201
|
Vásquez-Soto B, Manríquez N, Cruz-Amaya M, Zouhar J, Raikhel NV, Norambuena L. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae. Biol Res 2015. [PMID: 26209329 PMCID: PMC4515019 DOI: 10.1186/s40659-015-0032-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.
Collapse
Affiliation(s)
- Beatriz Vásquez-Soto
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Nicolás Manríquez
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Mirna Cruz-Amaya
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Natasha V Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| |
Collapse
|
202
|
Narayanan S, Dubarry M, Lawless C, Banks AP, Wilkinson DJ, Whitehall SK, Lydall D. Quantitative Fitness Analysis Identifies exo1∆ and Other Suppressors or Enhancers of Telomere Defects in Schizosaccharomyces pombe. PLoS One 2015; 10:e0132240. [PMID: 26168240 PMCID: PMC4500466 DOI: 10.1371/journal.pone.0132240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
Synthetic genetic array (SGA) has been successfully used to identify genetic interactions in S. cerevisiae and S. pombe. In S. pombe, SGA methods use either cycloheximide (C) or heat shock (HS) to select double mutants before measuring colony size as a surrogate for fitness. Quantitative Fitness Analysis (QFA) is a different method for determining fitness of microbial strains. In QFA, liquid cultures are spotted onto solid agar and growth curves determined for each spot by photography and model fitting. Here, we compared the two S. pombe SGA methods and found that the HS method was more reproducible for us. We also developed a QFA procedure for S. pombe. We used QFA to identify genetic interactions affecting two temperature sensitive, telomere associated query mutations (taz1Δ and pot1-1). We identify exo1∆ and other gene deletions as suppressors or enhancers of S. pombe telomere defects. Our study identifies known and novel gene deletions affecting the fitness of strains with telomere defects. The interactions we identify may be relevant in human cells.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marion Dubarry
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - A. Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Darren J. Wilkinson
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Simon K. Whitehall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
203
|
Rein K, Yanez DA, Terré B, Palenzuela L, Aivio S, Wei K, Edelmann W, Stark JM, Stracker TH. EXO1 is critical for embryogenesis and the DNA damage response in mice with a hypomorphic Nbs1 allele. Nucleic Acids Res 2015; 43:7371-87. [PMID: 26160886 PMCID: PMC4551929 DOI: 10.1093/nar/gkv691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5′-3′ exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations.
Collapse
Affiliation(s)
- Katrin Rein
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Diana A Yanez
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Suvi Aivio
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Kaichun Wei
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Winfried Edelmann
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Jeremy M Stark
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| |
Collapse
|
204
|
Gupta R, Sadhale PP, Vijayraghavan U. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae. PLoS One 2015; 10:e0132350. [PMID: 26147804 PMCID: PMC4492983 DOI: 10.1371/journal.pone.0132350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/14/2015] [Indexed: 01/29/2023] Open
Abstract
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Parag P. Sadhale
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
- * E-mail:
| |
Collapse
|
205
|
Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat Methods 2015; 12:725-31. [PMID: 26121405 DOI: 10.1038/nmeth.3472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/06/2015] [Indexed: 01/12/2023]
Abstract
Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.
Collapse
|
206
|
Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo. Mol Cell Biol 2015; 35:2947-64. [PMID: 26100014 DOI: 10.1128/mcb.01524-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023] Open
Abstract
NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.
Collapse
|
207
|
Ölmezer G, Klein D, Rass U. DNA repair defects ascribed to pby1 are caused by disruption of Holliday junction resolvase Mus81-Mms4. DNA Repair (Amst) 2015; 33:17-23. [PMID: 26068713 DOI: 10.1016/j.dnarep.2015.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
PBY1 continues to be linked with DNA repair through functional genomics studies in yeast. Using the yeast knockout (YKO) strain collection, high-throughput genetic interaction screens have identified a large set of negative interactions between PBY1 and genes involved in genome stability. In drug sensitivity screens, the YKO collection pby1Δ strain exhibits a sensitivity profile typical for genes involved in DNA replication and repair. We show that these findings are not related to loss of Pby1. On the basis of genetic interaction profile similarity, we pinpoint disruption of Holliday junction resolvase Mus81-Mms4 as the mutation responsible for DNA repair phenotypes currently ascribed to pby1. The finding that Pby1 is not a DNA repair factor reconciles discrepancies in the data available for PBY1, and indirectly supports a role for Pby1 in mRNA metabolism. Data that has been collected using the YKO collection pby1Δ strain confirms and expands the chemical-genetic interactome of MUS81-MMS4.
Collapse
Affiliation(s)
- Gizem Ölmezer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
208
|
A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep 2015; 5:10564. [PMID: 26037491 PMCID: PMC4453164 DOI: 10.1038/srep10564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
How multiple spindle assembly pathways are integrated to drive bipolar spindle assembly is poorly understood. We performed an image-based double RNAi screen to identify genes encoding Microtubule-Associated Proteins (MAPs) that interact with the highly conserved ch-TOG gene to regulate bipolar spindle assembly in human cells. We identified a ch-TOG centred network of genetic interactions which promotes ensures centrosome-mediated microtubule polymerisation, leading to the incorporation of microtubules polymerised by all pathways into a bipolar structure. Our genetic screen also reveals that ch-TOG maintains a dynamic microtubule population, in part, through modulating HSET activity. ch-TOG ensures that spindle assembly is robust to perturbation but sufficiently dynamic such that spindles can explore a diverse shape space in search of structures that can align chromosomes.
Collapse
|
209
|
Martin H, Shales M, Fernandez-Piñar P, Wei P, Molina M, Fiedler D, Shokat KM, Beltrao P, Lim W, Krogan NJ. Differential genetic interactions of yeast stress response MAPK pathways. Mol Syst Biol 2015; 11:800. [PMID: 25888283 PMCID: PMC4422557 DOI: 10.15252/msb.20145606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic interaction screens have been applied with great success in several organisms to study gene function and the genetic architecture of the cell. However, most studies have been performed under optimal growth conditions even though many functional interactions are known to occur under specific cellular conditions. In this study, we have performed a large-scale genetic interaction analysis in Saccharomyces cerevisiae involving approximately 49 × 1,200 double mutants in the presence of five different stress conditions, including osmotic, oxidative and cell wall-altering stresses. This resulted in the generation of a differential E-MAP (or dE-MAP) comprising over 250,000 measurements of conditional interactions. We found an extensive number of conditional genetic interactions that recapitulate known stress-specific functional associations. Furthermore, we have also uncovered previously unrecognized roles involving the phosphatase regulator Bud14, the histone methylation complex COMPASS and membrane trafficking complexes in modulating the cell wall integrity pathway. Finally, the osmotic stress differential genetic interactions showed enrichment for genes coding for proteins with conditional changes in phosphorylation but not for genes with conditional changes in gene expression. This suggests that conditional genetic interactions are a powerful tool to dissect the functional importance of the different response mechanisms of the cell.
Collapse
Affiliation(s)
- Humberto Martin
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA
| | - Pablo Fernandez-Piñar
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Maria Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Dorothea Fiedler
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Kevan M Shokat
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK iBiMED and Department of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Wendell Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA Howard Hughes Medical Institute, University of California, San Francisco, CA, USA Center for Systems and Synthetic Biology, University of California, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA Center for Systems and Synthetic Biology, University of California, San Francisco, CA, USA California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA J. David Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
210
|
Unraveling the biology of a fungal meningitis pathogen using chemical genetics. Cell 2015; 159:1168-1187. [PMID: 25416953 DOI: 10.1016/j.cell.2014.10.044] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/28/2014] [Accepted: 10/22/2014] [Indexed: 01/02/2023]
Abstract
The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.
Collapse
|
211
|
Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants. G3-GENES GENOMES GENETICS 2015; 5:953-62. [PMID: 25795664 PMCID: PMC4426379 DOI: 10.1534/g3.115.017251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses.
Collapse
|
212
|
Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage. Genetics 2015; 200:185-205. [PMID: 25786853 DOI: 10.1534/genetics.115.175919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.
Collapse
|
213
|
Che J, Smith S, Kim YJ, Shim EY, Myung K, Lee SE. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis. PLoS Genet 2015; 11:e1004990. [PMID: 25705897 PMCID: PMC4338291 DOI: 10.1371/journal.pgen.1004990] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022] Open
Abstract
Break-induced replication (BIR) has been implicated in restoring eroded telomeres and collapsed replication forks via single-ended invasion and extensive DNA synthesis on the recipient chromosome. Unlike other recombination subtypes, DNA synthesis in BIR likely relies heavily on mechanisms enabling efficient fork progression such as chromatin modification. Herein we report that deletion of HST3 and HST4, two redundant de-acetylases of histone H3 Lysine 56 (H3K56), inhibits BIR, sensitizes checkpoint deficient cells to deoxyribonucleotide triphosphate pool depletion, and elevates translocation-type gross chromosomal rearrangements (GCR). The basis for deficiency in BIR and gene conversion with long gap synthesis in hst3Δ hst4Δ cells can be traced to a defect in extensive DNA synthesis. Distinct from other cellular defects associated with deletion of HST3 and HST4 including thermo-sensitivity and elevated spontaneous mutagenesis, the BIR defect in hst3Δ hst4Δ cannot be offset by the deletion of RAD17 or MMS22, but rather by the loss of RTT109 or ASF1, or in combination with the H3K56R mutation, which also restores tolerance to replication stress in mrc1 mutants. Our studies suggest that acetylation of H3K56 limits extensive repair synthesis and interferes with efficient fork progression in BIR. Chromatin poses a barrier to the recombination process. Chromatin modification is therefore a prerequisite factor for the efficient execution of the recombination event. Chromatin remodeling and several unique histone modifications at or near DNA double strand breaks (DSBs) facilitate early recombination processes, but little is known how chromatin state impinges on post-invasion steps of recombination, such as repair synthesis through homologous template, particularly recombination subtypes such as break-induced replication (BIR) involving extensive repair synthesis. Here, we investigated the effect of deletions in chromatin modification and remodeling genes on BIR and discovered that hyper-acetylation of H3K56 selectively impairs BIR and gene conversion associated with long DNA gap synthesis. We also found that hyper-acetylation of H3K56 interferes with the recovery from replication stress in checkpoint deficient cells and induces translocation-type gross chromosomal rearrangements (GCRs). The results provide a basic understanding of how histone modification facilitates efficient fork progression in recombination, controls the types of the repair products and sustains chromosome integrity upon induction of genotoxic stress.
Collapse
Affiliation(s)
- Jun Che
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Program of Radiation Biology, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoo Jung Kim
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eun Yong Shim
- Program of Radiation Biology, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, Institute of Biotechnology, Universsity of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sang Eun Lee
- Program of Radiation Biology, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, Institute of Biotechnology, Universsity of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
214
|
Schuldiner M, Zalckvar E. Peroxisystem: Harnessing systems cell biology to study peroxisomes. Biol Cell 2015; 107:89-97. [DOI: 10.1111/boc.201400091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Einat Zalckvar
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
215
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
216
|
Abstract
Prefoldin is a cochaperone, present in all eukaryotes, that cooperates with the chaperonin CCT. It is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, both canonical and prefoldin-like subunits of this heterohexameric complex have also been found in the nucleus, and are functionally connected with nuclear processes in yeast and metazoa. Plant prefoldin has also been detected in the nucleus and physically associated with a gene regulator. In this review, we summarize the information available on the involvement of prefoldin in nuclear phenomena, place special emphasis on gene transcription, and discuss the possibility of a global coordination between gene regulation and cytoplasmic dynamics mediated by prefoldin.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
217
|
Sen R, Bhaumik SR. Transcriptional stimulatory and repressive functions of histone H2B ubiquitin ligase. Transcription 2015; 4:221-6. [PMID: 24135701 DOI: 10.4161/trns.26623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
218
|
Žitnik M, Zupan B. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion. J Comput Biol 2015; 22:595-608. [PMID: 25658751 DOI: 10.1089/cmb.2014.0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein-protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches.
Collapse
Affiliation(s)
- Marinka Žitnik
- 1Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Zupan
- 1Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.,2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
219
|
Scarfone I, Venturetti M, Hotz M, Lengefeld J, Barral Y, Piatti S. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet 2015; 11:e1004938. [PMID: 25658911 PMCID: PMC4450052 DOI: 10.1371/journal.pgen.1004938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.
Collapse
Affiliation(s)
- Ilaria Scarfone
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Manuel Hotz
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
220
|
van Opijnen T, Lazinski DW, Camilli A. Genome-Wide Fitness and Genetic Interactions Determined by Tn-seq, a High-Throughput Massively Parallel Sequencing Method for Microorganisms. CURRENT PROTOCOLS IN MICROBIOLOGY 2015; 36:1E.3.1-1E.3.24. [PMID: 25641100 PMCID: PMC4696536 DOI: 10.1002/9780471729259.mc01e03s36] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The lagging annotation of bacterial genomes and the inherent genetic complexity of many phenotypes is hindering the discovery of new drug targets and the development of new antimicrobial agents and vaccines. This unit presents Tn-seq, a method that has made it possible to quantitatively determine fitness for most genes in a microorganism and to screen for quantitative genetic interactions on a genome-wide scale and in a high-throughput fashion. Tn-seq can thus direct studies on the annotation of genes and untangle complex phenotypes. The method is based on the construction of a saturated transposon insertion library. After library selection, changes in the frequency of each insertion mutant are determined by sequencing flanking regions en masse. These changes are used to calculate each mutant's fitness. The method was originally developed for the Gram-positive bacterium Streptococcus pneumoniae, a causative agent of pneumonia and meningitis, but has now been applied to several different microbial species.
Collapse
Affiliation(s)
- Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - David W Lazinski
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Howard Hughes Medical Institute, Boston, Massachusetts
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Howard Hughes Medical Institute, Boston, Massachusetts
| |
Collapse
|
221
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
222
|
Sanchez-Casalongue ME, Lee J, Diamond A, Shuldiner S, Moir RD, Willis IM. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1. J Biol Chem 2015; 290:7221-33. [PMID: 25631054 DOI: 10.1074/jbc.m114.626523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcriptional regulation of ribosome and tRNA synthesis plays a central role in determining protein synthetic capacity and is tightly controlled in response to nutrient availability and cellular stress. In Saccharomyces cerevisiae, the regulation of ribosome and tRNA synthesis was recently shown to involve the Cdc-like kinase Kns1 and the GSK-3 kinase Mck1. In this study, we explored additional roles for these conserved kinases in processes connected to the target of rapamycin complex 1 (TORC1). We conducted a synthetic chemical-genetic screen in a kns1Δ mck1Δ strain and identified many novel rapamycin-hypersensitive genes. Gene ontology analysis showed enrichment for TORC1-regulated processes (vesicle-mediated transport, autophagy, and regulation of cell size) and identified new connections to protein complexes including the protein kinase CK2. CK2 is considered to be a constitutively active kinase and in budding yeast, the holoenzyme comprises two regulatory subunits, Ckb1 and Ckb2, and two catalytic subunits, Cka1 and Cka2. We show that Ckb1 is differentially phosphorylated in vivo and that Kns1 mediates this phosphorylation when nutrients are limiting and under all tested stress conditions. We determined that the phosphorylation of Ckb1 does not detectably affect the stability of the CK2 holoenzyme but correlates with the reduced occupancy of Ckb1 on tRNA genes after rapamycin treatment. Thus, the differential occupancy of tRNA genes by CK2 is likely to modulate its activation of RNA polymerase III transcription. Our data suggest that TORC1, via its effector kinase Kns1, may regulate the association of CK2 with some of its substrates by phosphorylating Ckb1.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian M Willis
- From the Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
223
|
Barker B, Xu L, Gu Z. Dynamic epistasis under varying environmental perturbations. PLoS One 2015; 10:e0114911. [PMID: 25625594 PMCID: PMC4308068 DOI: 10.1371/journal.pone.0114911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/15/2014] [Indexed: 01/17/2023] Open
Abstract
Epistasis describes the phenomenon that mutations at different loci do not have independent effects with regard to certain phenotypes. Understanding the global epistatic landscape is vital for many genetic and evolutionary theories. Current knowledge for epistatic dynamics under multiple conditions is limited by the technological difficulties in experimentally screening epistatic relations among genes. We explored this issue by applying flux balance analysis to simulate epistatic landscapes under various environmental perturbations. Specifically, we looked at gene-gene epistatic interactions, where the mutations were assumed to occur in different genes. We predicted that epistasis tends to become more positive from glucose-abundant to nutrient-limiting conditions, indicating that selection might be less effective in removing deleterious mutations in the latter. We also observed a stable core of epistatic interactions in all tested conditions, as well as many epistatic interactions unique to each condition. Interestingly, genes in the stable epistatic interaction network are directly linked to most other genes whereas genes with condition-specific epistasis form a scale-free network. Furthermore, genes with stable epistasis tend to have similar evolutionary rates, whereas this co-evolving relationship does not hold for genes with condition-specific epistasis. Our findings provide a novel genome-wide picture about epistatic dynamics under environmental perturbations.
Collapse
Affiliation(s)
- Brandon Barker
- Center for Advanced Computing, Cornell University, Ithaca, New York, United States of America
| | - Lin Xu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
| |
Collapse
|
224
|
Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, van Leeuwen F, Guénolé A, van Attikum H, Srivas R, Ideker T, Shimada K, Gasser SM. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling. Mol Cell 2015; 57:273-89. [PMID: 25533186 PMCID: PMC5706562 DOI: 10.1016/j.molcel.2014.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/16/2014] [Accepted: 11/14/2014] [Indexed: 12/25/2022]
Abstract
Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.
Collapse
Affiliation(s)
- Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Monika Tsai-Pflugfelder
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Hanneke Vlaming
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Aude Guénolé
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rohith Srivas
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
225
|
Jin K, Musso G, Vlasblom J, Jessulat M, Deineko V, Negroni J, Mosca R, Malty R, Nguyen-Tran DH, Aoki H, Minic Z, Freywald T, Phanse S, Xiang Q, Freywald A, Aloy P, Zhang Z, Babu M. Yeast Mitochondrial Protein–Protein Interactions Reveal Diverse Complexes and Disease-Relevant Functional Relationships. J Proteome Res 2015; 14:1220-37. [DOI: 10.1021/pr501148q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ke Jin
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Gabriel Musso
- Cardiovascular
Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - James Vlasblom
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Matthew Jessulat
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Viktor Deineko
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jacopo Negroni
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
| | - Roberto Mosca
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
| | - Ramy Malty
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Diem-Hang Nguyen-Tran
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoran Minic
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tanya Freywald
- Cancer Research
Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sadhna Phanse
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Qian Xiang
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Andrew Freywald
- Cancer Research
Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Patrick Aloy
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Zhaolei Zhang
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Mohan Babu
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
226
|
The DNA damage response and checkpoint adaptation in Saccharomyces cerevisiae: distinct roles for the replication protein A2 (Rfa2) N-terminus. Genetics 2015; 199:711-27. [PMID: 25595672 PMCID: PMC4349066 DOI: 10.1534/genetics.114.173211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to DNA damage, two general but fundamental processes occur in the cell: (1) a DNA lesion is recognized and repaired, and (2) concomitantly, the cell halts the cell cycle to provide a window of opportunity for repair to occur. An essential factor for a proper DNA-damage response is the heterotrimeric protein complex Replication Protein A (RPA). Of particular interest is hyperphosphorylation of the 32-kDa subunit, called RPA2, on its serine/threonine-rich amino (N) terminus following DNA damage in human cells. The unstructured N-terminus is often referred to as the phosphorylation domain and is conserved among eukaryotic RPA2 subunits, including Rfa2 in Saccharomyces cerevisiae. An aspartic acid/alanine-scanning and genetic interaction approach was utilized to delineate the importance of this domain in budding yeast. It was determined that the Rfa2 N-terminus is important for a proper DNA-damage response in yeast, although its phosphorylation is not required. Subregions of the Rfa2 N-terminus important for the DNA-damage response were also identified. Finally, an Rfa2 N-terminal hyperphosphorylation-mimetic mutant behaves similarly to another Rfa1 mutant (rfa1-t11) with respect to genetic interactions, DNA-damage sensitivity, and checkpoint adaptation. Our data indicate that post-translational modification of the Rfa2 N-terminus is not required for cells to deal with "repairable" DNA damage; however, post-translational modification of this domain might influence whether cells proceed into M-phase in the continued presence of unrepaired DNA lesions as a "last-resort" mechanism for cell survival.
Collapse
|
227
|
Böhm S, Mihalevic MJ, Casal MA, Bernstein KA. Disruption of SUMO-targeted ubiquitin ligases Slx5-Slx8/RNF4 alters RecQ-like helicase Sgs1/BLM localization in yeast and human cells. DNA Repair (Amst) 2014; 26:1-14. [PMID: 25588990 DOI: 10.1016/j.dnarep.2014.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
RecQ-like helicases are a highly conserved protein family that functions during DNA repair and, when mutated in humans, is associated with cancer and/or premature aging syndromes. The budding yeast RecQ-like helicase Sgs1 has important functions in double-strand break (DSB) repair of exogenously induced breaks, as well as those that arise endogenously, for example during DNA replication. To further investigate Sgs1's regulation, we analyzed the subcellular localization of a fluorescent fusion of Sgs1 upon DNA damage. Consistent with a role in DSB repair, Sgs1 recruitment into nuclear foci in asynchronous cultures increases after ionizing radiation (IR) and after exposure to the alkylating agent methyl methanesulfonate (MMS). Yet, despite the importance of Sgs1 in replicative damage repair and in contrast to its elevated protein levels during S-phase, we find that the number of Sgs1 foci decreases upon nucleotide pool depletion by hydroxyurea (HU) treatment and that this negative regulation depends on the intra S-phase checkpoint kinase Mec1. Importantly, we identify the SUMO-targeted ubiquitin ligase (STUbL) complex Slx5-Slx8 as a negative regulator of Sgs1 foci, both spontaneously and upon replicative damage. Slx5-Slx8 regulation of Sgs1 foci is likely conserved in eukaryotes, since expression of the mammalian Slx5-Slx8 functional homologue, RNF4, restores Sgs1 focus number in slx8 cells and furthermore, knockdown of RNF4 leads to more BLM foci in U-2 OS cells. Our results point to a model where RecQ-like helicase subcellular localization is regulated by STUbLs in response to DNA damage, presumably to prevent illegitimate recombination events.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Michael Joseph Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Morgan Alexandra Casal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kara Anne Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|
228
|
Figueiredo T, Melo US, Pessoa ALS, Nobrega PR, Kitajima JP, Correa I, Zatz M, Kok F, Santos S. Homozygous missense mutation in MED25 segregates with syndromic intellectual disability in a large consanguineous family. J Med Genet 2014; 52:123-7. [PMID: 25527630 DOI: 10.1136/jmedgenet-2014-102793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intellectual disability (ID) is a highly heterogeneous condition affecting 2% of the population worldwide. In a field study conducted in a highly inbred area of Northeastern Brazil, we investigated a consanguineous family in which seven adults presented syndromic ID. METHODS Genome-Wide Human SNP Array 6.0 (Affymetrix) microarray was used to determine regions of homozygosity-by-descent and whole exome sequencing (WES) was performed in one affected individual using Extended Nextera Rapid-Capture Exome and Illumina HiSeq2500. RESULTS We found two regions with an logarithm of the odds (LOD) score of 3.234: a region spanning 4.0 Mb in 19q13.32-q13.33 and a pericentromeric 20 Mb area in chromosome 2 (2p12-q11.2). WES disclosed in the critical region of chromosome 19 a homozygous variant (c.418C>T, p.Arg140Trp) in Mediator complex subunit 25 (MED25), predicted as deleterious by PolyPhen-2, Provean, Mutation Taster and Sorting Intolerant From Tolerant (SIFT). MED25 is a component of the Mediator complex, involved in regulation of transcription of nearly all RNA polymerase II-dependent genes. Deleterious mutations in MED12, MED17 and MED23 have already been associated with ID. CONCLUSIONS These findings demonstrate that the combination of field investigation of families in highly inbred regions with modern technologies is an effective way for identifying new genes associated with ID.
Collapse
Affiliation(s)
- Thalita Figueiredo
- Northeast Biotechnology Network (RENORBIO), Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil Department of Biology, Paraiba State University (UEPB), Campina Grande, PB, Brazil
| | - Uirá Souto Melo
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil Fortaleza University (UNIFOR), Fortaleza, CE, Brazil
| | - Paulo Ribeiro Nobrega
- Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | - Igor Correa
- Mendelics Genomic Analysis, Sao Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Fernando Kok
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, SP, Brazil Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Silvana Santos
- Northeast Biotechnology Network (RENORBIO), Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil Department of Biology, Paraiba State University (UEPB), Campina Grande, PB, Brazil
| |
Collapse
|
229
|
Abstract
Background Phenotypic data are routinely used to elucidate gene function in organisms amenable to genetic manipulation. However, previous to this work, there was no generalizable system in place for the structured storage and retrieval of phenotypic information for bacteria. Results The Ontology of Microbial Phenotypes (OMP) has been created to standardize the capture of such phenotypic information from microbes. OMP has been built on the foundations of the Basic Formal Ontology and the Phenotype and Trait Ontology. Terms have logical definitions that can facilitate computational searching of phenotypes and their associated genes. OMP can be accessed via a wiki page as well as downloaded from SourceForge. Initial annotations with OMP are being made for Escherichia coli using a wiki-based annotation capture system. New OMP terms are being concurrently developed as annotation proceeds. Conclusions We anticipate that diverse groups studying microbial genetics and associated phenotypes will employ OMP for standardizing microbial phenotype annotation, much as the Gene Ontology has standardized gene product annotation. The resulting OMP resource and associated annotations will facilitate prediction of phenotypes for unknown genes and result in new experimental characterization of phenotypes and functions.
Collapse
|
230
|
Abstract
Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. However, researchers must take special care and implement new resources to enable the newest members of the community to engage fully with the remarkable legacy of information in these fields.
Collapse
Affiliation(s)
- Jasper Rine
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3220
| |
Collapse
|
231
|
Widespread genetic epistasis among cancer genes. Nat Commun 2014; 5:4828. [PMID: 25407795 DOI: 10.1038/ncomms5828] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/28/2014] [Indexed: 12/17/2022] Open
Abstract
Quantitative genetic epistasis has been hypothesized to be an important factor in the development and progression of complex diseases. Cancers in particular are driven by the accumulation of mutations that may act epistatically during the course of the disease. However, as cancer mutations are uncovered at an unprecedented rate, determining which combinations of genetic alterations interact to produce cancer phenotypes remains a challenge. Here we show that by using combinatorial RNAi screening in cell culture, dense and often previously undetermined interactions among cancer genes were revealed by assessing gene pairs that are frequently co-altered in primary breast cancers. These interacting gene pairs are significantly associated with survival time when co-altered in patients, indicating that genetic interaction mapping may be leveraged to improve risk assessment. As many of these interacting gene pairs involve known drug targets, personalized treatment regimens may be improved by overlaying genetic interactions with mutational profiling.
Collapse
|
232
|
Abstract
The extent of chromatin compaction is a fundamental driver of nuclear metabolism . Yta7 is a chromatin-associated AAA-ATPase, the human ortholog of which, ANCCA/ATAD2 transcriptionally activates pathways of malignancy in a broad range of cancers. Yta7 directly binds histone H3, and bulk chromatin exhibits increased nucleosomal density in yta7Δ mutants. The suppression of yta7Δ mutant growth and transcriptional phenotypes in budding yeast by decreased dosage of histones H3 and H4 indicates the acute sensitivity of cells to deviations in nucleosome spacing. This study investigated the global changes in chromatin structure upon Yta7 loss or overexpression and determined which of these effects reflected direct Yta7 activity. Metagene analysis of Yta7's genome-wide localization indicated peak binding of Yta7 just downstream of the transcription start site. Cells lacking Yta7 exhibited increased nucleosome density within genes downstream of the +1 nucleosome, as defined by decreased internucleosomal distance, resulting in progressively 5'-shifted nucleosomes within the gene. In contrast, cells overexpressing Yta7 displayed profound 3'-shifts in nucleosome position and reduced nucleosome density within genes. Importantly, Yta7-bound regions were enriched for nucleosomal shifts, indicating that Yta7 acted locally to modulate nucleosome spacing. The phenotype of cells lacking both Yta7 and Rtt106, the histone H3/H4 chaperone, indicated that Yta7 functions in both Rtt106-dependent and Rtt106-independent ways to modulate nucleosome spacing within genes. This study suggested that Yta7 affected nucleosome density throughout the gene by both blocking Rtt106 from entering the gene, as shown previously at HTA1, and facilitating the loss of nucleosomes from the 5'-end.
Collapse
|
233
|
Wu M, Li X, Zhang F, Li X, Kwoh CK, Zheng J. In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. Cancer Inform 2014; 13:71-80. [PMID: 25452682 PMCID: PMC4224103 DOI: 10.4137/cin.s14026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/07/2023] Open
Abstract
A major goal in cancer medicine is to find selective drugs with reduced side effect. A pair of genes is called synthetic lethality (SL) if mutations of both genes will kill a cell while mutation of either gene alone will not. Hence, a gene in SL interactions with a cancer-specific mutated gene will be a promising drug target with anti-cancer selectivity. Wet-lab screening approach is still so costly that even for yeast only a small fraction of gene pairs has been covered. Computational methods are therefore important for large-scale discovery of SL interactions. Most existing approaches focus on individual features or machine-learning methods, which are prone to noise or overfitting. In this paper, we propose an approach named MetaSL for predicting yeast SL, which integrates 17 genomic and proteomic features and the outputs of 10 classification methods. MetaSL thus combines the strengths of existing methods and achieves the highest area under the Receiver Operating Characteristics (ROC) curve (AUC) of 87.1% among all competitors on yeast data. Moreover, through orthologous mapping from yeast to human genes, we then predicted several lists of candidate SL pairs in human cancer. Our method and predictions would thus shed light on mechanisms of SL and lead to discovery of novel anti-cancer drugs. In addition, all the experimental results can be downloaded from http://www.ntu.edu.sg/home/zhengjie/data/MetaSL.
Collapse
Affiliation(s)
- Min Wu
- School of Computer Engineering, Nanyang Technological University, Singapore. ; Institute for Infocomm Research, ASTAR, 1 Fusionopolis Way, Singapore
| | - Xuejuan Li
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - Fan Zhang
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - Xiaoli Li
- Institute for Infocomm Research, ASTAR, 1 Fusionopolis Way, Singapore
| | - Chee-Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - Jie Zheng
- School of Computer Engineering, Nanyang Technological University, Singapore. ; Genome Institute of Singapore, ASTAR, Biopolis, Singapore
| |
Collapse
|
234
|
Uzunova SD, Zarkov AS, Ivanova AM, Stoynov SS, Nedelcheva-Veleva MN. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence. Cell Div 2014; 9:4. [PMID: 25379053 PMCID: PMC4221646 DOI: 10.1186/1747-1028-9-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023] Open
Abstract
Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.
Collapse
Affiliation(s)
- Sonya Dimitrova Uzunova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Alexander Stefanov Zarkov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Anna Marianova Ivanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Stoyno Stefanov Stoynov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | | |
Collapse
|
235
|
Paul JM, Templeton SD, Baharani A, Freywald A, Vizeacoumar FJ. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell. Trends Mol Med 2014; 20:704-15. [PMID: 25446836 DOI: 10.1016/j.molmed.2014.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 02/08/2023]
Abstract
The most commonly used therapies for cancer involve delivering high doses of radiation or toxic chemicals to the patient that also cause substantial damage to normal tissue. To overcome this, researchers have recently resorted to a basic biological concept called 'synthetic lethality' (SL) that takes advantage of interactions between gene pairs. The identification of SL interactions is of considerable therapeutic interest because if a particular gene is SL with a tumor-causing mutation, then the targeting that gene carries therapeutic advantages. Mapping these interactions in the context of human cancer cells could hold the key to effective, targeted cancer treatments. In this review, we cover the recent advances that aim to identify these SL interactions using unbiased genetic screens.
Collapse
Affiliation(s)
- James M Paul
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Canada; Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8 Canada
| | - Shaina D Templeton
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Akanksha Baharani
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8 Canada
| | - Franco J Vizeacoumar
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Canada; Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
| |
Collapse
|
236
|
Prado F, Clemente-Ruiz M. Nucleosome assembly and genome integrity: The fork is the link. BIOARCHITECTURE 2014; 2:6-10. [PMID: 22754621 PMCID: PMC3383716 DOI: 10.4161/bioa.19737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining the stability of the replication forks is one of the main tasks of the DNA damage response. Specifically, checkpoint mechanisms detect stressed forks and prevent their collapse. In the published report reviewed here we have shown that defective chromatin assembly in cells lacking either H3K56 acetylation or the chromatin assembly factors CAF1 and Rtt106 affects the integrity of advancing replication forks, despite the presence of functional checkpoints. This loss of replication intermediates is exacerbated in the absence of Rad52, suggesting that collapsed forks are rescued by homologous recombination and providing an explanation for the accumulation of recombinogenic DNA damage displayed by these mutants. These phenotypes mimic those obtained by a partial reduction in the pool of available histones and are consistent with a model in which defective histone deposition uncouples DNA synthesis and nucleosome assembly, thus making the fork more susceptible to collapse. Here, we review these findings and discuss the possibility that defects in the lagging strand represent a major source of fork instability in chromatin assembly mutants.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER); Consejo Superior de Investigaciones Científicas (CSIC); Seville, Spain
| | | |
Collapse
|
237
|
Tosti E, Katakowski JA, Schaetzlein S, Kim HS, Ryan CJ, Shales M, Roguev A, Krogan NJ, Palliser D, Keogh MC, Edelmann W. Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells. Genome Med 2014; 6:68. [PMID: 25302077 PMCID: PMC4189729 DOI: 10.1186/s13073-014-0068-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Background The evolutionarily conserved DNA mismatch repair (MMR) system corrects base-substitution and insertion-deletion mutations generated during erroneous replication. The mutation or inactivation of many MMR factors strongly predisposes to cancer, where the resulting tumors often display resistance to standard chemotherapeutics. A new direction to develop targeted therapies is the harnessing of synthetic genetic interactions, where the simultaneous loss of two otherwise non-essential factors leads to reduced cell fitness or death. High-throughput screening in human cells to directly identify such interactors for disease-relevant genes is now widespread, but often requires extensive case-by-case optimization. Here we asked if conserved genetic interactors (CGIs) with MMR genes from two evolutionary distant yeast species (Saccharomyces cerevisiae and Schizosaccharomyzes pombe) can predict orthologous genetic relationships in higher eukaryotes. Methods High-throughput screening was used to identify genetic interaction profiles for the MutSα and MutSβ heterodimer subunits (msh2Δ, msh3Δ, msh6Δ) of fission yeast. Selected negative interactors with MutSβ (msh2Δ/msh3Δ) were directly analyzed in budding yeast, and the CGI with SUMO-protease Ulp2 further examined after RNA interference/drug treatment in MSH2-deficient and -proficient human cells. Results This study identified distinct genetic profiles for MutSα and MutSβ, and supports a role for the latter in recombinatorial DNA repair. Approximately 28% of orthologous genetic interactions with msh2Δ/msh3Δ are conserved in both yeasts, a degree consistent with global trends across these species. Further, the CGI between budding/fission yeast msh2 and SUMO-protease Ulp2 is maintained in human cells (MSH2/SENP6), and enhanced by Olaparib, a PARP inhibitor that induces the accumulation of single-strand DNA breaks. This identifies SENP6 as a promising new target for the treatment of MMR-deficient cancers. Conclusion Our findings demonstrate the utility of employing evolutionary distance in tractable lower eukaryotes to predict orthologous genetic relationships in higher eukaryotes. Moreover, we provide novel insights into the genome maintenance functions of a critical DNA repair complex and propose a promising targeted treatment for MMR deficient tumors. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0068-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Joseph A Katakowski
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
| | - Sonja Schaetzlein
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Colm J Ryan
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA ; California Institute for Quantitative Biosciences, San Francisco, USA ; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Michael Shales
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
| | - Assen Roguev
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA ; California Institute for Quantitative Biosciences, San Francisco, USA ; J. David Gladstone Institutes, San Francisco, USA
| | - Deborah Palliser
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
| | | | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
238
|
Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci U S A 2014; 111:14124-9. [PMID: 25228766 DOI: 10.1073/pnas.1414024111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase-specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APC(Cdh1)) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation.
Collapse
|
239
|
Mirón-García MC, Garrido-Godino AI, Martínez-Fernández V, Fernández-Pevida A, Cuevas-Bermúdez A, Martín-Expósito M, Chávez S, de la Cruz J, Navarro F. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 2014; 42:9666-76. [PMID: 25081216 PMCID: PMC4150788 DOI: 10.1093/nar/gku685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity.
Collapse
Affiliation(s)
- María Carmen Mirón-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Ana Isabel Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, E41012 Sevilla, Spain
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, E41012 Sevilla, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, E41012 Sevilla, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| |
Collapse
|
240
|
Braberg H, Alexander R, Shales M, Xu J, Franks-Skiba KE, Wu Q, Haber JE, Krogan NJ. Quantitative analysis of triple-mutant genetic interactions. Nat Protoc 2014; 9:1867-81. [PMID: 25010907 DOI: 10.1038/nprot.2014.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The quantitative analysis of genetic interactions between pairs of gene mutations has proven to be effective for characterizing cellular functions, but it can miss important interactions for functionally redundant genes. To address this limitation, we have developed an approach termed triple-mutant analysis (TMA). The procedure relies on a query strain that contains two deletions in a pair of redundant or otherwise related genes, which is crossed against a panel of candidate deletion strains to isolate triple mutants and measure their growth. A central feature of TMA is to interrogate mutants that are synthetically sick when two other genes are deleted but interact minimally with either single deletion. This approach has been valuable for discovering genes that restore critical functions when the principal actors are deleted. TMA has also uncovered double-mutant combinations that produce severe defects because a third protein becomes deregulated and acts in a deleterious fashion, and it has revealed functional differences between proteins presumed to act together. The protocol is optimized for Singer ROTOR pinning robots, takes 3 weeks to complete and measures interactions for up to 30 double mutants against a library of 1,536 single mutants.
Collapse
Affiliation(s)
- Hannes Braberg
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Richard Alexander
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Michael Shales
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Jiewei Xu
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Kathleen E Franks-Skiba
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Qiuqin Wu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Nevan J Krogan
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA. [3] J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
241
|
Kampmann M, Bassik MC, Weissman JS. Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps. Nat Protoc 2014; 9:1825-47. [PMID: 24992097 DOI: 10.1038/nprot.2014.103] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Systematic genetic interaction maps in microorganisms are powerful tools for identifying functional relationships between genes and for defining the function of uncharacterized genes. We have recently implemented this strategy in mammalian cells as a two-stage approach. First, genes of interest are robustly identified in a pooled genome-wide screen using complex shRNA libraries. Second, phenotypes for all pairwise combinations of 'hit' genes are measured in a double-shRNA screen and used to construct a genetic interaction map. Our protocol allows for rapid pooled screening under various conditions without a requirement for robotics, in contrast to arrayed approaches. Each round of screening can be implemented in ∼2 weeks, with additional time for analysis and generation of reagents. We discuss considerations for screen design, and we present complete experimental procedures, as well as a full computational analysis suite for the identification of hits in pooled screens and generation of genetic interaction maps. Although the protocol outlined here was developed for our original shRNA-based approach, it can be applied more generally, including to CRISPR-based approaches.
Collapse
Affiliation(s)
- Martin Kampmann
- 1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California, USA. [2] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [3]
| | - Michael C Bassik
- 1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California, USA. [2] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [3] [4]
| | - Jonathan S Weissman
- 1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California, USA. [2] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
242
|
Braberg H, Moehle EA, Shales M, Guthrie C, Krogan NJ. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution: exploring the applications of high-resolution genetic interaction mapping of point mutations. Bioessays 2014; 36:706-13. [PMID: 24842270 PMCID: PMC4289610 DOI: 10.1002/bies.201400044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have achieved a residue-level resolution of genetic interaction mapping - a technique that measures how the function of one gene is affected by the alteration of a second gene - by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
| | - Erica A. Moehle
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
243
|
Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation. Cell Rep 2014; 8:297-310. [DOI: 10.1016/j.celrep.2014.05.050] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 01/14/2023] Open
|
244
|
Gaupel AC, Begley T, Tenniswood M. High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 2014; 15:528. [PMID: 24968945 PMCID: PMC4089024 DOI: 10.1186/1471-2164-15-528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022] Open
Abstract
Background Previous studies from our laboratory and others have demonstrated that in addition to altering chromatin acetylation and conformation, histone deacetylase inhibitors (HDACi) disrupt the acetylation status of numerous transcription factors and other proteins. A whole genome yeast deletion library screen was used to identify components of the transcriptional apparatus that modulate the sensitivity to the hydroxamic acid-based HDACi, CG-1521. Results Screening 4852 haploid Saccharomyces cerevisiae deletion strains for sensitivity to CG-1521 identifies 407 sensitive and 80 resistant strains. Gene ontology (GO) enrichment analysis shows that strains sensitive to CG-1521 are highly enriched in processes regulating chromatin remodeling and transcription as well as other ontologies, including vacuolar acidification and vesicle-mediated transport. CG-1521-resistant strains include those deficient in the regulation of transcription and tRNA modification. Components of the SAGA histone acetyltransferase (HAT) complex are overrepresented in the sensitive strains, including the catalytic subunit, Gcn5. Cell cycle analysis indicates that both the wild-type and gcn5Δ strains show a G1 delay after CG-1521 treatment, however the gcn5Δ strain displays increased sensitivity to CG-1521-induced cell death compared to the wild-type strain. To test whether the enzymatic activity of Gcn5 is necessary in the response to CG-1521, growth assays with a yeast strain expressing a catalytically inactive variant of the Gcn5 protein were performed and the results show that this strain is less sensitive to CG-1521 than the gcn5Δ strain. Conclusion Genome-wide deletion mutant screening identifies biological processes that affect the sensitivity to the HDAC inhibitor CG-1521, including transcription and chromatin remodeling. This study illuminates the pathways involved in the response to CG-1521 in yeast and provides incentives to understand the mechanisms of HDAC inhibitors in cancer cells. The data presented here demonstrate that components of the SAGA complex are involved in mediating the response to CG-1521. Additional experiments suggest that functions other than the acetyltransferase activity of Gcn5 may be sufficient to attenuate the effects of CG-1521 on cell growth. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-528) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Martin Tenniswood
- Department of Biomedical Sciences, School of Public Health, University at Albany, New York 12222, USA.
| |
Collapse
|
245
|
Anver S, Roguev A, Zofall M, Krogan NJ, Grewal SIS, Harmer SL. Yeast X-chromosome-associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Rep 2014; 15:894-902. [PMID: 24957674 DOI: 10.15252/embr.201438902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chromatin regulatory proteins affect diverse developmental and environmental response pathways via their influence on nuclear processes such as the regulation of gene expression. Through a genome-wide genetic screen, we implicate a novel protein called X-chromosome-associated protein 5 (Xap5) in chromatin regulation. We show that Xap5 is a chromatin-associated protein acting in a similar manner as the histone variant H2A.Z to suppress expression of antisense and repeat element transcripts throughout the fission yeast genome. Xap5 is highly conserved across eukaryotes, and a plant homolog rescues xap5 mutant yeast. We propose that Xap5 likely functions as a chromatin regulator in diverse organisms.
Collapse
Affiliation(s)
- Shajahan Anver
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| |
Collapse
|
246
|
Jiang C, Chen H, Shao L, Wang Q. MicroRNA-1 functions as a potential tumor suppressor in osteosarcoma by targeting Med1 and Med31. Oncol Rep 2014; 32:1249-56. [PMID: 24969180 DOI: 10.3892/or.2014.3274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/15/2014] [Indexed: 01/11/2023] Open
Abstract
MicroRNA-1 (miR-1) has been shown to function as a critical gene regulator in multiple types of cancers. However, the role of miR-1 in osteosarcoma has not been totally clarified. In the present study, we investigated the effects of miR-1 on osteosarcoma and the underlying mechanism. We found that miR-1 was downregulated in osteosarcoma tissues and osteosarcoma cell lines. Restoration of miR-1 significantly suppressed osteosarcoma cell proliferation by inhibiting cell cycle progression. Mediator complex subunit 1 (Med1) and 31 (Med31) were validated as targets of miR-1 in osteosarcoma by luciferase reporter assay. Downregulation of Med1 and Med31 suppressed the proliferation of osteosarcoma cells, and overexpression of Med1 and Med31 abrogated the effects of miR-1 on cell proliferation. Furthermore, both miR-1 and knockdown of Med1 or Med31 reduced the expression of met proto-oncogene (MET) and blocked the downstream signaling of MET responding to hepatocyte growth factor (HGF). Taken together, the findings of this study suggest that Med1 and Med31 serve as potential gene therapeutic targets in osteosarcoma and miR-1 may prove to be a promising agent.
Collapse
Affiliation(s)
- Chaoyin Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hua Chen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Lei Shao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiaojie Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
247
|
Different subunits belonging to the same protein complex often exhibit discordant expression levels and evolutionary properties. Curr Opin Struct Biol 2014; 26:113-20. [DOI: 10.1016/j.sbi.2014.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/27/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
|
248
|
Wang Y, Wang L, Yang D, Deng M. Imputing missing values for genetic interaction data. Methods 2014; 67:269-77. [PMID: 24718098 DOI: 10.1016/j.ymeth.2014.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Epistatic Miniarray Profiles (EMAP) enable the research of genetic interaction as an important method to construct large-scale genetic interaction networks. However, a high proportion of missing values frequently poses problems in EMAP data analysis since such missing values hinder downstream analysis. While some imputation approaches have been available to EMAP data, we adopted an improved SVD modeling procedure to impute the missing values in EMAP data which has resulted in a higher accuracy rate compared with existing methods. RESULTS The improved SVD imputation method adopts an effective soft-threshold to the SVD approach which has been shown to be the best model to impute genetic interaction data when compared with a number of advanced imputation methods. Imputation methods also improve the clustering results of EMAP datasets. Thus, after applying our imputation method on the EMAP dataset, more meaningful modules, known pathways and protein complexes could be detected. CONCLUSION While the phenomenon of missing data unavoidably complicates EMAP data, our results showed that we could complete the original dataset by the Soft-SVD approach to accurately recover genetic interactions.
Collapse
Affiliation(s)
- Yishu Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Lin Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Dejie Yang
- Institute of Computing Technology, Chinese Academy of Science, Beijing 100190, China
| | - Minghua Deng
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China; Center for Statistical Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
249
|
Sørensen DM, Holen HW, Holemans T, Vangheluwe P, Palmgren MG. Towards defining the substrate of orphan P5A-ATPases. Biochim Biophys Acta Gen Subj 2014; 1850:524-35. [PMID: 24836520 DOI: 10.1016/j.bbagen.2014.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. SCOPE OF REVIEW This review aims to discuss the available evidence which could lead to identification of possible substrates of P5A-ATPases. MAJOR CONCLUSIONS The complex phenotypes resulting from the loss of P5A-ATPases in model organisms can be explained by a role of the P5A-ATPase in the endoplasmic reticulum (ER), where loss of function leads to broad and unspecific phenotypes related to the impairment of basic ER functions such as protein folding and processing. Genetic interactions in Saccharomyces cerevisiae point to a role of the endogenous P5A-ATPase Spf1p in separation of charges in the ER, in sterol metabolism, and in insertion of tail-anchored proteins in the ER membrane. A role for P5A-ATPases in vesicle formation would explain why sterol transport and distribution are affected in knock out cells, which in turn has a negative impact on the spontaneous insertion of tail-anchored proteins. It would also explain why secretory proteins destined for the Golgi and the cell wall have difficulties in reaching their final destination. Cations and phospholipids could both be transported substrates of P5A-ATPases and as each carry charges, transport of either might explain why a charge difference arises across the ER membrane. GENERAL SIGNIFICANCE Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Henrik Waldal Holen
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tine Holemans
- Department of Cellular and Molecular Medicine, ON1 Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, Box 802, B3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, ON1 Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, Box 802, B3000 Leuven, Belgium
| | - Michael G Palmgren
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
250
|
van Opijnen T, Lazinski DW, Camilli A. Genome-Wide Fitness and Genetic Interactions Determined by Tn-seq, a High-Throughput Massively Parallel Sequencing Method for Microorganisms. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2014; 106:7.16.1-7.16.24. [PMID: 24733243 PMCID: PMC4568079 DOI: 10.1002/0471142727.mb0716s106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The lagging annotation of bacterial genomes and the inherent genetic complexity of many phenotypes is hindering the discovery of new drug targets and the development of new antimicrobial agents and vaccines. This unit presents Tn-seq, a method that has made it possible to quantitatively determine fitness for most genes in a microorganism and to screen for quantitative genetic interactions on a genome-wide scale and in a high-throughput fashion. Tn-seq can thus direct studies on the annotation of genes and untangle complex phenotypes. The method is based on the construction of a saturated transposon insertion library. After library selection, changes in the frequency of each insertion mutant are determined by sequencing flanking regions en masse. These changes are used to calculate each mutant's fitness. The method was originally developed for the Gram-positive bacterium Streptococcus pneumoniae, a causative agent of pneumonia and meningitis, but has now been applied to several different microbial species.
Collapse
Affiliation(s)
- Tim van Opijnen
- Boston College, Department of Biology, Chestnut Hill, Massachusetts
| | - David W. Lazinski
- Tufts University, School of Medicine, Department of Molecular Biology & Microbiology and Howard Hughes Medical Institute, Boston, Massachusetts
| | - Andrew Camilli
- Tufts University, School of Medicine, Department of Molecular Biology & Microbiology and Howard Hughes Medical Institute, Boston, Massachusetts
| |
Collapse
|