201
|
Wang F, Han J, Wang L, Jing Y, Zhu Z, Hui D, Wang Z, Wang Y, Dong Y, Tan T. CCCTC-Binding Factor Transcriptionally Targets Wdr5 to Mediate Somatic Cell Reprogramming. Stem Cells Dev 2017; 26:743-750. [DOI: 10.1089/scd.2016.0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jinghua Han
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Li Wang
- Huanghe College of Science and Technology, Zhengzhou City, China
| | - Ying Jing
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhu Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dawei Hui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhaohui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yangzi Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tao Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
202
|
Li Y, Zeng A, Li G, Guan YN, Yang HT, Shen B, Jing Q. Dynamic regulation of small RNAome during the early stage of cardiac differentiation from pluripotent embryonic stem cells. GENOMICS DATA 2017; 12:136-145. [PMID: 28540181 PMCID: PMC5432660 DOI: 10.1016/j.gdata.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (mESCs), having potential to differentiate into three germ-layer cells including cardiomyocytes, shall be a perfect model to help understanding heart development. Here, using small RNA deep sequencing, we studied the small RNAome in the early stage of mouse cardiac differentiation. We found that the expression pattern of most microRNA (miRNA) were highly enriched at the beginning and declined thereafter, some were still insufficiently expressed on day 6, and most miRNAs recovered in the following days. When pluripotent embryonic stem cells are differentiating to cardiomyocytes, targeted genes are concentrated on TGF, WNT and cytoskeletal remodeling pathway. The pathway and network of dynamically changed target genes of the miRNAs at different time points were also investigated. Furthermore, we demonstrated that small rDNA-derived RNAs (srRNAs) were significantly up-regulated during differentiation, especially in stem cells. The pathways of srRNAs targeted genes were also presented. We described the existence and the differential expression of transfer RNA (tRNA), Piwi-interacting RNA (piRNA) and Endogenous siRNAs (endo-siRNAs) in this process. This study reports the genome-wide small RNAome profile, and provides a uniquely comprehensive view of the small RNA regulatory network that governs embryonic stem cell differentiation and cardiac development.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
- Correspondence to: Y. Li, Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China.Key Laboratory of Stem Cell BiologyInstitute of Health SciencesShanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological ScienceChinese Academy of SciencesShanghai200031China
| | - An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ge Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya-Na Guan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Corresponding author.
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao-Tong University School of Medicine and Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
203
|
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish. Gen Comp Endocrinol 2017; 245:55-68. [PMID: 27013380 DOI: 10.1016/j.ygcen.2016.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
Abstract
The maternal control directing the very first hours of life is of pivotal importance for ensuring proper development to the growing embryo. Thanks to the finely regulated inheritance of maternal factors including mRNAs and proteins produced during oogenesis and stored into the mature oocyte, the embryo is sustained throughout the so-called maternal-to-zygotic transition, a period in development characterized by a species-specific length in time, during which critical biological changes regarding cell cycle and zygotic transcriptional activation occur. In order not to provoke any kind of persistent damage, the process must be delicately balanced. Surprisingly, our knowledge as to the possible effects of beneficial bacteria regarding the modulation of the quality and/or quantity of both maternally-supplied and zygotically-transcribed mRNAs, is very limited. To date, only one group has investigated the consequences of the parentally-supplied Lactobacillus rhamnosus on the storage of mRNAs into mature oocytes, leading to an altered maternal control process in the F1 generation. Particular attention was called on the monitoring of several biomarkers involved in autophagy, apoptosis and axis patterning, while data on miRNA generation and pluripotency maintenance are herein presented for the first time, and can assist in laying the ground for further investigations in this field. In this review, the reader is supplied with the current knowledge on the above-mentioned biological process, first by drawing the general background and then by emphasizing the most important findings that have highlighted their focal role in normal animal development.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
204
|
Huma T, Hu X, Ma Y, Willden A, Rizak J, Shahab M, Wang Z. Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from rhesus monkey derived Lyon NSCs. Neuroscience 2017; 349:318-329. [DOI: 10.1016/j.neuroscience.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
|
205
|
Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. J Transl Med 2017; 97:567-576. [PMID: 28240746 DOI: 10.1038/labinvest.2017.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urothelium and is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Stemness markers such as SOX2 and NANOG are frequently overexpressed in various aggressive cancers, including MIBC; epithelial-mesenchymal transition (EMT) has been proposed as a potential trigger of stemness in cancers. To determine whether cancer stemness is acquired via EMT in bladder cancer, we studied the effect of EMT on the expression of SOX2 and NANOG in bladder cancer cell lines. We also analyzed their expression in clinical tissue samples. Our results revealed that a potent EMT inducer (transforming growth factor β1) reduced the expression of the epithelial marker E-cadherin and increased expression of both SOX2 and NANOG in epithelial-type bladder cancer cells. As for clinical bladder cancer samples, in NMIBC, E-cadherin expression was slightly diminished, and the expression of both SOX2 and NANOG was negligible. In contrast, in MIBC, E-cadherin expression was highly and heterogeneously diminished, while the expression of both SOX2 and NANOG was increased. We also noticed that either E-cadherin or SOX2 (or NANOG) was expressed (ie, in a manner exclusive of each other). In addition, the concentration of E-cadherin showed a significant negative correlation with tumor grade and stage, while expression of SOX2 and NANOG positively correlated with those clinicopathological parameters. These findings suggest that EMT promotes stemness of bladder cancer cells, contributing to tumor aggressiveness. This EMT-cancer stemness axis may also play an important role in the pathogenesis of NMIBC and MIBC.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.17.
Collapse
|
206
|
Nakayama K, Rahman M, Rahman MT, Nakamura K, Sato E, Katagiri H, Ishibashi T, Ishikawa M, Iida K, Razia S, Ishikawa N, Kyo S. Nucleus accumbens-1/GADD45GIP1 axis mediates cisplatin resistance through cellular senescence in ovarian cancer. Oncol Lett 2017; 13:4713-4719. [PMID: 28599472 PMCID: PMC5453174 DOI: 10.3892/ol.2017.6099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/04/2017] [Indexed: 01/25/2023] Open
Abstract
Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the bric-a-brac-tramtrack-broad complex/pox virus and zinc finger gene family, is known to serve important roles in the proliferation and growth of tumor cells, and in chemotherapy resistance. However, the underlying molecular mechanisms through which NAC1 contributes to drug resistance remain unclear. In the present study, the role of NAC1 in drug resistance in ovarian cancer was investigated. NAC1 expression was markedly negatively associated with growth arrest and DNA-damage-inducible 45γ-interacting protein 1 (GADD45GIP1) expression in ovarian cancer. Increased NAC1 expression or decreased GADD45GIP1 expression was significantly associated with decreased progression-free survival (P=0.0041). Multivariate analysis demonstrated that NAC1/GADD45GIP1 expression was an independent prognostic factor of progression-free survival (P=0.0405). It was investigated whether cellular senescence was involved in NAC1-mediated resistance to cisplatin, a commonly used chemotherapeutic drug in the treatment of ovarian cancer. Treatment with cisplatin activated cellular senescence in ovarian cancer cell lines (SKOV3 and TOV-21G cells). Furthermore, knockdown of NAC1 by RNA interference significantly increased GADD45GIP1 expression and inhibited cisplatin-induced cellular senescence, resulting in increased cisplatin cytotoxicity in SKOV3 cells, which express increased levels of NAC1. To investigate whether the sensitizing effect of NAC1 inhibition on cisplatin-induced cytotoxicity may be attributed to the suppression of cellular senescence, the effects of NAC1 overexpression were assessed in TOV-21G cells, which do not express endogenous NAC1. Transfection with NAC1 in TOV-21G cells reduced the sensitivity of TOV-21G cells to cisplatin, indicating that suppression of cellular senescence was induced by GADD45GP1 activation. The results of the present study suggest that NAC1 is a negative regulator of cellular senescence and that NAC1-dependent suppression of senescence, mediated through GADD45GIP1, serves an important role in promoting cisplatin resistance. Therefore, the NAC1/GADD45GIP1 axis may be a potential target for the treatment of ovarian cancer, particularly in platinum-resistant cancers.
Collapse
Affiliation(s)
- Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Munmun Rahman
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Mohammed Tanjimur Rahman
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Kohei Nakamura
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Emi Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Hiroshi Katagiri
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Noriyuki Ishikawa
- Department of Organ Pathology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan
| |
Collapse
|
207
|
Structural Insights into BAF47 and BAF155 Complex Formation. J Mol Biol 2017; 429:1650-1660. [PMID: 28438634 DOI: 10.1016/j.jmb.2017.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Mammalian BAF complexes are a subfamily of SWI/SNF ATP-dependent chromatin remodelers that dynamically modulate chromatin structure to regulate fundamental cellular processes including gene transcription, cell cycle control, and DNA damage response. So far, many distinct BAF complexes have been identified with polymorphic assemblies of up to 15 subunits from 29 genes. The evolutionarily conserved BRG1/BRM, BAF47, and BAF155/BAF170 form a stable complex that carries out essential chromatin remodeling activity and therefore have been regarded as the core components of BAF complex. Here, we first confirmed that SWIRM domain of BAF155 is responsible for its interaction with BAF47 and then narrowed down the SWIRM-binding region in BAF47 to the Repeat 1 (RPT1) domain. We further presented the high-resolution crystal structure of SWIRM/RPT1 complex. Extensive mutagenesis experiments together with isothermal titration calorimetry and NMR titrations were performed to corroborate the interactions observed in crystal structure. Overall, we demonstrated that BAF155 SWIRM is a modular domain involved in BAF47 interaction, which is functionally distinct from other characterized SWIRM domains that possess DNA binding activity.
Collapse
|
208
|
Raschellà G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene 2017; 36:4673-4681. [PMID: 28394347 PMCID: PMC5562846 DOI: 10.1038/onc.2017.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.
Collapse
Affiliation(s)
- G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Rome, Italy
| | - G Melino
- Department of Experimental Medicine &Surgery, University of Rome Tor Vergata, Rome, Italy.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Malewicz
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|
209
|
Litwin M, Szczepańska-Buda A, Piotrowska A, Dzięgiel P, Witkiewicz W. The meaning of PIWI proteins in cancer development. Oncol Lett 2017; 13:3354-3362. [PMID: 28529570 PMCID: PMC5431467 DOI: 10.3892/ol.2017.5932] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a histologically and genetically heterogeneous population of tumor cells that exhibits distinct molecular profiles determined by epigenetic alterations. P-element-induced wimpy testis (PIWI) proteins in complex with PIWI-interacting RNA (piRNA) have been previously demonstrated to be involved in epigenetic regulation in germline cells. Recently, reactivation of PIWI expression, primarily PIWI-like protein 1 and 2, through aberrant DNA methylation resulting in genomic silencing has been identified in various types of tumors. It has been suggested that the PIWI-piRNA complex contributes to cancer development and progression by promoting a stem-like state of cancer cells, or cancer stem cells (CSCs). It has been identified that CSCs represent the cells that have undergone epithelial-mesenchymal transition (EMT) and acquired metastatic capacities. However, the molecular association between the EMT process and the stem-cell state remains unclear. Further extensive characterization of CSCs in individual types of tumors is required to identify specific markers for the heterogeneous population of CSCs and therefore selectively target CSCs. Previous studies indicate a reciprocal regulation between PIWI proteins and a complex signaling network linking markers characterized for CSCs and transcription factors involved in EMT. In the present review, studies of PIWI function are summarized, and the potential involvement of PIWI proteins in cancer development and progression is discussed.
Collapse
Affiliation(s)
- Monika Litwin
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Poland.,Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland
| | - Anna Szczepańska-Buda
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Poland.,Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wrocław Medical University, 50-368 Wrocław, Poland.,Department of Physiotherapy and Occupational Therapy in Conservative and Interventional Medicine, 51-612 Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Poland
| |
Collapse
|
210
|
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 2017; 66:22-37.e9. [PMID: 28344082 PMCID: PMC5387670 DOI: 10.1016/j.molcel.2017.02.017] [Citation(s) in RCA: 1523] [Impact Index Per Article: 217.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/28/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. CircRNAs are conserved, abundant, and regulated in myogenesis High-throughput phenotypic screening reveals functional circRNAs Circ-ZNF609 regulates myoblast proliferation Circ-ZNF609 can be translated
Collapse
Affiliation(s)
- Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Briganti
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Olga Sthandier
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Pietro Laneve
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Institut Pasteur Italy, Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
211
|
Zhang Y, Ren YJ, Guo LC, Ji C, Hu J, Zhang HH, Xu QH, Zhu WD, Ming ZJ, Yuan YS, Ren X, Song J, Yang JM. Nucleus accumbens-associated protein-1 promotes glycolysis and survival of hypoxic tumor cells via the HDAC4-HIF-1α axis. Oncogene 2017; 36:4171-4181. [PMID: 28319066 PMCID: PMC5537617 DOI: 10.1038/onc.2017.51] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
Abstract
Nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB/POZ gene family, has emerging roles in cancer. In this study, we identified the NAC1-HDAC4-HIF-1α axis as an important pathway in regulating glycolysis and hypoxic adaptation in tumor cells. We show that nuclear NAC1 binds to histone deacetylase type 4 (HDAC4), hindering phosphorylation of HDAC4 at Ser246 and preventing its nuclear export that leads to cytoplasmic degradation of the deacetylase. Accumulation of HDAC4 in the nuclei results in an attenuation of HIF-1α acetylation, enhancing the stabilization and transcriptional activity of HIF-1α and strengthening adaptive response of cells to hypoxia. We also show the role of NAC1 in promoting glycolysis in a mouse xenograft model, and demonstrate that knockdown of NAC1 expression can reinforce the antitumor efficacy of bevacizumab, an inhibitor of angiogenesis. Clinical implication of the NAC1-HDAC4-HIF-1α pathway is suggested by the results showing that expression levels of these proteins are significantly correlative in human tumor specimens and associated with the disease progression. This study not only reveals an important function of NAC1 in regulating glycolysis, but also identifies the NAC1-HDAC4-HIF-1α axis as a novel molecular pathway that promotes survival of hypoxic tumor cells.
Collapse
Affiliation(s)
- Y Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - Y-J Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - L-C Guo
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - C Ji
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - J Hu
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - H-H Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - Q-H Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - W-D Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - Z-J Ming
- Department of Pharmacology, College of Pharmaceutical Sciences, First Affiliated Hospital, Soochow University, Jiangsu, China
| | - Y-S Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - X Ren
- Department of Pharmacology and Microbiology and Immunology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - J Song
- Department of Pharmacology and Microbiology and Immunology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - J-M Yang
- Department of Pharmacology and Microbiology and Immunology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
212
|
Xu W, Wang Y, Qi X, Xie J, Wei Z, Yin X, Wang Z, Meng J, Han W. Prognostic factors of palatal mucoepidermoid carcinoma: a retrospective analysis based on a double-center study. Sci Rep 2017; 7:43907. [PMID: 28262804 PMCID: PMC5338264 DOI: 10.1038/srep43907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) of the palate is a common malignancy of minor salivary glands. This study was designed to identify the prognostic factors for MEC of the palate. The medical records of patients diagnosed with MEC of the palate who visited the Department of Oral and Maxillofacial Surgery at Nanjing Stomatological Hospital and the Department of Stomatology at Central Hospital of Xuzhou were retrospectively studied. The prognostic factors were determined using a Cox proportional hazards model. Furthermore, the expression of cancer stem cell (CSC) markers CD44, CD133, Nanog and Sox2 were detected in neoplastic samples of these patients by immunohistochemistry. As a result, both univariate analysis and multivariate analysis proved a high histological grade and an advanced tumor stage as negative prognostic factors for overall survival. By immunohistochemistry staining and survival analysis, a combination of CD44/CD133/SOX2 was found to have the strongest prognostic value for palatal MEC patients. In conclusion, the proposed nomogram which include histological grade and tumor stage along with cancer stem cell markers provides a more accurate long-term prediction for palatal MEC patients.
Collapse
Affiliation(s)
- Wenguang Xu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Yufeng Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Xiaofeng Qi
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Junqi Xie
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Zheng Wei
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Xiteng Yin
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| | - Jian Meng
- Department of Stomatology, Xuzhou Central Hospital, Affiliated Hospital of Medical College of Southeast University, Xuzhou 221009, People’s Republic of China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, P.R. China
| |
Collapse
|
213
|
Martin D, Grapin-Botton A. The Importance of REST for Development and Function of Beta Cells. Front Cell Dev Biol 2017; 5:12. [PMID: 28286748 PMCID: PMC5323410 DOI: 10.3389/fcell.2017.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST is expressed in the progenitors of both neurons and beta cells during development, but it is down-regulated as the cells differentiate. Although REST mutations and deregulation have yet to be connected to diabetes in humans, REST activation during both development and in adult beta cells leads to diabetes in mice.
Collapse
Affiliation(s)
- David Martin
- Service of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland
| | | |
Collapse
|
214
|
Kenda Suster N, Smrkolj S, Virant-Klun I. Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers. J Ovarian Res 2017; 10:11. [PMID: 28231820 PMCID: PMC5324304 DOI: 10.1186/s13048-017-0306-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The mechanism of aggressive character of ovarian cancer and unsuccessful treatment of women with this deadly disease has been recently explained by the theory of cancer stem cells (CSCs). It has been reported that ovarian carcinogenesis and progression of disease is associated with epithelial-mesenchymal transition (EMT). EMT, a physiological cell process during embryonic development and later in life during regeneration, could, when induced in pathological condition, generate CSCs-like cells. Until now EMT in the ovarian tissue has been mainly studied in cell cultures in vitro. The aim of this study was to focus on in situ morphological changes in the ovarian surface epithelium of tumor tissue in women with epithelial ovarian cancer after we applied the antibodies for markers of EMT vimentin and pluripotency-related markers NANOG, SOX2 and SSEA-4. Methods We analyzed ovarian tissue sections of 20 women with high grade serous ovarian carcinoma. After eosin and hematoxylin staining, used in standard practice, immunohistochemistry was performed for vimentin and markers of pluripotency: NANOG, SSEA-4 and SOX2. We focused on the ovarian surface epithelium in order to observe morphological changes in tumor tissue. Results Among epithelial cells of the ovarian surface epithelium in women with serous ovarian carcinoma we observed a population of small NANOG-positive cells with diameters of up to 5 μm and nuclei, which filled almost the entire cell volumes. These small NANOG-positive cells were in some cases concentrated in the regions with morphologically changed epithelial cells. In these regions, a population of bigger round cells with diameters of 10–15 μm with large nuclei, and positively stained for vimentin, NANOG and other markers of pluripotnecy, were released from the surface epithelium. These cells are proposed as CSCs, and possibly originate from small stem cells among epithelial cells. They formed typical cell clusters, invaded the tissue by changing their round shape into a mesenchymal-like phenotype, and contributed to the manifestation of ovarian cancer. Conclusions Our findings show morphological changes in the ovarian surface epithelium in tumor slides of high grade serous ovarian carcinoma and provide a new population of putative CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0306-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
215
|
Fu L, Koganti PP, Wang J, Wang L, Wang CL, Yao J. Lhx8 interacts with a novel germ cell-specific nuclear factor containing an Nbl1 domain in rainbow trout (Oncorhynchus mykiss). PLoS One 2017; 12:e0170760. [PMID: 28151980 PMCID: PMC5289475 DOI: 10.1371/journal.pone.0170760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
Lhx8 is an important transcription factor that is preferentially expressed in germ cells. Lhx8 null mice are infertile due to lack of oocytes and impairment of the transition from primordial follicles to primary follicles. Lhx8 deficiency also affects the expression of many important oocyte-specific genes. In this study, we report the characterization of rainbow trout lhx8 genes and identification of a novel germ cell-specific nuclear factor that interacts with Lhx8. Two lhx8 genes, lhx8a and lhx8b, were identified, encoding proteins of 344 and 361 amino acids, respectively. The two proteins share 83% sequence identity and both transcripts are specifically expressed in the ovary. Quantitative real time PCR analysis demonstrated that both genes are expressed highly in pre-vitellogenic ovaries as well as in early stage embryos. Using a yeast two-hybrid screening system, a novel protein (Borealin-2) interacting with Lhx8 was identified. The interaction between either Lhx8a or Lhx8b and Borealin-2 was further confirmed by a bimolecular fluorescence complementation (BiFC) assay. Borealin-2 is a protein of 255 amino acids containing an Nbl1 domain, and its mRNA expression is restricted to the ovary and testis. A GFP reporter assay revealed that Borealin-2 is a nuclear protein. Collectively, results indicate that both Lhx8a and Lhx8b function through interaction with Borealin-2, which may play an important role during oogenesis and early embryogenesis in rainbow trout.
Collapse
Affiliation(s)
- Liyuan Fu
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Prasanthi P. Koganti
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jian Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Lei Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Cheng-Lun Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
216
|
Popowski M, Lee BK, Rhee C, Iyer VR, Tucker HO. Arid3a regulates mesoderm differentiation in mouse embryonic stem cells. JOURNAL OF STEM CELL THERAPY AND TRANSPLANTATION 2017; 1:52-62. [PMID: 31080945 PMCID: PMC6510499 DOI: 10.29328/journal.jsctt.1001005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Research into regulation of the differentiation of stem cells is critical to understanding early developmental decisions and later development growth. The transcription factor ARID3A previously was shown to be critical for trophectoderm and hematopoetic development. Expression of ARID3A increases during embryonic differentiation, but the underlying reason remained unclear. Here we show that Arid3a null embryonic stem (ES) cells maintain an undifferentiated gene expression pattern and form teratomas in immune-compromised mice. However, Arid3a null ES cells differentiated in vitro into embryoid bodies (EBs) significantly faster than control ES cells, and the majority forming large cystic embryoid EBs. Analysis of gene expression during this transition indicated that Arid3a nulls differentiated spontaneously into mesoderm and neuroectoderm lineages. While young ARID3A-deficient mice showed no gross tissue morphology, proliferative and structural abnormalities were observed in the kidneys of older null mice. Together these data suggest that ARID3A is not only required hematopoiesis, but is critical for early mesoderm differentiation.
Collapse
Affiliation(s)
- Melissa Popowski
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Bum-kyu Lee
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Cathy Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Address for Correspondence: Haley O Tucker, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
217
|
Baines K, Renaud S. Transcription Factors That Regulate Trophoblast Development and Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:39-88. [DOI: 10.1016/bs.pmbts.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
218
|
Jang JH, Kim WR, Sharma A, Cho SH, James TD, Kang C, Kim JS. Targeted tumor detection: guidelines for developing biotinylated diagnostics. Chem Commun (Camb) 2017; 53:2154-2157. [PMID: 28138662 DOI: 10.1039/c7cc00311k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the prominent role of hydrophilicity in the preferential cellular uptake process of biotinylated fluorescent probes.
Collapse
Affiliation(s)
- Joo Hee Jang
- Department of Chemistry
- Korea University
- Seoul
- Korea
| | - Woo Ri Kim
- The School of East-West Medical Science
- Kyung Hee University
- Yongin
- Korea
| | - Amit Sharma
- Department of Chemistry
- Korea University
- Seoul
- Korea
| | - Suk Hee Cho
- The School of East-West Medical Science
- Kyung Hee University
- Yongin
- Korea
| | | | - Chulhun Kang
- The School of East-West Medical Science
- Kyung Hee University
- Yongin
- Korea
| | | |
Collapse
|
219
|
Mao J, Zhang Q, Deng W, Wang H, Liu K, Fu H, Zhao Q, Wang X, Liu L. Epigenetic Modifiers Facilitate Induction and Pluripotency of Porcine iPSCs. Stem Cell Reports 2016; 8:11-20. [PMID: 28041878 PMCID: PMC5233437 DOI: 10.1016/j.stemcr.2016.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
Inadequate silencing of exogenous genes represents a major obstacle to complete epigenetic reprogramming of porcine-induced pluripotent stem cells (piPSCs) by conventional pluripotency transcription factors (OSKM). We tested the hypothesis that epigenetic modification by active DNA or histone demethylation or by inhibition of histone deacetylase would enhance reprogramming and exogenous gene silencing in piPSCs. piPSCs induced by OSKM in combination with epigenetic factors, specifically Ten-Eleven Translocation (Tet1 or Tet3) or lysine (K)-specific demethylase 3A (Kdm3a), expressed higher levels of Rex1 and other genes representing naive state and exhibited more open chromatin status, compared with those of OSKM controls. Tet1 also improved differentiation capacity. Conversion with inhibitors of histone deacetylases (HDACi), NaB, TSA, or VPA, further increased Rex1 expression, while decreasing expression of exogenous genes. piPSCs induced by Tet1+OSKM followed by conversion with HDACi show high pluripotency. Together, epigenetic modifiers enhance generation of piPSCs and reduce their reliance on exogenous genes. Epigenetic modifiers facilitate induction and quality of porcine iPSCs Tet1, Tet3, or Kdm3a increases naive pluripotency network in association with Rex1 Unlike cytoplasmic Rex1, nuclear expression of Rex1 is associated with high pluripotency HDAC inhibitors further activate Rex1 and reduce reliance on the exogenous genes
Collapse
Affiliation(s)
- Jian Mao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Deng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xumin Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
220
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
221
|
Xiong J, Zhang Z, Chen J, Huang H, Xu Y, Ding X, Zheng Y, Nishinakamura R, Xu GL, Wang H, Chen S, Gao S, Zhu B. Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine. Mol Cell 2016; 64:913-925. [PMID: 27840027 DOI: 10.1016/j.molcel.2016.10.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/28/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
TET family enzymes successively oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, leading to eventual demethylation. 5hmC and TET enzymes occupy distinct chromatin regions, suggesting unknown mechanisms controlling the fate of 5hmC within diverse chromatin environments. Here, we report that SALL4A preferentially associates with 5hmC in vitro and occupies enhancers in mouse embryonic stem cells in a largely TET1-dependent manner. Although most 5hmC at SALL4A peaks undergoes further oxidation, this process is abrogated upon deletion of Sall4 gene, with a concomitant reduction of TET2 at these regions. Thus, SALL4A facilitates further oxidation of 5hmC at its binding sites, which requires its 5hmC-binding activity and TET2, supporting a collaborative action between SALL4A and TET proteins in regulating stepwise oxidation of 5mC at enhancers. Our study identifies SALL4A as a 5hmC binder, which facilitates 5hmC oxidation by stabilizing TET2 association, thereby fine-tuning expression profiles of developmental genes in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hua Huang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yali Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaojun Ding
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Guo-Liang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
222
|
Smits AH, Vermeulen M. Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities. Trends Biotechnol 2016; 34:825-834. [DOI: 10.1016/j.tibtech.2016.02.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 11/28/2022]
|
223
|
Liu Y, Liu DL, Dong LL, Wen D, Shi DM, Zhou J, Fan J, Wu WZ. miR-612 suppresses stem cell-like property of hepatocellular carcinoma cells by modulating Sp1/Nanog signaling. Cell Death Dis 2016; 7:e2377. [PMID: 27685621 PMCID: PMC5059880 DOI: 10.1038/cddis.2016.282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
In our previous study we found that miR-612 negatively regulated stem cell-like property and tumor metastasis of hepatocellular carcinoma cells (HCC). In this study, we try to elucidate underlying mechanism of the regulation, and find that miR-612 inversely modulate the mRNA and protein level of epithelial cell adhesion molecule as well as CD133, negatively regulate the numbers and sizes of tumor spheres, directly inhibit the protein level of Sp1, and subsequently reduce transcription activity of Nanog. Of importance, the higher levels of Sp1 and Nanog in biopsies are the more unfavorable prognoses of HCC patients are found after tumor resection. Taken together, miR-612 has a suppressive role on HCC stemness via Sp1/Nanog signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dong-Li Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Li-Li Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Duo Wen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
224
|
Perez-Camps M, Tian J, Chng SC, Sem KP, Sudhaharan T, Teh C, Wachsmuth M, Korzh V, Ahmed S, Reversade B. Quantitative imaging reveals real-time Pou5f3-Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish. eLife 2016; 5. [PMID: 27684073 PMCID: PMC5042653 DOI: 10.7554/elife.11475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI:http://dx.doi.org/10.7554/eLife.11475.001 As an animal embryo develops, cells divide and establish three distinct layers called the ectoderm, mesoderm and endoderm. Proteins called transcription factors control this process by regulating the activity of particular genes. Two or more transcription factors may interact to modulate each other’s activity. Zebrafish embryos provide an ideal model system for monitoring how these embryonic layers form and the interactions between transcription factors in real-time because they are transparent and develop outside their parents. Pou5f3 and Nanog are two key transcription factors involved in this process in zebrafish. However, it is not clear how Pou5f3 and Nanog instruct cells to become ectoderm, mesoderm or endoderm. Perez Camps et al. used imaging techniques to study Pou5f3 and Nanog. The experiments show that Pou5f3 and Nanog bind together to form complexes that instruct cells to form the temporary layer that later gives rise to both the mesoderm and endoderm. The cells in which there are less Pou5f3 and Nanog complexes form the ectoderm layer. To develop the body shape of adult zebrafish, the embryos need to give individual cells information about their location in the body. For example, a signal protein called bone morphogenetic protein (BMP) accumulates on the side of the embryo that will become the underside of the fish. Perez Camps et al. show that once the endoderm, mesoderm and ectoderm have formed, Pou5f3–Nanog complexes regulate BMP signalling to specify the underside of the fish. Meanwhile, in the endoderm on the opposite side, another transcription factor called Sox32 binds to individual Pou5f3 and Nanog proteins. This prevents Pou5f3 and Nanog from forming complexes and determines which side of the embryo will make the topside of the fish. A future challenge is to explore other transcription factors that may prevent Pou5f1 and Nanog from binding in the mesoderm and ectoderm of the topside of the fish. DOI:http://dx.doi.org/10.7554/eLife.11475.002
Collapse
Affiliation(s)
| | - Jing Tian
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Serene C Chng
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Kai Pin Sem
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | | | - Cathleen Teh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sohail Ahmed
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
225
|
Wang XQ, Lo CM, Chen L, Ngan ESW, Xu A, Poon RY. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ 2016; 24:38-48. [PMID: 27636107 PMCID: PMC5260505 DOI: 10.1038/cdd.2016.84] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023] Open
Abstract
The mechanisms of how signaling pathways are coordinated and integrated for the
maintenance of the self-renewal of human embryonic stem cells (hESCs) and the
acquisition of pluripotency in reprogramming are still only partly understood.
CDK1 is a key regulator of mitosis. Recently, CDK1 has been shown to be involved
in regulating self-renewal of stem cells, even though the mechanistic role of
how CDK1 regulates pluripotency is unknown. In this report, we aim to understand
how CDK1 can control pluripotency by reducing CDK1 activity to a level that has
no effect on cell cycle progression. We demonstrated that high levels of CDK1 is
associated with the pluripotency stage of hESCs; and decreased CDK1 activity to
a level without perturbing the cell cycle is sufficient to induce
differentiation. CDK1 specifically targets the phosphorylation of PDK1 and
consequently the activity of PI3K/Akt and its effectors ERK and
GSK3β. Evidence of the reversion of inactive CDK1-mediated
differentiation by the inhibition of Akt signaling effectors suggests that the
CDK1-PDK1-PI3K/Akt kinase cascade is a functional signaling pathway for the
pluripotency of hESCs. Moreover, cyclin B1-CDK1 complexes promote somatic
reprogramming efficiency, probably by regulating the maturation of induced
pluripotent stem cells (iPSCs), as cyclin B1 stimulates a higher cellular level
of LIN28A, suggesting that monitoring iPSC factors could be a new path for the
enhancement of reprogramming efficiency. Together, we demonstrate an essential
role for the CDK1-PDK1-PI3K/Akt kinase signaling pathway in the regulation
of self-renewal, differentiation, and somatic reprogramming, which provides a
novel kinase cascade mechanism for pluripotency control and acquisition.
Collapse
Affiliation(s)
- Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Elly S-W Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Randy Yc Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
226
|
Uranishi K, Akagi T, Koide H, Yokota T. Esrrb directly binds to Gata6 promoter and regulates its expression with Dax1 and Ncoa3. Biochem Biophys Res Commun 2016; 478:1720-5. [PMID: 27601327 DOI: 10.1016/j.bbrc.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
Estrogen-related receptor beta (Esrrb) is expressed in embryonic stem (ES) cells and is involved in self-renewal ability and pluripotency. Previously, we found that Dax1 is associated with Esrrb and represses its transcriptional activity. Further, the disruption of the Dax1-Esrrb interaction increases the expression of the extra-embryonic endoderm marker Gata6 in ES cells. Here, we investigated the influences of Esrrb and Dax1 on Gata6 expression. Esrrb overexpression in ES cells induced endogenous Gata6 mRNA and Gata6 promoter activity. In addition, the Gata6 promoter was found to contain the Esrrb recognition motifs ERRE1 and ERRE2, and the latter was the responsive element of Esrrb. Associations between ERRE2 and Esrrb were then confirmed by biotin DNA pulldown and chromatin immunoprecipitation assays. Subsequently, we showed that Esrrb activity at the Gata6 promoter was repressed by Dax1, and although Dax1 did not bind to ERRE2, it was associated with Esrrb, which directly binds to ERRE2. In addition, the transcriptional activity of Esrrb was enhanced by nuclear receptor co-activator 3 (Ncoa3), which has recently been shown to be a binding partner of Esrrb. Finally, we showed that Dax1 was associated with Ncoa3 and repressed its transcriptional activity. Taken together, the present study indicates that the Gata6 promoter is activated by Esrrb in association with Ncoa3, and Dax1 inhibited activities of Esrrb and Ncoa3, resulting maintenance of the undifferentiated status of ES cells.
Collapse
Affiliation(s)
- Kousuke Uranishi
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Hiroshi Koide
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
227
|
Fidalgo M, Huang X, Guallar D, Sanchez-Priego C, Valdes VJ, Saunders A, Ding J, Wu WS, Clavel C, Wang J. Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. Cell Stem Cell 2016; 19:355-69. [PMID: 27345836 PMCID: PMC5010473 DOI: 10.1016/j.stem.2016.05.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
Abstract
Pluripotency is increasingly recognized as a spectrum of cell states defined by their growth conditions. Although naive and primed pluripotency states have been characterized molecularly, our understanding of events regulating state acquisition is wanting. Here, we performed comparative RNA sequencing of mouse embryonic stem cells (ESCs) and defined a pluripotent cell fate (PCF) gene signature associated with acquisition of naive and primed pluripotency. We identify Zfp281 as a key transcriptional regulator for primed pluripotency that also functions as a barrier toward achieving naive pluripotency in both mouse and human ESCs. Mechanistically, Zfp281 interacts with Tet1, but not Tet2, and its direct transcriptional target, miR-302/367, to negatively regulate Tet2 expression to establish and maintain primed pluripotency. Conversely, ectopic Tet2 alone, but not Tet1, efficiently reprograms primed cells toward naive pluripotency. Our study reveals a molecular circuitry in which opposing functions of Tet1 and Tet2 control acquisition of alternative pluripotent states.
Collapse
Affiliation(s)
- Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departamento de Fisioloxia, Centro de Investigacion en Medicina Molecular e Enfermidades Cronicas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Sanchez-Priego
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor Julian Valdes
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wen-Shu Wu
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Carlos Clavel
- Hair and Pigmentation Development, A(∗)Star-Institute of Medical Biology, 138648 Singapore, Singapore
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
228
|
Stumpf PS, Ewing R, MacArthur BD. Single-cell pluripotency regulatory networks. Proteomics 2016; 16:2303-12. [PMID: 27357612 DOI: 10.1002/pmic.201500528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a popular model system for investigating development, tissue regeneration, and repair. Although much is known about the molecular mechanisms that regulate the balance between self-renewal and lineage commitment in PSCs, the spatiotemporal integration of responsive signaling pathways with core transcriptional regulatory networks are complex and only partially understood. Moreover, measurements made on populations of cells reveal only average properties of the underlying regulatory networks, obscuring their fine detail. Here, we discuss the reconstruction of regulatory networks in individual cells using novel single-cell transcriptomics and proteomics, in order to expand our understanding of the molecular basis of pluripotency, including the role of cell-cell variability within PSC populations, and ways in which networks may be controlled in order to reliably manipulate cell behavior.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rob Ewing
- Institute for Life Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Department of Mathematics, University of Southampton, Southampton, UK.
| |
Collapse
|
229
|
Zhou DS, Wang HB, Zhou ZG, Zhang YJ, Zhong Q, Xu L, Huang YH, Yeung SC, Chen MS, Zeng MS. TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 2016. [PMID: 26219398 PMCID: PMC4695177 DOI: 10.18632/oncotarget.4643] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is essential for cell mitosis and transcriptional functions. In the present study, we first demonstrated that both TACC3 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue biopsies according to western blot analyses, immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays. Moreover, high TACC3 expression was positively correlated with poor overall survival (OS) and disease-free survival (DFS) (p < 0.001). Using HCC cell lines, we then demonstrated that either TACC3 knockdown or treatment with the potential TACC3 inhibitor KHS101 suppressed cell growth and sphere formation as well as the expression of stem cell transcription factors, including Bmi1, c-Myc and Nanog. Silencing TACC3 may suppress the Wnt/β-catenin and PI3K/AKT signaling pathways, which regulate cancer stem cell-like characteristics. Taken together, these data suggest that TACC3 is enriched in HCC and that TACC3 down-regulation inhibits the proliferation, clonogenicity, and cancer stem cell-like phenotype of HCC cells. KHS101, a TACC3 inhibitor, may serve as a novel therapeutic agent for HCC patients with tumors characterized by high TACC3 expression.
Collapse
Affiliation(s)
- Dong-Sheng Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Shandong Provincial Qianfoshan Hospital, Jinan, P. R. China
| | - Hong-Bo Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhong-Guo Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Li Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sai-Ching Yeung
- Department of General Internal Medicine, Ambulatory Treatment and Emergency Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min-Shan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
230
|
Waldron L, Steimle JD, Greco TM, Gomez NC, Dorr KM, Kweon J, Temple B, Yang XH, Wilczewski CM, Davis IJ, Cristea IM, Moskowitz IP, Conlon FL. The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation. Dev Cell 2016; 36:262-75. [PMID: 26859351 DOI: 10.1016/j.devcel.2016.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/21/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022]
Abstract
Human mutations in the cardiac transcription factor gene TBX5 cause congenital heart disease (CHD), although the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the nucleosome remodeling and deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD mis-sense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD.
Collapse
Affiliation(s)
- Lauren Waldron
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas C Gomez
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry M Dorr
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Brenda Temple
- R.L. Juliano Structural Bioinformatics Core, Department of Biochemistry and Biophysics, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xinan Holly Yang
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Caralynn M Wilczewski
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Frank L Conlon
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
231
|
van den Hurk M, Kenis G, Bardy C, van den Hove DL, Gage FH, Steinbusch HW, Rutten BP. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics 2016; 8:1131-49. [PMID: 27419933 DOI: 10.2217/epi-2016-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.
Collapse
Affiliation(s)
- Mark van den Hurk
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gunter Kenis
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Cedric Bardy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel L van den Hove
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics & Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Harry W Steinbusch
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Bart P Rutten
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
232
|
Nakayama N, Kato H, Sakashita G, Nariai Y, Nakayama K, Kyo S, Urano T. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells. Arch Biochem Biophys 2016; 606:10-5. [PMID: 27424155 DOI: 10.1016/j.abb.2016.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan.
| |
Collapse
|
233
|
Kareta MS. Bioinformatic and Genomic Analyses of Cellular Reprogramming and Direct Lineage Conversion. CURRENT PHARMACOLOGY REPORTS 2016; 2:103-112. [PMID: 35663262 PMCID: PMC9165525 DOI: 10.1007/s40495-016-0054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular reprogramming, whereby cell fate can be changed by the expression of a few defined factors, is a remarkable process that harnesses the innate ability of a cell's own genome to rework its expressional networks and function. Since cell lineages are defined by global regulation of gene expression, transcriptional regulators, and coupled to the epigenetic markings of the chromatin, changing the cell fate necessitates broad changes to these central cellular features. To properly characterize these changes, and the mechanisms that drive them, computational and genomic approaches are perfectly suited to provide a holistic picture of the reprogramming mechanisms. In particular, the use of bioinformatic analysis has been a major driver in the study of cellular reprogramming, both as it relates to induced pluripotency or direct lineage conversion. This review will summarize many of the bioinformatic studies that have advanced our knowledge of reprogramming and address future directions for these investigations.
Collapse
Affiliation(s)
- Michael S Kareta
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
234
|
Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity. Sci Rep 2016; 6:26899. [PMID: 27247273 PMCID: PMC4888081 DOI: 10.1038/srep26899] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/10/2016] [Indexed: 01/15/2023] Open
Abstract
The polycomb repressive complex 1 (PRC1) is a multi-subunit complex that plays critical roles in the epigenetic modulation of gene expression. Here, we show that the PRC1 component polycomb group ring finger 6 (Pcgf6) is required to maintain embryonic stem cell (ESC) identity. In contrast to canonical PRC1, Pcgf6 acts as a positive regulator of transcription and binds predominantly to promoters bearing active chromatin marks. Pcgf6 is expressed at high levels in ESCs, and knockdown reduces the expression of the core ESC regulators Oct4, Sox2, and Nanog. Conversely, Pcgf6 overexpression prevents downregulation of these factors and impairs differentiation. In addition, Pcgf6 enhanced reprogramming in both mouse and human somatic cells. The genomic binding profile of Pcgf6 is highly similar to that of trithorax group proteins, but not of PRC1 or PRC2 complexes, suggesting that Pcgf6 functions atypically in ESCs. Our data reveal novel roles for Pcgf6 in directly regulating Oct4, Nanog, Sox2, and Lin28 expression to maintain ESC identity.
Collapse
|
235
|
Mansouri S, Nejad R, Karabork M, Ekinci C, Solaroglu I, Aldape KD, Zadeh G. Sox2: regulation of expression and contribution to brain tumors. CNS Oncol 2016; 5:159-73. [PMID: 27230973 DOI: 10.2217/cns-2016-0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumors of the CNS are composed of a complex mixture of neoplastic cells, in addition to vascular, inflammatory and stromal components. Similar to most other tumors, brain tumors contain a heterogeneous population of cells that are found at different stages of differentiation. The cancer stem cell hypothesis suggests that all tumors are composed of subpopulation of cells with stem-like properties, which are capable of self-renewal, display resistance to therapy and lead to tumor recurrence. One of the most important transcription factors that regulate cancer stem cell properties is SOX2. In this review, we focus on SOX2 and the complex network of signaling molecules and transcription factors that regulate its expression and function in brain tumor initiating cells. We also highlight important findings in the literature about the role of SOX2 in glioblastoma and medulloblastoma, where it has been more extensively studied.
Collapse
Affiliation(s)
- Sheila Mansouri
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Romina Nejad
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey.,School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kenneth D Aldape
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Gelareh Zadeh
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, M5T 2S8, Canada
| |
Collapse
|
236
|
Mayfield AE, Fitzpatrick ME, Latham N, Tilokee EL, Villanueva M, Mount S, Lam BK, Ruel M, Stewart DJ, Davis DR. The impact of patient co-morbidities on the regenerative capacity of cardiac explant-derived stem cells. Stem Cell Res Ther 2016; 7:60. [PMID: 27225482 PMCID: PMC4880978 DOI: 10.1186/s13287-016-0321-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although patient-sourced cardiac stem cells repair damaged myocardium, the extent to which medical co-morbidities influence cardiac-derived cell products is uncertain. Therefore, we investigated the influence of atherosclerotic risk factors on the regenerative performance of human cardiac explant-derived cells (EDCs). METHODS In this study, the Long Term Stratification for survivors of acute coronary syndromes model was used to quantify the burden of cardiovascular risk factors within a group of patients with established atherosclerosis. EDCs were cultured from human atrial appendages and injected into immunodeficient mice 7 days post-left coronary ligation. Cytokine arrays and enzyme linked immunoassays were used to determine the release of cytokines by EDCs in vitro, and echocardiography was used to determine regenerative capabilities in vivo. RESULTS EDCs sourced from patients with more cardiovascular risk factors demonstrated a negative correlation with production of pro-healing cytokines (such as stromal cell derived factor 1α) and exosomes which had negative effects on the promotion of angiogenesis and chemotaxis. Reductions in exosomes and pro-healing cytokines with accumulating medical co-morbidities were associated with increases in production of the pro-inflammatory cytokine interleukin-6 (IL-6) by EDCs. Increased patient co-morbidities were also correlated with significant attenuation in improvements of left ventricular ejection fraction. CONCLUSIONS The regenerative performance of the earliest precursor cell population cultured from human explant tissue declines with accumulating medical co-morbidities. This effect is associated with diminished production of pro-cardiogenic cytokines and exosomes while IL-6 is markedly increased. Predictors of cardiac events demonstrated a lower capacity to support angiogenesis and repair injured myocardium in a mouse model of myocardial infarction.
Collapse
Affiliation(s)
- Audrey E Mayfield
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Megan E Fitzpatrick
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Nicholas Latham
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Everad L Tilokee
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Melanie Villanueva
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Seth Mount
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Bu-Khanh Lam
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Marc Ruel
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada.
| |
Collapse
|
237
|
Leukemic survival factor SALL4 contributes to defective DNA damage repair. Oncogene 2016; 35:6087-6095. [PMID: 27132514 PMCID: PMC5093088 DOI: 10.1038/onc.2016.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
SALL4 is aberrantly expressed in human myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We have generated a SALL4 transgenic (SALL4B Tg) mouse model with pre-leukemic MDS-like symptoms that transform to AML over time. This makes our mouse model applicable for studying human MDS/AML diseases. Characterization of the leukemic initiation population in this model leads to the discovery that Fancl (Fanconi anemia, complementation group L) is downregulated in SALL4B Tg leukemic and pre-leukemic cells. Similar to the reported Fanconi anemia (FA) mouse model, chromosomal instability with radial changes can be detected in pre-leukemic SALL4B Tg bone marrow (BM) cells after DNA damage challenge. Results from additional studies using DNA damage repair reporter assays support a role of SALL4 in inhibiting the homologous recombination pathway. Intriguingly, unlike the FA mouse model, after DNA damage challenge, SALL4B Tg BM cells can survive and generate hematopoietic colonies. We further elucidated that the mechanism by which SALL4 promotes cell survival is through Bcl2 activation. Overall, our studies demonstrate for the first time that SALL4 has a negative impact in DNA damage repair, and support the model of dual functional properties of SALL4 in leukemogenesis through inhibiting DNA damage repair and promoting cell survival.
Collapse
|
238
|
Novo CL, Tang C, Ahmed K, Djuric U, Fussner E, Mullin NP, Morgan NP, Hayre J, Sienerth AR, Elderkin S, Nishinakamura R, Chambers I, Ellis J, Bazett-Jones DP, Rugg-Gunn PJ. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes Dev 2016; 30:1101-15. [PMID: 27125671 PMCID: PMC4863740 DOI: 10.1101/gad.275685.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Abstract
Here, Novo et al. identify a new critical role for the transcription factor Nanog in maintaining an open heterochromatin state in pluripotent mouse embryonic stem cells and demonstrate that forced expression of Nanog is sufficient to remodel and decondense chromatin in more developmentally advanced mammalian cell types. This study delineates a direct connection between the pluripotency network and chromatin organization and shows that maintainence of an open heterochromatin architecture is highly regulated in embryonic stem cells. An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.
Collapse
Affiliation(s)
- Clara Lopes Novo
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Calvin Tang
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kashif Ahmed
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada
| | - Ugljesa Djuric
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eden Fussner
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Natasha P Morgan
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Jasvinder Hayre
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Arnold R Sienerth
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Sarah Elderkin
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - James Ellis
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David P Bazett-Jones
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
239
|
Germanguz I, Listgarten J, Cinkornpumin J, Solomon A, Gaeta X, Lowry WE. Identifying gene expression modules that define human cell fates. Stem Cell Res 2016; 16:712-24. [PMID: 27108395 DOI: 10.1016/j.scr.2016.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022] Open
Abstract
Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results.
Collapse
Affiliation(s)
- I Germanguz
- Molecular, Cell and Developmental Biology, UCLA, United States; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, United States
| | | | - J Cinkornpumin
- Molecular, Cell and Developmental Biology, UCLA, United States; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, United States
| | - A Solomon
- Molecular, Cell and Developmental Biology, UCLA, United States; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, United States
| | - X Gaeta
- Molecular, Cell and Developmental Biology, UCLA, United States; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, United States
| | - W E Lowry
- Molecular, Cell and Developmental Biology, UCLA, United States; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, United States; Molecular Biology Institute, UCLA, United States.
| |
Collapse
|
240
|
Stelloh C, Reimer MH, Pulakanti K, Blinka S, Peterson J, Pinello L, Jia S, Roumiantsev S, Hessner MJ, Milanovich S, Yuan GC, Rao S. The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing. Epigenetics Chromatin 2016; 9:14. [PMID: 27087855 PMCID: PMC4832553 DOI: 10.1186/s13072-016-0063-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The cohesin complex consists of multiple core subunits that play critical roles in mitosis and transcriptional regulation. The cohesin-associated protein Wapal plays a central role in off-loading cohesin to facilitate sister chromatid separation, but its role in regulating mammalian gene expression is not understood. We used embryonic stem cells as a model, given that the well-defined transcriptional regulatory circuits were established through master transcription factors and epigenetic pathways that regulate their ability to maintain a pluripotent state. RESULTS RNAi-mediated depletion of Wapal causes a loss of pluripotency, phenocopying loss of core cohesin subunits. Using chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq), we determine that Wapal occupies genomic sites distal to genes in combination with CTCF and core cohesin subunits such as Rad21. Interestingly, genomic sites occupied by Wapal appear enriched for cohesin, implying that Wapal does not off-load cohesin at regions it occupies. Wapal depletion induces derepression of Polycomb group (PcG) target genes without altering total levels of Polycomb-mediated histone modifications, implying that PcG enzymatic activity is preserved. By integrating ChIP-seq and gene expression changes data, we identify that Wapal binding is enriched at the promoters of PcG-silenced genes and is required for proper Polycomb repressive complex 2 (PRC2) recruitment. Lastly, we demonstrate that Wapal is required for the interaction of a distal cis-regulatory element (CRE) with the c-Fos promoter. CONCLUSIONS Collectively, this work indicates that Wapal plays a critical role in silencing of PcG target genes through the interaction of distal CREs with promoters.
Collapse
Affiliation(s)
- Cary Stelloh
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Michael H Reimer
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Kirthi Pulakanti
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Steven Blinka
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Jonathan Peterson
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Luca Pinello
- Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA USA
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| | - Sergei Roumiantsev
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA USA
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| | - Samuel Milanovich
- Sanford Research Center, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Guo-Cheng Yuan
- Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA USA
| | - Sridhar Rao
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
241
|
Park YG, Lee SE, Kim EY, Hyun H, Shin MY, Son YJ, Kim SY, Park SP. Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro. Dev Reprod 2016; 19:119-26. [PMID: 27004268 PMCID: PMC4801015 DOI: 10.12717/dr.2015.19.3.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/-) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/- (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF (72.8±7.69 and 81.2±3.56) than D3/STO (32.0±4.30 and 56.0±4.90) or D3/- (55.0±4.64 and 62.0±6.20). These results suggest that MEF feeder cell layer is more suitable to mES cell culture.
Collapse
Affiliation(s)
- Yun-Gwi Park
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea; Mirae Cell Bio, Seoul 05066, Korea
| | - Hyuk Hyun
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Min-Young Shin
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yeo-Jin Son
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Su-Young Kim
- Dept. of Preventive Medicine, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea; Mirae Cell Bio, Seoul 05066, Korea
| |
Collapse
|
242
|
Rizzino A, Wuebben EL. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:780-91. [PMID: 26992828 DOI: 10.1016/j.bbagrm.2016.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
Considerable progress has been made in understanding the roles of Sox2 and Oct4 in embryonic stem cells and mammalian embryogenesis. Specifically, significant progress has been made in answering three questions about the functions of Sox2 and Oct4, which are the focus of this review. 1) Are the first or second cell lineage decisions during embryogenesis controlled by Oct4 and/or Sox2? 2) Do the levels of Oct4 and Sox2 need to be maintained within narrow limits to promote normal development and to sustain the self-renewal of pluripotent stem cells? 3) Do Oct4 and Sox2 work closely together or is the primary role of Sox2 in pluripotent cells to ensure the expression of Oct4? Although significant progress has been made in answering these questions, additional studies are needed to resolve several important remaining issues. Nonetheless, the preponderance of the evidence suggests there is considerable crosstalk between Sox2 and Oct4, and further suggests Sox2 and Oct4 function as molecular rheostats and utilize negative feedback loops to carefully balance their expression and other critical genes during embryogenesis. This article is part of a Special Issue entitled: The Oct transcription factor family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States.
| | - Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States
| |
Collapse
|
243
|
Sudhir PR, Chen CH. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology. Int J Mol Sci 2016; 17:432. [PMID: 27011181 PMCID: PMC4813282 DOI: 10.3390/ijms17030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.
Collapse
Affiliation(s)
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
244
|
Guo J, Zhao MH, Liang S, Choi JW, Kim NH, Cui XS. Liver receptor homolog 1 influences blastocyst hatching in pigs. J Reprod Dev 2016; 62:297-303. [PMID: 26971889 PMCID: PMC4919294 DOI: 10.1262/jrd.2015-159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Liver receptor homolog 1 (Lrh1, also known as Nr5a2) belongs to the orphan
nuclear receptor superfamily and has diverse functions in development, metabolism, and cell differentiation
and death. Lrh1 regulates the expression of Oct4, which is a key factor of
early embryonic differentiation. However, the role of Lrh1 in early development of mammalian
embryo is unknown. In the present study, the localization, Lrh1 mRNA expression, and LRH1
protein levels in porcine early parthenotes were examined by immunofluorescence and real-time
reverse-transcription polymerase chain reaction. To determine the role of Lrh1 in porcine
early embryo development, the parthenotes were treated with the specific LRH1 antagonist 505601. The
immunofluorescence signal for LRH1 was only observed in the nucleus of blastocysts. The blastocyst
developmental rate in the presence of 50 and 100 μM 505601 was significantly lower than that in the control
group. The blastocyst hatching rate was also reduced in the presence of 50 and 100 μM 505601 than that under
control conditions. The latter effect was possibly due to the decreased expression of hatching-related genes
such as Fn1, Itgα5, and Cox2 upon the inhibition of
Lrh1. Incubation with the LRH1 antagonist also increased the number of apoptotic cells
among the blastocysts. Moreover, LRH1 inhibition enhanced the expression of the pro-apoptotic genes
Bax and Casp3, and reduced the expression of the anti-apoptotic gene
Bcl2. Lrh1 inhibition also led to significant decrease in the expression
levels of Oct4 mRNA and octamer-binding transcription factor 4 (OCT4) protein in the
blastocysts. In conclusion, Lrh1 affects blastocyst formation and hatching in porcine
embryonic development through the regulation of OCT4 expression and cell apoptosis.
Collapse
Affiliation(s)
- Jing Guo
- Department of Animal Science, Chungbuk National University, Chungbuk 362-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
245
|
Tapia-Limonchi R, Cahuana GM, Caballano-Infantes E, Salguero-Aranda C, Beltran-Povea A, Hitos AB, Hmadcha A, Martin F, Soria B, Bedoya FJ, Tejedo JR. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation. J Cell Biochem 2016; 117:2078-88. [PMID: 26853909 DOI: 10.1002/jcb.25513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Salguero-Aranda
- Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Amparo Beltran-Povea
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain
| | - Ana B Hitos
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Abdelkrim Hmadcha
- RED-TERCEL, Seville, Spain.,Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Franz Martin
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
246
|
He B, Tan K. Understanding transcriptional regulatory networks using computational models. Curr Opin Genet Dev 2016; 37:101-108. [PMID: 26950762 DOI: 10.1016/j.gde.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
Abstract
Transcriptional regulatory networks (TRNs) encode instructions for animal development and physiological responses. Recent advances in genomic technologies and computational modeling have revolutionized our ability to construct models of TRNs. Here, we survey current computational methods for inferring TRN models using genome-scale data. We discuss their advantages and limitations. We summarize representative TRNs constructed using genome-scale data in both normal and disease development. We discuss lessons learned about the structure/function relationship of TRNs, based on examining various large-scale TRN models. Finally, we outline some open questions regarding TRNs, including how to improve model accuracy by integrating complementary data types, how to infer condition-specific TRNs, and how to compare TRNs across conditions and species in order to understand their structure/function relationship.
Collapse
Affiliation(s)
- Bing He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Tan
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
247
|
Zhi X, Zhou XE, Melcher K, Xu HE. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. J Steroid Biochem Mol Biol 2016; 157:27-40. [PMID: 26159912 DOI: 10.1016/j.jsbmb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; Autophagy Research Center, University of Texas Southwestern Medical Center, 6000Harry Hines Blvd., Dallas, TX 75390, USA.
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; VARI-SIMM Center, Key Laboratory of Receptor Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
248
|
Wyles SP, Faustino RS, Li X, Terzic A, Nelson TJ. Systems-based technologies in profiling the stem cell molecular framework for cardioregenerative medicine. Stem Cell Rev Rep 2016; 11:501-10. [PMID: 25218144 DOI: 10.1007/s12015-014-9557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated interactions between epigenetic, transcriptional, and translational mechanisms. The science of incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) data in a specific biological sample is known as systems biology. Integrating systems biology in progression with stem cell biologics can contribute to our knowledge of mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage specification. This review provides a brief summarization of OMICS-based strategies including transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline molecular processes involved in heart development. Additionally, current efforts in cardioregeneration based on the "one-size-fits-all" principle limit the potential of individualized therapy in regenerative medicine. Here, we summarize recent studies that introduced systems biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for disease recurrence and patient-specific therapeutic response.
Collapse
Affiliation(s)
- Saranya P Wyles
- Center for Clinical and Translational Sciences, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
249
|
Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene 2016; 584:111-9. [PMID: 26892498 DOI: 10.1016/j.gene.2016.02.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
Abstract
There is a growing body of evidence supporting that cancer cells share many similarities with embryonic stem cells (ESCs). For example, aggressive cancers and ESCs share a common gene expression signature that includes hundreds of genes. Since ESC genes are not present in most adult tissues, they could be ideal candidate targets for cancer-specific diagnosis and treatment. This is an exciting cancer-targeting model. The major hurdle to test this model is to identify the key factors/pathway(s) within ESCs that are responsible for the cancer phenotype. SALL4 is one of few genes that can establish this link. The first publication of SALL4 is on its mutation in a human inherited disorder with multiple developmental defects. Since then, over 300 papers have been published on various aspects of this gene in stem cells, development, and cancers. This review aims to summarize our current knowledge of SALL4, including a SALL4-based approach to classify and target cancers. Many questions about this important gene still remain unanswered, specifically, on how this gene regulates cell fates at a molecular level. Understanding SALL4's molecular functions will allow development of specific targeted approaches in the future.
Collapse
Affiliation(s)
- Hiro Tatetsu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Gao Chong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine (MD6), #12-01, 14 Medical Drive, 117599, Singapore; Harvard Stem Cell Institute, Center for Life Science Room 437, 3 Blackfan Circle Room 437, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA.
| |
Collapse
|
250
|
Ren ZH, Zhang CP, Ji T. Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncol Lett 2016; 11:1973-1979. [PMID: 26998109 DOI: 10.3892/ol.2016.4207] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinomas (OSCCs) are a growing problem in the world. The various existing treatments have not markedly improved the survival rate of patients with OSCC during the past three decades. Novel treatment strategies are required. Sex determining region Y-box 2 (SOX2) is a transcription factor that is involved in the maintenance of embryonic stem cell pluripotency and in multiple developmental processes. SOX2 expression was indicated to act as a prognostic factor in various types of tumors, including breast, colorectal, gastric and lung cancer and glioblastoma, and as a link between malignancy and stemness. Cancer stem cells (CSCs) may be responsible for the genesis, growth and metastatic spread of tumors. The poor survival outcomes for OSCC patients may be attributable to a poor selection of target cells for treatment, as current oral cancer therapies are generally aimed at the global mass of tumor. Therefore, the consideration that novel approaches to oral cancer may be targeted using SOX2 and CSCs appears reasonable. In order to better understand the oncogenic roles and the corresponding signal transduction pathways of the SOX2 protein, the present study emphasizes the role of SOX2 in OSCC, including the proteins associated with OSCC, and reviews the literature regarding the role of SOX2 in lymph node metastasis. The aim of the present study is to provide a reference for future studies that engage in research on the aforementioned subject.
Collapse
Affiliation(s)
- Zhen-Hu Ren
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Chen-Ping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|