for cytochrome c biosynthesis. Determinants for several enzymes involved in the mineralization of aromatic compounds were found. The genes for conjugative plasmid transfer predict that R.eutropha forms two types of pili. One of them is related to the type IV pili of pathogenic enterobacteria. pHG1 also carries an extensive "junkyard" region encompassing 17 remnants of mobile elements and 22 partial or intact genes for phage-type integrase. Among the mobile elements is a novel member of the IS5 family, in which the transposase gene is interrupted by a group II intron.
Collapse
Affiliation(s)
- Edward Schwartz
- Institut für Biologie, Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestr. 117, 10115 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
207
|
Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:743-51. [PMID: 12971597 DOI: 10.1094/mpmi.2003.16.9.743] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nitrogen-fixing symbiotic bacterium Rhizobium species NGR234 secretes, via a type III secretion system (TTSS), proteins called Nops (nodulation outer proteins). Abolition of TTSS-dependent protein secretion has either no effect or leads to a change in the number of nodules on selected plants. More dramatically, Nops impair nodule development on Crotalaria juncea roots, resulting in the formation of nonfixing pseudonodules. A double mutation of nopX and nopL, which code for two previously identified secreted proteins, leads to a phenotype on Pachyrhizus tuberosus differing from that of a mutant in which the TTSS is not functional. Use of antibodies and a modification of the purification protocol revealed that NGR234 secretes additional proteins in a TTSS-dependent manner. One of them was identified as NopA, a small 7-kDa protein. Single mutations in nopX and nopL were also generated to assess the involvement of each Nop in protein secretion and nodule formation. Mutation of nopX had little effect on NopL and NopA secretion but greatly affected the interaction of NGR234 with many plant hosts tested. NopL was not necessary for the secretion of any Nops but was required for efficient nodulation of some plant species. NopL may thus act as an effector protein whose recognition is dependent upon the hosts' genetic background.
Collapse
Affiliation(s)
- Corinne Marie
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, University of Geneva, 1 chemin de l'Impératrice, CH1292 Chambésy-Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Danino VE, Wilkinson A, Edwards A, Downie JA. Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 2003; 50:511-25. [PMID: 14617175 DOI: 10.1046/j.1365-2958.2003.03699.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the regulation of plasmid transfer genes on the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae has revealed a novel regulatory relay that is specifically poised to detect an N-acyl-homoserine lactone (AHL) made by different cells (potential recipients of pRL1JI). Adjacent to the traI-trbBCDEJKLFGHI plasmid transfer operon on pRL1JI are two regulatory genes, bisR and traR, which encode LuxR-type quorum-sensing regulators required for conjugation. Potential recipients of pRL1JI induce the traI-trb operon and plasmid transfer via a quorum-sensing relay involving BisR, TraR and the traI-trb operon in donor cells. BisR induces expression of traR in response to N-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3-OH-C14:1-HSL), which is produced by CinI in potential recipient strains. In donor strains (carrying pRL1JI), BisR represses the expression of the chromosomal gene cinI; this repression results in a very low level of formation of 3-OH-C14:1-HSL and hence relatively low levels of expression of traR and the traI-trb operon in strains carrying pRL1JI. However, if 3-OH-C14:1-HSL from potential recipients is present, then traR and plasmid transfer are induced. The induction of traR occurs at very low concentrations of 3-OH-C14:1-HSL (around 1 nm). TraR then induces the traI-trb operon in a quorum-sensing dependent manner in re-sponse to the TraI-made AHLs, N-(3-oxo-octanoyl)-l-homoserine lactone and N-(octanoyl)-l-homoserine lactone. The resulting autoinduction results in high levels of expression of the traI-trb operon. Premature expression of the traI-trb operon is reduced by TraM, which probably titres out TraR preventing expression of traI when there are low levels of traR expression. Expression of traR in stationary phase cells is limited by feedback inhibition mediated by TraI-made AHLs.
Collapse
|
209
|
Guo X, Flores M, Mavingui P, Fuentes SI, Hernández G, Dávila G, Palacios R. Natural genomic design in Sinorhizobium meliloti: novel genomic architectures. Genome Res 2003; 13:1810-7. [PMID: 12902376 PMCID: PMC403772 DOI: 10.1101/gr.1260903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The complete nucleotide sequence of the genome of Sinorhizobium meliloti, the symbiont of alfalfa, was reported in 2001 by an international consortium of laboratories. The genome comprises a chromosome of 3.65 megabases (Mb) and two megaplasmids, pSymA and pSymB, of 1.35 Mb and 1.68 Mb, respectively. Based on the nucleotide sequence of the whole genome, we designed a pathway of consecutive rearrangements leading to novel genomic architectures. In a first step we obtained derivative strains containing two replicons; in a second step we obtained a strain containing the genetic information in one single replicon of 6.68 MB. From this last architecture we isolated revertants containing two replicons, and from these we could return to the original architecture showing the three replicons. We found that the relative frequency of excision of cointegrated replicons is higher at the site used for the cointegration than at other sites. This might conciliate two apparently opposed facts: the highly dynamic state of genomic architecture in S. meliloti and the common observation that different isolates and derived cellular clones of S. meliloti usually present the architecture of one chromosome and two distinct megaplasmids. Different aspects that must be considered to obtain full advantage of the strategy of natural genomic design are discussed.
Collapse
Affiliation(s)
- Xianwu Guo
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México Apdo postal 565-A, Cuernavaca, Morelos, México
| | | | | | | | | | | | | |
Collapse
|
210
|
Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M, Pueppke SG. Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:617-25. [PMID: 12848427 DOI: 10.1094/mpmi.2003.16.7.617] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several gram-negative plant and animal pathogenic bacteria have evolved a type III secretion system (TTSS) to deliver effector proteins directly into the host cell cytosol. Sinorhizobium fredii USDA257, a symbiont of soybean and many other legumes, secretes proteins called Nops (nodulation outer proteins) into the extracellular environment upon flavonoid induction. Mutation analysis and the nucleotide sequence of a 31.2-kb symbiosis (sym) plasmid DNA region of USDA257 revealed the existence of a TTSS locus in this symbiotic bacterium. This locus includes rhc (rhizobia conserved) genes that encode components of a TTSS and proteins that are secreted into the environment (Nops). The genomic organization of the TTSS locus of USDA257 is remarkably similar to that of another broad-host range symbiont, Rhizobium sp. strain NGR234. Flavonoids that activate the transcription of the nod genes of USDA257 also stimulate the production of novel filamentous appendages known as pili. Electron microscope examination of isolated pili reveals needle-like filaments of 6 to 8 nm in diameter. The production of the pili is dependent on a functional nodD1 and the presence of a nod gene-inducing compound. Mutations in several of the TTSS genes negate the ability of USDA257 to elaborate pili. Western blot analysis using antibodies raised against purified NopX, Nop38, and Nop7 reveals that these proteins were associated with the pili. Mutations in rhcN, rhcJ, rhcC, and ttsI alter the ability of USDA257 to form nodules on Glycine max and Macroptilium atropurpureum.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
211
|
Monreal D, Grilló MJ, González D, Marín CM, De Miguel MJ, López-Goñi I, Blasco JM, Cloeckaert A, Moriyón I. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun 2003; 71:3261-71. [PMID: 12761107 PMCID: PMC155776 DOI: 10.1128/iai.71.6.3261-3271.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus rough lipopolysaccharide (LPS) mutants were obtained by transposon insertion into two wbk genes (wbkA [putative glycosyltransferase; formerly rfbU] and per [perosamine synthetase]), into manB (pmm [phosphomannomutase; formerly rfbK]), and into an unassigned gene. Consistent with gene-predicted roles, electrophoretic analysis, 2-keto-3-manno-D-octulosonate measurements, and immunoblots with monoclonal antibodies to O-polysaccharide, outer and inner core epitopes showed no O-polysaccharide expression and no LPS core defects in the wbk mutants. The rough LPS of manB mutant lacked the outer core epitope and the gene was designated manB(core) to distinguish it from the wbk manB(O-Ag). The fourth gene (provisionally designated wa**) coded for a putative glycosyltransferase involved in inner core synthesis, but the mutant kept the outer core epitope. Differences in phage and polymyxin sensitivity, exposure or expression of outer membrane protein, core and lipid A epitopes, and lipid A acylation demonstrated that small changes in LPS core caused significant differences in B. abortus outer membrane topology. In mice, the mutants showed different degrees of attenuation and induced antibodies to rough LPS and outer membrane proteins. Core-defective mutants and strain RB51 were ineffective vaccines against B. abortus in mice. The mutants per and wbkA induced protection but less than the standard smooth vaccine S19, and controls suggested that anti O-polysaccharide antibodies accounted largely for the difference. Whereas no core-defective mutant was effective against B. ovis, S19, RB51, and the wbkA and per mutants afforded similar levels of protection. These results suggest that rough Brucella vaccines should carry a complete core for maximal effectiveness.
Collapse
Affiliation(s)
- D. Monreal
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - M. J. Grilló
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - D. González
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - C. M. Marín
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - M. J. De Miguel
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - I. López-Goñi
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - J. M. Blasco
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - A Cloeckaert
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - I. Moriyón
- Departamento de Microbiología, Universidad de Navarra, Pamplona, Servicio de Investigación Agroalimentaria, Diputación General de Aragón, Zaragoza, Spain, Unité BioAgresseurs, Santé et Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- Corresponding author. Mailing address: Departamento de Microbiología, Universidad de Navarra, Aptdo. 177, 31080 Pamplona, Spain. Phone: 34-948-425600. Fax: 34-948-425649. E-mail:
| |
Collapse
|
212
|
Sawada H, Kuykendall LD, Young JM. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J GEN APPL MICROBIOL 2003; 49:155-79. [PMID: 12949698 DOI: 10.2323/jgam.49.155] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As of February 2003, bacteria that form nitrogen-fixing symbiotic associations with legumes have been confirmed in 44 species of 12 genera. Phylogenies of these taxa containing legume symbionts based on the comparative analysis of 16S rDNA sequences show that they are not clustered in one lineage but are distributed in the classes Alphaproteobacteria and Betaproteobacteria, and dispersed over the following nine monophyletic groups, being intermingled with other taxa that do not contain legume symbionts (shown in parentheses below): Group 1, which comprises Rhizobium and Allorhizobium species containing legume symbionts (intermingled with Agrobacterium and Blastobacter species, which are nonsymbionts); Group 2, Sinorhizobium and Ensifer species (with unclassified nonsymbionts); Group 3, Mesorhizobium species (with nonsymbiotic Aminobacter and Pseudaminobacter species); Group 4, Bradyrhizobium species and Blastobacter denitrificans (with nonsymbiotic Agromonas, Nitrobacter, Afipia, and Rhodopseudomonas species); Group 5, 'Methylobacterium nodulans" (with nonsymbiotic Methylobacterium species); Group 6, Azorhizobium species (with nonsymbiotic Xanthobacter and Aquabacter species); Group 7, 'Devosia neptuniae" (with nonsymbiotic Devosia species and unclassified nonsymbionts); Group 8, symbiotic Burkholderia strains (with nonsymbiotic Burkholderia species); and Group 9, Ralstonia taiwanensis (with nonsymbiotic Ralstonia species). For Groups 5, 8, and 9, the present classification, in which 'each monophyletic group comprises one genus wherein legume symbionts and nonsymbionts are intermingled with each other, " is considered to be retained as is because they are clearly separated from other genera at high bootstrap values and have already been sufficiently characterized based on polyphasic taxonomy. As for the remaining six monophyletic groups, on the other hand, there are currently three options for emending their current classification (definitions and circumscriptions) at the generic level: A) the current classification shall be retained as is; B) all the genera within each monophyletic group shall be amalgamated into one single genus in conformity with the results of phylogenetic analysis; or C) each subordinate lineage in each monophyletic group shall be proposed as a genus. It is considered that research and discussions will be continuously conducted for emending the classification of these monophyletic groups based chiefly on Options B and C as preferable candidates.
Collapse
Affiliation(s)
- Hiroyucki Sawada
- National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan.
| | | | | |
Collapse
|
213
|
Zhong Z, Caspi R, Helinski D, Knauf V, Sykes S, O'Byrne C, Shea TP, Wilkinson JE, DeLoughery C, Toukdarian A. Nucleotide sequence based characterizations of two cryptic plasmids from the marine bacterium Ruegeria isolate PR1b. Plasmid 2003; 49:233-52. [PMID: 12749836 DOI: 10.1016/s0147-619x(03)00014-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two plasmids, 76 and 148 kb in size, isolated from Ruegeria strain PR1b were entirely sequenced. These are the first plasmids to be characterized from this genus of marine bacteria. Sequence analysis revealed a biased distribution of function among the putative proteins encoded on the two plasmids. The smaller plasmid, designated pSD20, encodes a large number of putative proteins involved in polysaccharide biosynthesis and export. The larger plasmid, designated pSD25, primarily encodes putative proteins involved in the transport of small molecules and in DNA mobilization. Sequence analysis revealed uncommon potential replication systems on both plasmids. pSD25, the first repABC-type replicon isolated from the marine environment, actually contains two repABC-type replicons. pSD20 contains a complex replication region, including a replication origin and initiation protein similar to iteron-containing plasmids (such as pSW500 from the plant pathogen Erwinia stewartii) linked to putative RepA and RepB stabilization proteins of a repABC-type replicon and is highly homologous to a plasmid from the phototrophic bacterium Rhodobacter sphaeroides. Given the nature of the putative proteins encoded by both plasmids it is possible that these plasmids enhance the metabolic and physiological flexibility of the host bacterium, and thus its adaptation to the marine sediment environment.
Collapse
Affiliation(s)
- Zhenping Zhong
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G, Rose DJ, Darling A, Mau B, Perna NT, Payne SM, Runyen-Janecky LJ, Zhou S, Schwartz DC, Blattner FR. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 2003; 71:2775-86. [PMID: 12704152 PMCID: PMC153260 DOI: 10.1128/iai.71.5.2775-2786.2003] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the complete genome sequence of Shigella flexneri serotype 2a strain 2457T (4,599,354 bp). Shigella species cause >1 million deaths per year from dysentery and diarrhea and have a lifestyle that is markedly different from those of closely related bacteria, including Escherichia coli. The genome exhibits the backbone and island mosaic structure of E. coli pathogens, albeit with much less horizontally transferred DNA and lacking 357 genes present in E. coli. The strain is distinctive in its large complement of insertion sequences, with several genomic rearrangements mediated by insertion sequences, 12 cryptic prophages, 372 pseudogenes, and 195 S. flexneri-specific genes. The 2457T genome was also compared with that of a recently sequenced S. flexneri 2a strain, 301. Our data are consistent with Shigella being phylogenetically indistinguishable from E. coli. The S. flexneri-specific regions contain many genes that could encode proteins with roles in virulence. Analysis of these will reveal the genetic basis for aspects of this pathogenic organism's distinctive lifestyle that have yet to be explained.
Collapse
Affiliation(s)
- J Wei
- Laboratory of Genetics and Genome Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Following an interaction with rhizobial soil bacteria, legume plants are able to form a novel organ, termed the root nodule. This organ houses the rhizobial microsymbionts, which perform the biological nitrogen fixation process resulting in the incorporation of ammonia into plant organic molecules. Recent advances in genomics have opened exciting new perspectives in this field by providing the complete gene inventory of two rhizobial microsymbionts. The complete genome sequences of Mesorhizobium loti, the symbiont of several Lotus species, and Sinorhizobium meliloti, the symbiont of alfalfa, were determined and annotated in detail. For legume macrosymbionts, expressed sequence tag projects and expression analyses using DNA arrays in conjunction with proteomics approaches have identified numerous genes involved in root nodule formation and nitrogen fixation. The isolation of legume genes by tagging or positional cloning recently allowed the identification of genes that control the very early steps of root nodule organogenesis.
Collapse
Affiliation(s)
- Stefan Weidner
- Department of Genetics, University of Bielefeld, Postfach 100131, D-33501, Bielefeld, Germany.
| | | | | |
Collapse
|
216
|
Deng WL, Rehm AH, Charkowski AO, Rojas CM, Collmer A. Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J Bacteriol 2003; 185:2592-602. [PMID: 12670984 PMCID: PMC152607 DOI: 10.1128/jb.185.8.2592-2602.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pseudomonas syringae is a plant pathogen whose pathogenicity and host specificity are thought to be determined by Hop/Avr effector proteins injected into plant cells by a type III secretion system. P. syringae pv. syringae B728a, which causes brown spot of bean, is a particularly well-studied strain. The type III secretion system in P. syringae is encoded by hrp (hypersensitive response and pathogenicity) and hrc (hrp conserved) genes, which are clustered in a pathogenicity island with a tripartite structure such that the hrp/hrc genes are flanked by a conserved effector locus and an exchangeable effector locus (EEL). The EELs of P. syringae pv. syringae B728a, P. syringae strain 61, and P. syringae pv. tomato DC3000 differ in size and effector gene composition; the EEL of P. syringae pv. syringae B728a is the largest and most complex. The three putative effector proteins encoded by the P. syringae pv. syringae B728a EEL--HopPsyC, HopPsyE, and HopPsyV--were demonstrated to be secreted in an Hrp-dependent manner in culture. Heterologous expression of hopPsyC, hopPsyE, and hopPsyV in P. syringae pv. tabaci induced the hypersensitive response in tobacco leaves, demonstrating avirulence activity in a nonhost plant. Deletion of the P. syringae pv. syringae B728a EEL strongly reduced virulence in host bean leaves. EELs from nine additional strains representing nine P. syringae pathovars were isolated and sequenced. Homologs of avrPphE (e.g., hopPsyE) and hopPsyA were particularly common. Comparative analyses of these effector genes and hrpK (which flanks the EEL) suggest that the EEL effector genes were acquired by horizontal transfer after the acquisition of the hrp/hrc gene cluster but before the divergence of modern pathovars and that some EELs underwent transpositions yielding effector exchanges or point mutations producing effector pseudogenes after their acquisition.
Collapse
Affiliation(s)
- Wen-Ling Deng
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
217
|
Fraysse N, Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1365-80. [PMID: 12653992 DOI: 10.1046/j.1432-1033.2003.03492.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When the rhizosphere is nitrogen-starved, legumes and rhizobia (soil bacteria) enter into a symbiosis that enables the fixation of atmospheric dinitrogen. This implies a complex chemical dialogue between partners and drastic changes on both plant roots and bacteria. Several recent works pointed out the importance of rhizobial surface polysaccharides in the establishing of the highly specific symbiosis between symbionts. Exopolysaccharides appear to be essential for the early infection process. Lipopolysaccharides exhibit specific roles in the later stages of the nodulation processes such as the penetration of the infection thread into the cortical cells or the setting up of the nitrogen-fixing phenotype. More generally, even if active at different steps of the establishing of the symbiosis, all the polysaccharide classes seem to be involved in complex processes of plant defense inhibition that allow plant root invasion. Their chemistry is important for structural recognition as well as for physico-chemical properties.
Collapse
Affiliation(s)
- Nicolas Fraysse
- Laboratoire des IMRCP, UMR5623 UPS/CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| | | | | |
Collapse
|
218
|
Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 2003; 185:1681-92. [PMID: 12591886 PMCID: PMC148057 DOI: 10.1128/jb.185.5.1681-1692.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli CFN42 contains six plasmids. Only one of them, p42a, is self-conjugative at high frequency. This plasmid is strictly required for mobilization of the symbiotic plasmid (pSym). To study the transfer mechanism of p42a, a self-transmissible cosmid clone containing its transfer region was isolated. Its sequence showed that most of the tra genes are highly similar to genes of Agrobacterium tumefaciens pTiC58 and other related plasmids. Four putative regulatory genes were identified; three of these (traI, traR, and cinR) belong to the LuxR-LuxI family. Mutagenesis of these genes confirmed their requirement for p42a transfer. We found that the conjugative transfer of p42a is dependent on quorum sensing, and consequently pSym transfer also was found to be similarly regulated, establishing a complex link between environmental conditions and pSym transfer. Although R. etli has been shown to produce different N-acyl-homoserine lactones, only one of them, a 3-oxo-C(8)-homoserine lactone encoded by the traI gene described here, was involved in transfer. Mutagenesis of the fourth regulatory gene, traM, had no effect on transfer. Analysis of transcriptional fusions of the regulatory genes to a reporter gene suggests a complex regulation scheme for p42a conjugative transfer. Conjugal transfer gene expression was found to be directly upregulated by TraR and the 3-oxo-C(8)-homoserine lactone synthesized by TraI. The traI gene was autoregulated by these elements and positively regulated by CinR, while cinR expression required traI. Finally, we did not detect expression of traM, indicating that in p42a TraM may be expressed so weakly that it cannot inhibit conjugal transfer, leading to the unrepressed transfer of p42a.
Collapse
Affiliation(s)
- Cristina Tun-Garrido
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación Sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
219
|
Venter JC, Levy S, Stockwell T, Remington K, Halpern A. Massive parallelism, randomness and genomic advances. Nat Genet 2003; 33 Suppl:219-27. [PMID: 12610531 DOI: 10.1038/ng1114] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In reviewing the past decade, it is clear that genomics was, and still is, driven by innovative technologies, perhaps more so than any other scientific area in recent memory. From the outset, computing, mathematics and new automated laboratory techniques have been key components in allowing the field to move forward rapidly. We highlight some key innovations that have come together to nurture the explosive growth that makes a new era of genomics a reality. We also document how these new approaches have fueled further innovations and discoveries.
Collapse
Affiliation(s)
- J Craig Venter
- The Center for the Advancement of Genomics, 1901 Research Blvd., Rockville, Maryland 20850, USA.
| | | | | | | | | |
Collapse
|
220
|
Gudlavalleti SK, Forsberg LS. Structural characterization of the lipid A component of Sinorhizobium sp. NGR234 rough and smooth form lipopolysaccharide. Demonstration that the distal amide-linked acyloxyacyl residue containing the long chain fatty acid is conserved in rhizobium and Sinorhizobium sp. J Biol Chem 2003; 278:3957-68. [PMID: 12456672 DOI: 10.1074/jbc.m210491200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A broad-host-range endosymbiont, Sinorhizobium sp. NGR234 is a component of several legume-symbiont model systems; however, there is little structural information on the cell surface glycoconjugates. NGR234 cells in free-living culture produce a major rough lipopolysaccharide (LPS, lacking O-chain) and a minor smooth LPS (containing O-chain), and the structure of the lipid A components was investigated by chemical analyses, mass spectrometry, and NMR spectroscopy of the underivatized lipids A. The lipid A from rough LPS is heterogeneous and consists of six major bisphosphorylated species that differ in acylation. Pentaacyl species (52%) are acylated at positions 2, 3, 2', and 3', and tetraacyl species (46%) lack an acyl group at C-3 of the proximal glucosamine. In contrast to Rhizobium etli and Rhizobium leguminosarum, the NGR234 lipid A contains a bisphosphorylated beta-(1' --> 6)-glucosamine disaccharide, typical of enterobacterial lipid A. However, NGR234 lipid A retains the unusual acylation pattern of R. etli lipid A, including the presence of a distal, amide-linked acyloxyacyl residue containing a long chain fatty acid (LCFA) (e.g. 29-hydroxytriacontanoate) attached as the secondary fatty acid. As in R. etli, a 4-carbon fatty acid, beta-hydroxybutyrate, is esterified to (omega - 1) of the LCFA forming an acyloxyacyl residue at that location. The NGR234 lipid A lacks all other ester-linked acyloxyacyl residues and shows extensive heterogeneity of the amide-linked fatty acids. The N-acyl heterogeneity, including unsaturation, is localized mainly to the proximal glucosamine. The lipid A from smooth LPS contains unique triacyl species (20%) that lack ester-linked fatty acids but retain bisphosphorylation and the LCFA-acyloxyacyl moiety. The unusual structural features shared with R. etli/R. leguminosarum lipid A may be essential for symbiosis.
Collapse
|
221
|
Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T. Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 2003; 301:350-7. [PMID: 12565867 DOI: 10.1016/s0006-291x(02)03036-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Five sets of large and small subunits of terminal oxygenase (ahdA1[a-e] and ahdA2[a-e]) and a single gene set encoding ferredoxin (ahdA3) and ferredoxin reductase (ahdA4) were found to be scattered through 15.8- and 14-kb DNA fragments of phenanthrene-degrading Sphingobium sp. strain P2. RT-PCR analysis indicated the inducible and specific expression of ahdA3, ahdA4, and three sets of genes for terminal oxygenase (ahdA1[c-e] and ahdA2[c-e]) in this strain grown on phenanthrene. The biotransformation experiments with resting cells of Escherichia coli JM109 harboring recombinant ahd genes revealed that AhdA2cA1c, AhdA1dA2d, and AhdA1eA2e can all function as a salicylate 1-hydroxylase which converts salicylate, a metabolic intermediate of phenanthrene, to catechol in cooperation with the electron transport proteins AhdA3A4. The first two oxygenases exhibited a broad range of substrate specificities such that they also catalyzed the hydroxylation of methyl- and chloro-substituted salicylates to produce their corresponding substituted catechols.
Collapse
Affiliation(s)
- Onruthai Pinyakong
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
222
|
Andronov EE, Terefework Z, Roumiantseva ML, Dzyubenko NI, Onichtchouk OP, Kurchak ON, Dresler-Nurmi A, Young JPW, Simarov BV, Lindström K. Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus. Appl Environ Microbiol 2003; 69:1067-74. [PMID: 12571030 PMCID: PMC143604 DOI: 10.1128/aem.69.2.1067-1074.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Accepted: 11/13/2002] [Indexed: 11/20/2022] Open
Abstract
This paper explores the relationship between the genetic diversity of rhizobia and the morphological diversity of their plant hosts. Rhizobium galegae strains were isolated from nodules of wild Galega orientalis and Galega officinalis in the Caucasus, the center of origin for G. orientalis. All 101 isolates were characterized by genomic amplified fragment length polymorphism fingerprinting and by PCR-restriction fragment length polymorphism (RFLP) of the rRNA intergenic spacer and of five parts of the symbiotic region adjacent to nod box sequences. By all criteria, the R. galegae bv. officinalis and R. galegae bv. orientalis strains form distinct clusters. The nod box regions are highly conserved among strains belonging to each of the two biovars but differ structurally to various degrees between the biovars. The findings suggest varying evolutionary pressures in different parts of the symbiotic genome of closely related R. galegae biovars. Sixteen R. galegae bv. orientalis strains harbored copies of the same insertion sequence element; all were isolated from a particular site and belonged to a limited range of chromosomal genotypes. In all analyses, the Caucasian R. galegae bv. orientalis strains were more diverse than R. galegae bv. officinalis strains, in accordance with the gene center theory.
Collapse
Affiliation(s)
- E E Andronov
- Research Institute of Agricultural Microbiology, St. Petersburg, Pushkin 196608, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Inui M, Nakata K, Roh JH, Vertès AA, Yukawa H. Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from Rhodobacter blasticus. Appl Environ Microbiol 2003; 69:725-33. [PMID: 12570988 PMCID: PMC143669 DOI: 10.1128/aem.69.2.725-733.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3.4-kb cryptic plasmid was obtained from a new isolate of Rhodobacter blasticus. This plasmid, designated pMG160, was mobilizable by the conjugative strain Escherichia coli S17.1 into Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas palustris. It replicated in the latter strains but not in Rhodospirillum rubrum, Rhodocyclus gelatinosus, or Bradyrhizobium species. Plasmid pMG160 was stably maintained in R. sphaeroides for more than 100 generations in the absence of selection but showed segregational instability in R. palustris. Instability in R. palustris correlated with a decrease in plasmid copy number compared to the copy number in R. sphaeroides. The complete nucleotide sequence of plasmid pMG160 contained three open reading frames (ORFs). The deduced amino acid sequences encoded by ORF1 and ORF2 showed high degrees of homology to the MobS and MobL proteins that are involved in plasmid mobilization of certain plasmids. Based on homology with the Rep protein of several other plasmids, ORF3 encodes a putative rep gene initiator of plasmid replication. The functions of these sequences were demonstrated by deletion mapping, frameshift analysis, and analysis of point mutations. Two 6.1-kb pMG160-based E. coli-R. sphaeroides shuttle cloning vectors were constructed and designated pMG170 and pMG171. These two novel shuttle vectors were segregationally stable in R. sphaeroides growing under nonselective conditions.
Collapse
Affiliation(s)
- Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizu, Soraku, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
224
|
He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003; 185:809-22. [PMID: 12533456 PMCID: PMC142814 DOI: 10.1128/jb.185.3.809-822.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome.
Collapse
Affiliation(s)
- Xuesong He
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
225
|
Yost CK, Clark KT, Del Bel KL, Hynes MF. Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol 2003; 3:1. [PMID: 12553885 PMCID: PMC149452 DOI: 10.1186/1471-2180-3-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 01/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In general, chemotaxis in Rhizobium has not been well characterized. Methyl accepting chemotaxis proteins are sensory proteins important in chemotaxis of numerous bacteria, but their involvement in Rhizobium chemotaxis is unclear and merits further investigation. RESULTS A putative methyl accepting chemotaxis protein gene (mcpG) of Rhizobium leguminosarum VF39SM was isolated and characterized. The gene was found to reside on the nodulation plasmid, pRleVF39d. The predicted mcpG ORF displayed motifs common to known methyl-accepting chemotaxis proteins, such as two transmembrane domains and high homology to the conserved methylation and signaling domains of well-characterized MCPs. Phenotypic analysis of mcpG mutants using swarm plates did not identify ligands for this putative receptor. Additionally, gene knockouts of mcpG did not affect a mutant strain's ability to compete for nodulation with the wild type. Notably, mcpG was found to be plasmid-encoded in all strains of R. leguminosarum and R. etli examined, though it was found on the nodulation plasmid only in a minority of strains. CONCLUSIONS Based on sequence homology R. leguminosarum mcpG gene codes for a methyl accepting chemotaxis protein. The gene is plasmid localized in numerous Rhizobium spp. Although localized to the sym plasmid of VF39SM mcpG does not appear to participate in early nodulation events. A ligand for McpG remains to be found. Apparent McpG orthologs appear in a diverse range of proteobacteria. Identification and characterization of mcpG adds to the family of mcp genes already identified in this organism.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| | - Kirsten T Clark
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| | - Kate L Del Bel
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
226
|
González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H, Hernández-González I, Hernández-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodríguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Dávila G. The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 2003; 4:R36. [PMID: 12801410 PMCID: PMC193615 DOI: 10.1186/gb-2003-4-6-r36] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 03/06/2003] [Accepted: 04/02/2003] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Symbiotic bacteria known as rhizobia interact with the roots of legumes and induce the formation of nitrogen-fixing nodules. In rhizobia, essential genes for symbiosis are compartmentalized either in symbiotic plasmids or in chromosomal symbiotic islands. To understand the structure and evolution of the symbiotic genome compartments (SGCs), it is necessary to analyze their common genetic content and organization as well as to study their differences. To date, five SGCs belonging to distinct species of rhizobia have been entirely sequenced. We report the complete sequence of the symbiotic plasmid of Rhizobium etli CFN42, a microsymbiont of beans, and a comparison with other SGC sequences available. RESULTS The symbiotic plasmid is a circular molecule of 371,255 base-pairs containing 359 coding sequences. Nodulation and nitrogen-fixation genes common to other rhizobia are clustered in a region of 125 kilobases. Numerous sequences related to mobile elements are scattered throughout. In some cases the mobile elements flank blocks of functionally related sequences, thereby suggesting a role in transposition. The plasmid contains 12 reiterated DNA families that are likely to participate in genomic rearrangements. Comparisons between this plasmid and complete rhizobial genomes and symbiotic compartments already sequenced show a general lack of synteny and colinearity, with the exception of some transcriptional units. There are only 20 symbiotic genes that are shared by all SGCs. CONCLUSIONS Our data support the notion that the symbiotic compartments of rhizobia genomes are mosaic structures that have been frequently tailored by recombination, horizontal transfer and transposition.
Collapse
Affiliation(s)
- Víctor González
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Patricia Bustos
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Miguel A Ramírez-Romero
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Arturo Medrano-Soto
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Heladia Salgado
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Ismael Hernández-González
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Juan Carlos Hernández-Celis
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Verónica Quintero
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Gabriel Moreno-Hagelsieb
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Lourdes Girard
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Oscar Rodríguez
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Margarita Flores
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Miguel A Cevallos
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Julio Collado-Vides
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - David Romero
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| | - Guillermo Dávila
- Centro de Investigación Sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 62210
| |
Collapse
|
227
|
Jahn OJ, Davila G, Romero D, Noel KD. BacS: an abundant bacteroid protein in Rhizobium etli whose expression ex planta requires nifA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:65-73. [PMID: 12580283 DOI: 10.1094/mpmi.2003.16.1.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rhizobium etli CFN42 bacteroids from bean nodules possessed an abundant 16-kDa protein (BacS) that was found in the membrane pellet after cell disruption. This protein was not detected in bacteria cultured in tryptone-yeast extract. In minimal media, it was produced at low oxygen concentration but not in a mutant whose nifA was disrupted. N-terminal sequencing of the protein led to isolation of a bacS DNA fragment. DNA hybridization and nucleotide sequencing revealed three copies of the bacS gene, all residing on the main symbiotic plasmid of strain CFN42. A stretch of 304 nucleotides, exactly conserved upstream of all three bacS open reading frames, had very close matches with the NifA and sigma 54 consensus binding sequences. The only bacS homology in the genetic sequence databases was to three hypothetical proteins of unknown function, all from rhizobial species. Mutation and genetic complementation indicated that each of the bacS genes gives rise to a BacS polypeptide. Mutants disrupted or deleted in all three genes did not produce the BacS polypeptide but were Nod+ and Fix+ on Phaseolus vulgaris.
Collapse
Affiliation(s)
- Olivia J Jahn
- Department of Biology, Marquette University, Milwaukee, WI 53233, USA
| | | | | | | |
Collapse
|
228
|
Hattori Y, Omori H, Hanyu M, Kaseda N, Mishima E, Kaneko T, Tabata S, Saeki K. Ordered cosmid library of the Mesorhizobium loti MAFF303099 genome for systematic gene disruption and complementation analysis. PLANT & CELL PHYSIOLOGY 2002; 43:1542-1557. [PMID: 12514252 DOI: 10.1093/pcp/pcf175] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For effective exploitation of the genome sequence information of Lotus microsymbiont, Mesorhizobium loti MAFF303099, to discover gene functions, we have constructed an ordered and mutually overlapping cosmid library using an IncP broad host-range vector. The library consisted of 480 clones to cover approximately 99.6% of the genome with average insert size and overlap of 26.9 and 11.1 kbp, respectively. The genome of M. loti consists of a single chromosome and two plasmids. The chromosome (7,036,071 bp) was covered 99.68% by 445 clones with four gaps, although two clones were unstable in E. coli. The larger plasmid pMLa (351,911 bp) was completely covered by 23 clones, while the smaller pMLb (208,315 bp) was covered 98.85% by 12 clones with two gaps. We have also made ancillary plasmids to facilitate the construction of deletion mutants using derivatives of the library clones. As a pilot experiment to uncover regions which contain novel symbiotic genes, 13 deletion mutants were constructed to lack in total 180.5 kbp of the genome. All the mutants formed apparently normal nodules and supported symbiotic nitrogen fixation, however, one mutant that lacked a 5.3 kbp chromosomal region, 4,551,930-4,557,222, did not produce normal exopolysaccharides as judged by fluorescence on medium containing Calcofluor. The results supported the effectiveness of the approach to detect gene functions.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Biology, Graduate School of Science, Osaka University, 560-0043 Japan
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Krause A, Doerfel A, Göttfert M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1228-35. [PMID: 12481995 DOI: 10.1094/mpmi.2002.15.12.1228] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sequencing the symbiotic region of Bradyrhizobium japonicum revealed a gene cluster (tts) encoding a type III secretion system (TTSS) that is similar to those found in Mesorhizobium loti MAFF303099 and Rhizobium strain NGR234. In addition to genes that are likely to encode structural core components of the TTSS, the cluster contains several open reading frames that are found exclusively in rhizobia or that are specific to B. japonicum. Depending on the host, mutations within this cluster affected nodulation capacity to different extents. One of the genes likely encodes a transcriptional activator (TtsI) of the two-component regulatory family. Upstream of ttsI, a nod box promoter was identified. Expression of ttsI could be induced by genistein. This induction depended on the transcriptional activator protein NodW as well as the nodD1nodD2nolA gene region. TtsI was found to be involved in transcriptional regulation of the tts gene cluster. Sequence comparison revealed a conserved tts box element within putative promoter regions of several genes. Here, we propose a model of the regulatory cascade leading to the induction of the tts gene cluster.
Collapse
Affiliation(s)
- Andrea Krause
- Institut für Genetik, Technische Universität Dresden, Mommsenstrasse 13, 01062 Dresden, Germany.
| | | | | |
Collapse
|
230
|
Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 2002; 99:279-93. [PMID: 12385715 DOI: 10.1016/s0168-1656(02)00219-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel plant-bacterial remediation system for heavy metals (HM) was developed by expression of tetrameric human metallothionein (MTL4) in Mesorhizobium huakuii subsp. rengei B3, a strain which infects and forms nodules on a green manure, Astragalus sinicus. The MTL4 gene was fused to the nifH and nolB promoters, which generated nodule- specific expression of the MTL4 gene. The expression analysis of the MTL4 gene was demonstrated in free-living cells in the presence of Cd(2+) and Cu(2+), under the low oxygen condition. The MTL4 under the nifH and nolB promoters was expressed and increased the accumulation of Cd(2+), but not Cu(2+) in free-living cells. The expression of the integrated nifH-MTL4 gene in the chromosome of strain B3 was also expressed stably and accumulated Cd(2+) in the bacterial cells. The MTL4 transcripts were detected by in situ hybridization in bacteroids of mature nodules of A. sinicus containing nifH-MTL4 and nolB-MTL4 fusion gene. Moreover the MTL4 protein was detected by immunostaining. By infection of the recombinant B3, A. sinicus established symbiosis with the recombinant B3 that was grown in Cd(2+) and Cu(2+)-polluted soils. The symbionts increased Cd(2+) accumulation in nodules 1.7-2.0-fold, whereas, no significantly increase in Cu(2+) accumulation was noted.
Collapse
Affiliation(s)
- Rutchadaporn Sriprang
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
231
|
Kado CI. Negative transcriptional regulation of virulence and oncogenes of the Ti plasmid by Ros bearing a conserved C2H2-zinc finger motif. Plasmid 2002; 48:179-85. [PMID: 12460533 DOI: 10.1016/s0147-619x(02)00116-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chromosomal ros gene in Agrobacterium tumefaciens encodes a repressor of virulence and oncogenes that are located on a resident Ti plasmid. Mutational inactivation of ros de-represses the expression of the virC and virD operons, causing premature processing and accumulation of T-DNA molecules, and the premature expression of the oncogene, ipt, leading to the synthesis of cytokinin in the bacterium rather than in the plant host cell. Ros is a 15.5 kDa protein containing a novel "eukaryotic" C(2)H(2) zinc finger. Amino acid substitutions in the finger result in the loss of binding of Ros to the ros box, a 40 bp sequence within the operator of virC/D and ipt gene promoters; and the loss of binding of a zinc ion. The ros gene is highly conserved in members of the Rhizobiaceae. Evolutionary distance tree analyses revealed distant ties to the Japanese puffer fish, Fugu rupripes rather than to plants. Interestingly, ros homologues were found in microorganisms derived from marine sources, supporting the hypothesis that ros may have originated from a marine rather than a terrestrial organism.
Collapse
Affiliation(s)
- Clarence I Kado
- Davis Crown Gall Group, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
232
|
Fraysse N, Jabbouri S, Treilhou M, Couderc F, Poinsot V. Symbiotic conditions induce structural modifications of Sinorhizobium sp. NGR234 surface polysaccharides. Glycobiology 2002; 12:741-8. [PMID: 12460942 DOI: 10.1093/glycob/cwf078] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When the rhizosphere is starved of nitrogen, the soil bacteria Rhizobium are able to infect legume roots and invade root nodules, where they can fix atmospheric nitrogen. Nod boxes, the nod gene promoters located on the rhizobial symbiotic plasmid, are activated by means of flavonoids present in the legume root exudates, leading to the synthesis of lipochitooligomers: the Nod factors. Several recent works pointed out the importance of rhizobial surface polysaccharides in establishing the highly specific symbiosis between rhizobia and legumes. Lipopolysaccharides (LPSs) exhibit specific active roles in the later stages of the nodulation processes, such as the penetration of the infection thread into the cortical cells or the setting up of the nitrogen-fixing phenotype. The study reported here concerns the structural modifications affecting surface (lipo)polysaccharides when Sinorhizobium sp. NGR234 strains are grown with nod gene induction under nitrogen starvation. In the absence of induction, NGR234 only produces fast-migrating LPSs. When cultured in the presence of flavonoids, the same strain produces large quantities of a high-molecular-weight rhamnose-rich lipopolysaccharide (RLPS). Because the synthesis of this compound seems to be coded by the symbiotic plasmid under direct or indirect gene induction by flavonoids, this RLPS is thought to be biologically relevant.
Collapse
Affiliation(s)
- N Fraysse
- Laboratoire des IMRCP UMR 5623, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
233
|
Fukushima T, Yamamoto H, Atrih A, Foster SJ, Sekiguchi J. A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 2002; 184:6007-15. [PMID: 12374835 PMCID: PMC135383 DOI: 10.1128/jb.184.21.6007-6015.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predicted amino acid sequence of Bacillus subtilis yfjS (renamed pdaA) exhibits high similarity to those of several polysaccharide deacetylases. Beta-galactosidase fusion experiments and results of Northern hybridization with sporulation sigma mutants indicated that the pdaA gene is transcribed by E(sigma)(G) RNA polymerase. pdaA-deficient spores were bright by phase-contrast microscopy, and the spores were induced to germination on the addition of L-alanine. Germination-associated spore darkening, a slow and partial decrease in absorbance, and slightly lower dipicolinic acid release compared with that by the wild-type strain were observed. In particular, the release of hexosamine-containing materials was lacking in the pdaA mutant. Muropeptide analysis indicated that the pdaA-deficient spores completely lacked muramic delta-lactam. A pdaA-gfp fusion protein constructed in strain 168 and pdaA-deficient strains indicated that the protein is localized in B. subtilis spores. The biosynthetic pathway of muramic delta-lactam is discussed.
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda-shi, Nagano 386, Japan
| | | | | | | | | |
Collapse
|
234
|
Quintero V, Cevallos MA, Dávila G. A site-specific recombinase (RinQ) is required to exert incompatibility towards the symbiotic plasmid of Rhizobium etli. Mol Microbiol 2002; 46:1023-32. [PMID: 12421308 DOI: 10.1046/j.1365-2958.2002.03205.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The replication/partition region of the symbiotic plasmid p42d of Rhizobium etli CE3 is characterized by the presence of the repABC operon. A recombinant plasmid containing this region is able to replicate in a R. etli derivative cured from p42d, with the same stability and copy number shown by the parental plasmid. However, when this construct is introduced into the wild-type strain, instead of exerting incompatibility against the p42d, it forms a stable cointegrate with it. In this paper, we show that a site-specific resolvase, and its action sites are essential factors to displace the symbiotic p42d. We propose a model for this novel incompatibility mechanism.
Collapse
Affiliation(s)
- Verónica Quintero
- Programa de Evolución Molecular, centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Morelos, México
| | | | | |
Collapse
|
235
|
Collier-Hyams LS, Zeng H, Sun J, Tomlinson AD, Bao ZQ, Chen H, Madara JL, Orth K, Neish AS. Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2846-50. [PMID: 12218096 DOI: 10.4049/jimmunol.169.6.2846] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secreted prokaryotic effector proteins have evolved to modulate the cellular functions of specific eukaryotic hosts. Generally, these proteins are considered virulence factors that facilitate parasitism. However, in certain plant and insect eukaryotic/prokaryotic relationships, effector proteins are involved in the establishment of commensal or symbiotic interactions. In this study, we report that the AvrA protein from Salmonella typhimurium, a common enteropathogen of humans, is an effector molecule that inhibits activation of the key proinflammatory NF-kappaB transcription factor and augments apoptosis in human epithelial cells. This activity is similar but mechanistically distinct from that described for YopJ, an AvrA homolog expressed by the bacterial pathogen Yersinia. We suggest that AvrA may limit virulence in vertebrates in a manner analogous to avirulence factors in plants, and as such, is the first bacterial effector from a mammalian pathogen that has been ascribed such a function.
Collapse
Affiliation(s)
- Lauren S Collier-Hyams
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, García-de-los-Santos A, Dávila G, Brom S. Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 2002; 48:104-16. [PMID: 12383728 DOI: 10.1016/s0147-619x(02)00119-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this paper, we report the identification of replication/partition regions of plasmid p42a and p42b of Rhizobium etli CFN42. Sequence analysis reveals that both replication/partition regions belong to the repABC family. Phylogenetic analysis of all the complete repABC replication/partition regions reported to date, shows that repABC plasmids coexisting in the same strain arose most likely by lateral transfer instead of by duplication followed by divergence. A model explaining how new incompatibility groups originate, is proposed.
Collapse
Affiliation(s)
- Miguel A Cevallos
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
237
|
Wilkinson A, Danino V, Wisniewski-Dyé F, Lithgow JK, Downie JA. N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 2002; 184:4510-9. [PMID: 12142421 PMCID: PMC135255 DOI: 10.1128/jb.184.16.4510-4519.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of some strains of Rhizobium leguminosarum bv. viciae is inhibited by N-(3-hydroxy-7-cis tetradecenoyl)-L-homoserine lactone (3OH-C(14:1)-HSL), which was previously known as the small bacteriocin before its characterization as an N-acyl homoserine lactone (AHL). Tn5-induced mutants of R. leguminosarum bv. viciae resistant to 3OH-C(14:1)-HSL were isolated, and mutations in two genes were identified. These genes, bisR and triR, which both encode LuxR-type regulators required for plasmid transfer, were found downstream of an operon containing trb genes involved in the transfer of the symbiotic plasmid pRL1JI. The first gene in this operon is traI, which encodes an AHL synthase, and the trbBCDEJKLFGHI genes were found between traI and bisR. Mutations in bisR, triR, traI, or trbL blocked plasmid transfer. Using gene fusions, it was demonstrated that bisR regulates triR in response to the presence of 3OH-C(14:1)-HSL. In turn, triR is then required for the induction of the traI-trb operon required for plasmid transfer. bisR also represses expression of cinI, which is chromosomally located and determines the level of production of 3OH-C(14:1)-HSL. The cloned bisR and triR genes conferred 3OH-C(14:1)-HSL sensitivity to strains of R. leguminosarum bv. viciae normally resistant to this AHL. Furthermore, bisR and triR made Agrobacterium tumefaciens sensitive to R. leguminosarum bv. viciae strains producing 3OH-C(14:1)-HSL. Analysis of patterns of growth inhibition using mutant strains and synthetic AHLs revealed that maximal growth inhibition required, in addition to 3OH-C(14:1)-HSL, the presence of other AHLs such as N-octanoyl-L-homoserine lactone and/or N-(3-oxo-octanoyl)-L-homoserine lactone. In an attempt to identify the causes of growth inhibition, a strain of R. leguminosarum bv. viciae carrying cloned bisR and triR was treated with an AHL extract containing 3OH-C(14:1)-HSL. N-terminal sequencing of induced proteins revealed one with significant similarity to the protein translation factor Ef-Ts.
Collapse
Affiliation(s)
- A Wilkinson
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
238
|
Laranjo M, Branco C, Soares R, Alho L, Carvalho MDE, Oliveira S. Comparison of chickpea rhizobia isolates from diverse Portuguese natural populations based on symbiotic effectiveness and DNA fingerprint. J Appl Microbiol 2002; 92:1043-50. [PMID: 12010544 DOI: 10.1046/j.1365-2672.2002.01615.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To test the hypothesis that differences in chickpea yields obtained in four distinct Portuguese regions (Beja, Elvas-Casas Velhas, Elvas-Estação Nacional de Melhoramento de Plantas (ENMP) and Evora) could be due to variation between the natural rhizobia populations. METHODS AND RESULTS Estimation of the size of the different rhizobial populations showed that Elvas-ENMP population was the largest one. Elvas-ENMP population also revealed a higher proportion of isolates carrying more than one plasmid. Assessment of genetic diversity of the native rhizobia populations by a DNA fingerprinting PCR method, here designated as DAPD (Direct Amplified Polymorphic DNA), showed a higher degree of variation in Elvas-ENMP and Beja populations. The symbiotic effectiveness (SE) of 39 isolates was determined and ranged 13-34%. Statistical analysis showed that SE was negatively correlated with plasmid number of the isolate. CONCLUSIONS The largest indigenous rhizobia population was found in Elvas-ENMP. DAPD pattern and plasmid profile analysis both suggested a higher genetic diversity among the populations of Elvas-ENMP and Beja. No relationship was found between SE of the isolates and their origin site. SIGNIFICANCE AND IMPACT OF STUDY The large native population, rather than the symbiotic performance of individual rhizobia, could contribute to the higher chickpea yields obtained in Elvas-ENMP.
Collapse
Affiliation(s)
- M Laranjo
- ICAM (Instituto de Ciências Agrárias Mediterrânicas), Universidade de Evora, Portugal
| | | | | | | | | | | |
Collapse
|
239
|
Abstract
Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.
Collapse
Affiliation(s)
- Melanie M Marketon
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | |
Collapse
|
240
|
Jackson RW, Mansfield JW, Ammouneh H, Dutton LC, Wharton B, Ortiz-Barredo A, Arnold DL, Tsiamis G, Sesma A, Butcher D, Boch J, Kim YJ, Martin GB, Tegli S, Murillo J, Vivian A. Location and activity of members of a family of virPphA homologues in pathovars of Pseudomonas syringae and P. savastanoi. MOLECULAR PLANT PATHOLOGY 2002; 3:205-216. [PMID: 20569328 DOI: 10.1046/j.1364-3703.2002.00121.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary virPphA is a major determinant of the pathogenicity of Pseudomonas savastanoi pv. phaseolicola to Phaseolus bean. A family of homologues of virPphA was detected in pathovars of P. savastanoi and P. syringae. We examined the structure and activity of alleles designated virPphA, virPphA(Pgy), and virPphA(Psv) from P. savastanoi pathovars phaseolicola, glycinea, and savastanoi, respectively, and avrPtoB from P. syringae pv. tomato. Sequencing showed that the virPphA(Pgy) homologue had a 48-bp central deletion in the open reading frame (ORF) compared with virPphA and virPphA(Psv), but otherwise all three P. savastanoi alleles had > 98% identity at the DNA level. By contrast, AvrPtoB from P. syringae pv. tomato strain DC3000 was predicted to have only 51% amino acid similarity with VirPphA. All ORFs have an upstream hrp-box promoter indicating potential regulation by HrpL. Each cloned homologue was introduced into the P. savastanoi pv. phaseolicola strain RW60, which lacks a native plasmid carrying virPphA as part of a pathogenicity island (PAI), and which is not pathogenic on bean. The homologues all restored virulence, as measured by the development of water-soaked lesions in bean pods, and increased bacterial populations in leaves compared with RW60 alone. RW60 harbouring virPphA or virPphA(Psv) elicited a strong hypersensitive reaction (HR) in soybean cv. Osumi; the presence of avrPtoB caused a weak HR, but virPphA(Pgy) did not affect the null reaction observed in soybean with RW60 alone. A second effector gene, avrPphD, was detected on the genomic clones carrying virPphA(Pgy) and virPphA(Psv). avrPphD was also present in both P. savastanoi pv. phaseolicola and P. syringae pv. tomato, but elsewhere in their genomes. Comparison of the genomic locations of virPphA and other effectors found in the P. savastanoi pv. phaseolicola PAI revealed the greatest divergence of the sequences surrounding virPphA to be in P. syringae pv. tomato.
Collapse
Affiliation(s)
- Robert W Jackson
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Guo M, Manulis S, Mor H, Barash I. The presence of diverse IS elements and an avrPphD homologue that acts as a virulence factor on the pathogenicity plasmid of Erwinia herbicola pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:709-716. [PMID: 12118887 DOI: 10.1094/mpmi.2002.15.7.709] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The pathogenicity of Erwinia herbicola pv. gypsophilae (Ehg) and Erwinia herbicola pv. betae (Ehb) is dependent on a native plasmid (pPATH(Ehg) or pPATH(Ehb)) that harbors the hrp gene cluster, genes encoding type III effectors, phytohormones, biosynthetic genes, and several copies of IS1327. Sequence analysis of the hrp-flanking region in pPATH(Ehg) (cosmid pLA150) revealed a cluster of four additional IS elements designated as ISEhel, ISEhe2, ISEhe3, and ISEhe4. Two copies of another IS element (ISEhe5) were identified on the upstream region of the indole-3-acetic acid operon located on the same cosmid. Based on homology of amino acids and genetic organization, ISEhe1 belongs to the IS630 family, ISEhe2 to the IS5 family, ISEhe3 and ISEhe4 to different groups of the IS3 family, and ISEhe5 to the IS1 family. With the exception of ISEhe4, one to three copies of all the other IS elements were identified only in pathogenic strains of Erwinia herbicola pv. gypsophilae and Erwinia herbicola pv. betae whereas ISEhe4 was present in both pathogenic and nonpathogenic strains. An open reading frame that exhibited high identity (89% in amino acids) to AvrPphD of Pseudomonas syringae pv. phaseolicola was present within the cluster of IS elements. An insertional mutation in the AvrPphDEh, reduced gall size in gypsophila by approximately 85%. In addition, remnants of known genes from four different bacteria were detected on the same cosmid.
Collapse
Affiliation(s)
- Ming Guo
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
242
|
Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 2002; 99:7968-73. [PMID: 12060743 PMCID: PMC123004 DOI: 10.1073/pnas.092697199] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Indexed: 11/18/2022] Open
Abstract
Maytansinoids are potent antitumor agents found in plants and microorganisms. To elucidate their biosynthesis at the biochemical and genetic level and to set the stage for their structure modification through genetic engineering, we have cloned two gene clusters required for the biosynthesis of the maytansinoid, ansamitocin, from a cosmid library of Actinosynnema pretiosum ssp. auranticum ATCC 31565. This is a rare case in which the genes involved in the formation of a secondary metabolite are dispersed in separate regions in an Actinomycete. A set of genes, asm22-24, asm43-45, and asm47, was identified for the biosynthesis of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA). Remarkably, there are two AHBA synthase gene homologues, which may have different functions in AHBA formation. Four type I polyketide synthase genes, asmA-D, followed by the downloading asm9, together encode eight homologous sets of enzyme activities (modules), each catalyzing a specific round of chain initiation, elongation, or termination steps, which assemble the ansamitocin polyketide backbone. Another set of genes, asm13-17, encodes the formation of an unusual "methoxymalonate" polyketide chain extension unit that, notably, seems to be synthesized on a dedicated acyl carrier protein rather than as a CoA thioester. Additional ORFs are involved in postsynthetic modifications of the initial polyketide synthase product, which include methylations, an epoxidation, an aromatic chlorination, and the introduction of acyl and carbamoyl groups. Tentative functions of several asm genes were confirmed by inactivation and heterologous expression.
Collapse
Affiliation(s)
- Tin-Wein Yu
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002; 184:3086-95. [PMID: 12003951 PMCID: PMC135072 DOI: 10.1128/jb.184.11.3086-3095.2002] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mesorhizobium loti strain R7A symbiosis island is a 502-kb chromosomally integrated element which transfers to nonsymbiotic mesorhizobia in the environment, converting them to Lotus symbionts. It integrates into a phenylalanine tRNA gene in a process mediated by a P4-type integrase encoded at the left end of the element. We have determined the nucleotide sequence of the island and compared its deduced genetic complement with that reported for the 611-kb putative symbiosis island of M. loti strain MAFF303099. The two islands share 248 kb of DNA, with multiple deletions and insertions of up to 168 kb interrupting highly conserved colinear DNA regions in the two strains. The shared DNA regions contain all the genes likely to be required for Nod factor synthesis, nitrogen fixation, and island transfer. Transfer genes include a trb operon and a cluster of potential tra genes which are also present on the strain MAFF303099 plasmid pMLb. The island lacks plasmid replication genes, suggesting that it is a site-specific conjugative transposon. The R7A island encodes a type IV secretion system with strong similarity to the vir pilus from Agrobacterium tumefaciens that is deleted from MAFF303099, which in turn encodes a type III secretion system not found on the R7A island. The 414 genes on the R7A island also include putative regulatory genes, transport genes, and an array of metabolic genes. Most of the unique hypothetical genes on the R7A island are strain-specific and clustered, suggesting that they may represent other acquired genetic elements rather than symbiotically relevant DNA.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Bartosik D, Baj J, Bartosik AA, Wlodarczyk M. Characterization of the replicator region of megaplasmid pTAV3 of Paracoccus versutus and search for plasmid-encoded traits. MICROBIOLOGY (READING, ENGLAND) 2002; 148:871-881. [PMID: 11882723 DOI: 10.1099/00221287-148-3-871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The replicon of the pTAV3 megaplasmid (approx. 400 kb) of Paracoccus versutus has been localized to a 4center dot3 kb EcoRI restriction fragment and its entire nucleotide sequence determined. The G+C content of the entire sequence is 66 mol%, which is within the range (62-66 mol%) previously determined for P. versutus total DNA. ORF1 encodes a replication initiation protein Rep (47.2 kDa), which shares substantial similarity with putative proteins of the Coxiella burnetii plasmids QpH1 and QpDV, and the replication protein of Pseudomonas syringae plasmid pPS10. ORF2, located in the opposite transcriptional orientation to ORF1, encodes a putative protein that shares similarity to a subfamily of ATPases involved in plasmid partitioning. The highest similarity was observed with homologous proteins (RepA) encoded by the repABC family of replicons found in several plasmids of Agrobacterium, Rhizobium and Paracoccus spp. The predicted product of ORF3 was similar to AcoR, Nif and NtrC transcriptional activators. A strong incompatibility determinant (inc) was localized between ORF1 (rep) and ORF2 (parA). The origin of replication of pTAV400 contains a short A+T-rich region and several imperfect palindromic sequences. Curing experiments demonstrated that the megaplasmid bears genes required for growth in minimal media and can therefore be referred to as a mini-chromosome. Megaplasmids pTAV3 of P. versutus UW1 and pKLW2 of Paracoccus pantotrophus DSM 11073 were found to carry closely related, incompatible replicons. It has been shown that plasmid pORI6 (containing oriV of pTAV3 cloned into plasmid pABW1, which does not replicate in Paracoccus spp.) can be trans activated not only by pTAV3, but also by pKLW2. Using pORI6, it was demonstrated that replication systems related to pTAV3 are also present in the replicons of Paracoccus alcaliphilus JCM 7364, Paracoccus thiocyanatus IAM 12816 and Paracoccus methylutens DM 12.
Collapse
Affiliation(s)
- Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| | - Jadwiga Baj
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| | - Aneta A Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| | - Miroslawa Wlodarczyk
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland1
| |
Collapse
|
245
|
Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J. Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:225-32. [PMID: 11952125 DOI: 10.1094/mpmi.2002.15.3.225] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Characterization of nine transposon-induced mutants of Rhizobium tropici with decreased salt tolerance (DST) allowed the identification of eight gene loci required for adaptation to high external NaCl. Most of the genes also were involved in adaptation to hyperosmotic media and were required to overcome the toxicity of LiCl. According to their possible functions, genes identified could be classified into three groups. The first group included two genes involved in regulation of gene expression, such as ntrY, the sensor element of the bacterial ntrY/ntrX two-component regulatory system involved in regulation of nitrogen metabolism, and greA, which encodes a transcription elongation factor. The second group included genes related to synthesis, assembly, or maturation of proteins, such as alaS coding for alanine-tRNA synthetase, dnaJ, which encodes a molecular chaperone, and a nifS homolog probably encoding a cysteine desulfurase involved in the maturation of Fe-S proteins. Genes related with cellular build-up and maintenance were in the third group, such as a noeJ-homolog, encoding a mannose-1-phosphate guanylyltransferase likely involved in lipopolysaccharide biosynthesis, and kup, specifying an inner-membrane protein involved in potassium uptake. Another gene was identified that had no homology to known genes but that could be conserved in other rhizobia. When inoculated on Phaseolus vulgaris growing under nonsaline conditions, all DST mutants displayed severe symbiotic defects: ntrY and noeJ mutants were impaired in nodulation, and the remaining mutants formed symbiosis with very reduced nitrogenase activity. The results suggest that bacterial ability to adapt to hyperosmotic and salt stress is important for the bacteroid nitrogen-fixing function inside the legume nodule and provide genetic evidence supporting the suggestion that rhizobia face severe environmental changes after their release into plant cells.
Collapse
Affiliation(s)
- Joaquina Nogales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | | | |
Collapse
|
246
|
Krishnan HB. NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, Iis localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J Bacteriol 2002; 184:831-9. [PMID: 11790754 PMCID: PMC139521 DOI: 10.1128/jb.184.3.831-839.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Accepted: 10/29/2001] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on soybean (Glycine max [L.] Merr.) in a cultivar-specific manner. This strain forms nodules on primitive soybean cultivars but fails to nodulate agronomically improved North American cultivars. Soybean cultivar specificity is regulated by the nolXWBTUV locus, which encodes part of a type III secretion system (TTSS). NolX, a soybean cultivar specificity protein, is secreted by TTSS and shows homology to HrpF of the plant pathogen Xanthomonas campestris pv. vesicatoria. It is not known whether NolX functions at the bacterium-plant interface or acts inside the host cell. Antibodies raised against S. fredii USDA257 NolX were used in immunocytochemical studies to investigate the subcellular localization of this protein. Immunostaining of paraffin-embedded sections of developing soybean and cowpea (Vigna unguiculata [L.] Walp) nodules revealed localization of NolX in the infection threads. Protein A-gold immunocytochemical localization studies utilizing affinity-purified NolX antibodies revealed specific deposition of gold particles in the fibrillar material inside infection threads. Similar immunogold localization studies failed to detect NolX in thin sections of mature soybean and cowpea nodules. The results from this study indicate that NolX is expressed in planta only during the early stages of nodule development.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA Agricultural Research Service, and Department of Agronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
247
|
Madinabeitia N, Bellogín RA, Buendía-Clavería AM, Camacho M, Cubo T, Espuny MR, Gil-Serrano AM, Lyra MCCP, Moussaid A, Ollero FJ, Soria-Díaz ME, Vinardell JM, Zeng J, Ruiz-Sainz JE. Sinorhizobium fredii HH103 has a truncated nolO gene due to a -1 frameshift mutation that is conserved among other geographically distant S. fredii strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:150-159. [PMID: 11878319 DOI: 10.1094/mpmi.2002.15.2.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Strain SVQ121 is a mutant derivative of Sinorhizobium fredii HH103 carrying a transposon Tn5-lacZ insertion into the nolO-coding region. Sequence analysis of the wild-type gene revealed that it is homologous to that of Rhizobium sp. NGR234, which is involved in the 3 (or 4)-O-carbamoylation of the nonreducing terminus of Nod factors. Downstream of nolO, as in Rhizobium sp. NGR234, the noeI gene responsible for methylation of the fucose moiety of Nod factors was found. SVQ121 Nod factors showed lower levels of methylation into the fucosyl residue than those of HH103-suggesting a polar effect of the transposon insertion into nolO over the noel gene. A noeI HH103 mutant was constructed. This mutant, SVQ503, produced Nod factors devoid of methyl groups, confirming that the S. fredii noeI gene is functional. Neither the nolO nor the noeI mutation affected the ability of HH103 to nodulate several host plants, but both mutations reduced competitiveness to nodulate soybean. The Nod factors produced by strain HH103, like those of other S. fredii isolates, lack carbamoyl residues. By using specific polymerase chain reaction primers, we sequenced the nolO gene of S. fredii strains USDA192, USDA193, USDA257, and 042B(s). All the analyzed strains showed the same -1 frameshift mutation that is present in the HH103 nolO-coding region. From these results, it is concluded that, regardless of their geographical origin, S. fredii strains carry the nolO-coding region but that it is truncated by the same base-pair deletion.
Collapse
Affiliation(s)
- Nuria Madinabeitia
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.
Collapse
Affiliation(s)
- Chitra Dutta
- Human Genetics and Genomics Group, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
249
|
Swift S, Downie JA, Whitehead NA, Barnard AM, Salmond GP, Williams P. Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 2002; 45:199-270. [PMID: 11450110 DOI: 10.1016/s0065-2911(01)45005-3] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery that bacterial cells can communicate with each other has led to the realization that bacteria are capable of exhibiting much more complex patterns of co-operative behaviour than would be expected for simple unicellular microorganisms. Now generically termed 'quorum sensing', bacterial cell-to-cell communication enables a bacterial population to mount a unified response that is advantageous to its survival by improving access to complex nutrients or environmental niches, collective defence against other competitive microorganisms or eukaryotic host defence mechanisms and optimization of population survival by differentiation into morphological forms better adapted to combating environmental threats. The principle of quorum sensing encompasses the production and release of signal molecules by bacterial cells within a population. Such molecules are released into the environment and, as cell numbers increase, so does the extracellular level of signal molecule, until the bacteria sense that a threshold has been reached and gene activation, or in some cases depression or repression, occurs via the activity of sensor-regulator systems. In this review, we will describe the biochemistry and molecular biology of a number of well-characterized N-acylhomoserine lactone quorum sensing systems to illustrate how bacteria employ cell-to-cell signalling to adjust their physiology in accordance with the prevailing high-population-density environment.
Collapse
Affiliation(s)
- S Swift
- Institute of Infections and Immunity, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD UK
| | | | | | | | | | | |
Collapse
|
250
|
Abstract
Chemotaxis transducers are specialized receptors that microorganisms use in order to sense the environment in directing their motility to favorable niches. The Escherichia coli transducers are models for studying the sensory and signaling events at the molecular level. Extensive studies in other organisms and the arrival of genomics has resulted in the accumulation of sequences of many transducer genes, but they are not fully understood. In silico analysis provides some assistance in classification of various transducers from different species and in predicting their function. All transducers contain two structural modules: a conserved C-terminal multidomain module, which is a signature element of the transducer superfamily, and a variable N-terminal module, which is responsible for the diversity within the superfamily. These structural modules have two distinct functions: the conserved C-terminal module is involved in signaling and adaptation, and the N-terminal module is involved in sensing various stimuli. Both C-terminal and N-terminal modules appear to be mobile genetic elements and subjects of duplication and lateral transfer. Although chemotaxis transducers are found exclusively in prokaryotic organisms that have some type of motility (flagellar, gliding or pili-based), several types of domains that are found in their N-terminal modules are also present in signal transduction proteins from eukaryotes, including humans. This indicates that basic principles of sensory transduction are conserved throughout the phylogenetic tree and that the chemotaxis transducer superfamily is a valuable source of novel sensory elements yet to be discovered.
Collapse
Affiliation(s)
- I B Zhulin
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA.
| |
Collapse
|