201
|
Shin J, Xie D, Zhong XP. MicroRNA-34a enhances T cell activation by targeting diacylglycerol kinase ζ. PLoS One 2013; 8:e77983. [PMID: 24147106 PMCID: PMC3798301 DOI: 10.1371/journal.pone.0077983] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
The engagement of the T cell receptor (TCR) induces the generation of diacylglycerol (DAG), an important second messenger activating both the Ras/Erk and PKCθ/NFκB pathways. DAG kinases (DGKs) participate in the metabolism of DAG by converting it to phosphatidic acid. DGKζ has been demonstrated to be able to inhibit DAG signaling following TCR engagement. Deficiency of DGKζ increases the sensitivity of T cells to TCR stimulation, resulting in enhanced T cell activation ex vivo and in vivo. However, the mechanisms that control DGKζ expression are poorly understood. Here we demonstrate that DGKζ mRNA is a direct target of a cellular microRNA miR-34a. The DGKζ transcript is decreased, whereas the primary miR-34a is upregulated upon TCR stimulation. Ectopic miR-34a expression suppresses DGKζ protein expression through the seed match binding to both the 3' untranslated region and coding region of DGKζ mRNA, leading to increased ERK1/2 phosphorylation and surface expression of the T cell activation marker CD69 following TCR cross-linking. In contrast, overexpression of a miR-34a competitive inhibitor increases DGKζ expression and suppresses TCR-mediated T cell activation. Together, our data demonstrate that miR-34a is a negative regulator for DGKζ and may play an important role in regulating T cell activation.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Danli Xie
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
202
|
Chen CJ, Cox JE, Kincaid RP, Martinez A, Sullivan CS. Divergent MicroRNA targetomes of closely related circulating strains of a polyomavirus. J Virol 2013; 87:11135-47. [PMID: 23926342 PMCID: PMC3807300 DOI: 10.1128/jvi.01711-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022] Open
Abstract
Hundreds of virus-encoded microRNAs (miRNAs) have been uncovered, but an in-depth functional understanding is lacking for most. A major challenge for the field is separating those miRNA targets that are biologically relevant from those that are not advantageous to the virus. Here, we show that miRNAs from related variants of the polyomavirus simian vacuolating virus 40 (SV40) have differing host target repertoires (targetomes) while their direct autoregulatory activity on virus-encoded early gene products is completely preserved. These results underscore the importance of miRNA-mediated viral gene autoregulation in some polyomavirus life cycles. More broadly, these findings imply that some host targets of virus-encoded miRNAs are likely to be of little selective advantage to the virus, and our approach provides a strategy for prioritizing relevant targets.
Collapse
Affiliation(s)
- Chun Jung Chen
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, USA
| | - Jennifer E. Cox
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, USA
| | - Rodney P. Kincaid
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, USA
| | - Angel Martinez
- American Chemical Society Project SEED Summer Internship Program, James Bowie High School, Austin, Texas, USA
| | | |
Collapse
|
203
|
Zhang Y, Li YK. MicroRNAs in the regulation of immune response against infections. J Zhejiang Univ Sci B 2013; 14:1-7. [PMID: 23303626 DOI: 10.1631/jzus.b1200292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innate immunity is considered to provide the initial defense against infections by viruses, bacteria, fungi, and protozoa. Detection of the signature molecules of invading pathogens by front-line defense cells via various germline-encoded pattern recognition receptors (PRRs) is needed to activate intracellular signaling cascades that lead to transcriptional expression of inflammatory mediators to coordinate the elimination of pathogens and infected cells. To maintain a fine balance between protective immunity and inflammatory pathology upon infection, the innate signaling pathways in the host need to be tightly regulated. MicroRNAs (miRNAs), a new class of small non-coding RNAs, have been recently shown to be potent modulators that function at post-transcriptional levels. Accumulating evidence demonstrates that the involvement of microorganism-encoded and host miRNAs might play instructive roles in the immune response upon infection. Here, we discuss the current knowledge of miRNAs in the regulation of immune response against infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | |
Collapse
|
204
|
Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P, Happel C, Ziegelbauer J. Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog 2013; 9:e1003584. [PMID: 24039573 PMCID: PMC3764211 DOI: 10.1371/journal.ppat.1003584] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/14/2013] [Indexed: 01/11/2023] Open
Abstract
Kaposi's sarcoma (KS) is caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV). The virus expresses unique microRNAs (miRNAs), but the targets and functions of these miRNAs are not completely understood. In order to identify human targets of viral miRNAs, we measured protein expression changes caused by multiple KSHV miRNAs using pulsed stable labeling with amino acids in cell culture (pSILAC) in primary endothelial cells. This led to the identification of multiple human genes that are repressed at the protein level, but not at the miRNA level. Further analysis also identified that KSHV miRNAs can modulate activity or expression of upstream regulatory factors, resulting in suppressed activation of a protein involved in leukocyte recruitment (ICAM1) following lysophosphatidic acid treatment, as well as up-regulation of a pro-angiogenic protein (HIF1α), and up-regulation of a protein involved in stimulating angiogenesis (HMOX1). This study aids in our understanding of miRNA mechanisms of repression and miRNA contributions to viral pathogenesis.
Collapse
MESH Headings
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Human Umbilical Vein Endothelial Cells
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/virology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Escape
Collapse
Affiliation(s)
- Amelia M. Gallaher
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sudipto Das
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Thorkell Andresson
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Philippe Kieffer-Kwon
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine Happel
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
205
|
Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol 2013; 23:457-67. [PMID: 23999127 DOI: 10.1016/j.semcancer.2013.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022]
Abstract
Lymphomas that develop in HIV positive patients are predominantly aggressive B-cell malignancies. The most common HIV-associated lymphomas are Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Lymphomas that occur specifically in HIV positive patients include primary effusion lymphoma (PEL) and its solid variants, plasmablastic lymphoma of the oral cavity type and lymphoma associated with Kaposi sarcoma herpesvirus (KSHV)-related multicentric Castleman disease. These lymphomas, together with BL and immunoblastic lymphoma subtypes with plasmacytoid differentiation, carry Epstein-Barr virus (EBV) infection and display a phenotype related to plasma cells. Globally, EBV is identified in the neoplastic cells of approximately 40% of HIV-associated lymphomas, but the detection of EBV varies considerably with the site of presentation and the histological subtype. EBV infection occurs in 80-100% of primary central nervous system lymphomas and PELs, 80% of DLBCLs with immunoblastic-plasmacytoid features, and 30-50% of BL-plasmacytoid. KSHV is specifically associated with PEL, which usually occurs in a setting of profound immunosuppression. Current knowledge about HIV-associated lymphomas can be summarized as follows: (1) lymphomas specifically occurring in patients with HIV infection are closely linked to other viral diseases; (2) most of these lymphomas exhibit plasmablastic differentiation.
Collapse
Affiliation(s)
- Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| | | | | |
Collapse
|
206
|
Lagatie O, Tritsmans L, Stuyver LJ. The miRNA world of polyomaviruses. Virol J 2013; 10:268. [PMID: 23984639 PMCID: PMC3765807 DOI: 10.1186/1743-422x-10-268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022] Open
Abstract
Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Turnhoutseweg 30, Beerse 2340, Belgium.
| | | | | |
Collapse
|
207
|
Kaposi's sarcoma-associated herpesvirus encodes a mimic of cellular miR-23. J Virol 2013; 87:11821-30. [PMID: 23986579 DOI: 10.1128/jvi.01692-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) expresses ∼20 viral microRNAs (miRNAs) in latently infected cells. We have previously shown that two of these miRNAs function as mimics of the cellular miRNAs miR-155 and miR-142-3p. Two additional KSHV miRNAs, miR-K3+1 and miR-K3, share perfect and offset 5' homology with cellular miR-23, respectively. Here, we report a single nucleotide polymorphism that causes miR-K3+1 expression in a subset of KSHV-infected primary effusion lymphoma cell lines as a consequence of altered processing of the primary transcript by the Microprocessor complex. We confirm that miR-K3+1 regulates miR-23 targets, which is expected because these miRNAs share the entire seed region (nucleotides 2 to 8). Surprisingly, we found that miR-K3 also regulates miR-23 targets, despite offset seed sequences. In addition, the offset homology of miR-K3 to miR-23 likely allows this viral miRNA to expand its target repertoire beyond the targets of miR-23. Because miR-23 is highly expressed in endothelial cells but expressed at only low levels in B cells, we hypothesize that miR-K3 may function to introduce miR-23-like activities into KSHV-infected B cells. Together, our data demonstrate that KSHV has evolved at least three distinct viral miRNAs to tap into evolutionarily conserved cellular miRNA-regulatory networks. Furthermore, our data allow fundamental insights into the generation and functional impact of miRNA 5' end variation.
Collapse
|
208
|
Tahiri-Alaoui A, Smith LP, Kgosana L, Petherbridge LJ, Nair V. Identification of a neurovirulence factor from Marek's disease virus. Avian Dis 2013; 57:387-94. [PMID: 23901751 DOI: 10.1637/10322-080912-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In addition to tumors, Marek's disease (MD) virus (MDV) can induce a variety of syndromes linked to the central nervous system. In fact, early descriptions of MD suggested that it was a condition affecting mainly the nervous system. Cytokines and other immune-related genes have been suggested to play a crucial role in MDV-mediated neuropathology, but the mechanisms behind the viral-induced neurologic dysfunction are still poorly understood. In the present study we have used reverse genetic strategies to show that pp14 is not involved in the oncogenic phenotype of MDV1 and is not required for viral replication; however, we provide evidence indicating that the absence of pp14 expression is correlated with increased survival of MDV1-infected chickens, and that its expression is associated with enhanced viral neurovirulence. Our data identify for the first time pp14 as a neurovirulence factor from MDV1 and open the possibility to investigate the molecular mechanisms by which pp14 mediates the damage to the avian nervous system.
Collapse
|
209
|
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs expressed by plants, animals, and some viruses. miRNAs generally function as part of miRNA-induced silencing complexes to modestly repress mRNAs with imperfect sequence complementarity. Over the last years, many different roles of miRNA mediated regulation in the life cycles of mammalian viruses have been uncovered. In this chapter, I will mainly explore four different examples of how cellular miRNAs interact with viruses: the role of miR-155 in viral oncogenesis, viral strategies to eliminate cellular miR-27, the contribution of miR-122 to the replication of hepatitis C virus, and miRNAs as an experimental tool to control virus replication and vector transgene expression. In the final part of this chapter, I will give a brief overview of virally encoded microRNAs.
Collapse
|
210
|
Abstract
MicroRNAs (miRNAs) are 18- to 22-nucleotide-long, single-stranded, noncoding RNAs that regulate important biological processes including differentiation, proliferation, and response to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by controlling protein expression within the cell. Many investigators have profiled cancer tissue and serum miRNAs to identify potential therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups have profiled miRNAs that are present in the blood as a means to diagnose tumor progression and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic tissue and the peripheral blood, as well as the pathways that are associated with pancreatic cancer, are reviewed here in detail. Three miRNA biomarkers (miR-21, miR-155, and miR-200) have been repetitively identified in both pancreatic cancer tissue and patients' blood. Those miRNAs regulate and are regulated by the central genetic and epigenetic changes observed in pancreatic cancer including p53, transforming growth factor β, p16(INK4A), BRCA1/2, and Kras. These miRNAs are involved in DNA repair, cell cycle, and cell invasion and also play important roles in promoting metastases.
Collapse
|
211
|
Laganà A, Russo F, Veneziano D, Bella SD, Giugno R, Pulvirenti A, Croce CM, Ferro A. Extracellular circulating viral microRNAs: current knowledge and perspectives. Front Genet 2013; 4:120. [PMID: 23805153 PMCID: PMC3690336 DOI: 10.3389/fgene.2013.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional regulation of gene expression through interaction with messenger RNAs (mRNAs). They are involved in important biological processes and are often dysregulated in a variety of diseases, including cancer and infections. Viruses also encode their own sets of miRNAs, which they use to control the expression of either the host’s genes and/or their own. In the past few years evidence of the presence of cellular miRNAs in extracellular human body fluids such as serum, plasma, saliva, and urine has accumulated. They have been found either cofractionate with the Argonaute2 protein or in membrane-bound vesicles such as exosomes. Although little is known about the role of circulating miRNAs, it has been demonstrated that miRNAs secreted by virus-infected cells are transferred to and act in uninfected recipient cells. In this work we summarize the current knowledge on viral circulating miRNAs and provide a few examples of computational prediction of their function.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
212
|
γ-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Curr Opin Virol 2013; 3:266-75. [PMID: 23743127 DOI: 10.1016/j.coviro.2013.05.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
To date, more than 200 viral miRNAs have been identified mostly from herpesviruses and this rapidly evolving field has recently been summarized in a number of excellent reviews (see [1,2]). Unique to γ-herpesviruses, like Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, is their ability to cause cancer. Here, we discuss γ-herpesvirus-encoded miRNAs and focus on recent findings which support the hypothesis that viral miRNAs directly contribute to pathogenesis and tumorigenesis. The observations that KSHV mimics a human tumorigenic miRNA (hsa-miR-155), which is induced in EBV-infected cells and required for the survival of EBV-immortalized cells, lead to a number of studies demonstrating that perturbing this pathway induces B cell proliferation in vivo and immortalization of human B cells in vitro. Secondly, the application of state of the art ribonomics methods to globally identify viral miRNA targets in virus-infected tumor cells provides a rich resource to the KSHV and EBV fields and largely expanded our understanding on how viral miRNAs contribute to viral biology.
Collapse
|
213
|
Meier J, Hovestadt V, Zapatka M, Pscherer A, Lichter P, Seiffert M. Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP. RNA Biol 2013; 10:1018-29. [PMID: 23673373 PMCID: PMC4111730 DOI: 10.4161/rna.24553] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs, which fine-tune protein expression by degrading and/or translationally inhibiting mRNAs. Manipulation of miRNA expression in animal models frequently results in severe phenotypes indicating their relevance in controlling cellular functions, most likely by interacting with multiple targets. To better understand the effect of miRNA activities, genome-wide analysis of their targets are required. MicroRNA profiling as well as transcriptome analysis upon enforced miRNA expression were frequently used to investigate their relevance. However, these approaches often fail to identify relevant miRNAs targets. Therefore, we tested the precision of RNA-interacting protein immunoprecipitation (RIP) using AGO2-specific antibodies, a core component of the “RNA-induced silencing complex” (RISC), followed by RNA sequencing (Seq) in a defined cellular system, the HEK293T cells with stable, ectopic expression of miR-155. Thereby, we identified 100 AGO2-associated mRNAs in miR-155-expressing cells, of which 67 were in silico predicted miR-155 target genes. An integrated analysis of the corresponding expression profiles indicated that these targets were either regulated by mRNA decay or by translational repression. Of the identified miR-155 targets, 17 were related to cell cycle control, suggesting their involvement in the observed increase in cell proliferation of HEK293T cells upon miR-155 expression. Additional, secondary changes within the gene expression profile were detected and might contribute to this phenotype as well. Interestingly, by analyzing RIP-Seq data of HEK-293T cells and two B-cell lines we identified a recurrent disproportional enrichment of several miRNAs, including miR-155 and miRNAs of the miR-17-92 cluster, in the AGO2-associated precipitates, suggesting discrepancies in miRNA expression and activity.
Collapse
Affiliation(s)
- Jan Meier
- German Cancer Research Center, Division of Molecular Genetics, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
214
|
Abstract
miRNAs have been shown to play essential regulatory roles in the innate immune system. They function at multiple levels to shape the innate immune response and maintain homeostasis by direct suppression of the expression of their target proteins, preferentially crucial signaling components and transcription factors. Studies in humans and in disease models have revealed that dysregulation of several miRNAs such as miR-146a and miR-155 in rheumatic diseases leads to aberrant production of and/or signaling by inflammatory cytokines and, thus, critically contributes to disease pathogenesis. In addition, the recent description of the role of certain extracellular miRNAs as innate immune agonist to induce inflammatory response would have direct relevance to rheumatic diseases.
Collapse
|
215
|
Foster PS, Plank M, Collison A, Tay HL, Kaiko GE, Li J, Johnston SL, Hansbro PM, Kumar RK, Yang M, Mattes J. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev 2013; 253:198-215. [DOI: 10.1111/imr.12058] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Paul S. Foster
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Maximilian Plank
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Adam Collison
- Priority Research Centre for Asthma and Respiratory Disease, Discipline of Paediatrics and Child Health, School of Medicine and Public Health, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Hock L. Tay
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Gerard E. Kaiko
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - JingJing Li
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Sebastian L. Johnston
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma; Imperial College London; London; UK
| | - Philip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Rakesh K. Kumar
- Department of Pathology, School of Medical Sciences; University of New South Wales; Sydney; Australia
| | - Ming Yang
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Joerg Mattes
- Priority Research Centre for Asthma and Respiratory Disease, Discipline of Paediatrics and Child Health, School of Medicine and Public Health, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| |
Collapse
|
216
|
Abstract
In this review, we focus on the roles of long noncoding RNAs (lncRNAs), including cellular and viral lncRNAs, in virus replication in infected cells. We survey the interactions and functions of several cellular lncRNAs such as XIST, HOTAIR, NEAT1, BIC, and several virus-encoded lncRNAs.
Collapse
Affiliation(s)
- Quan Zhang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
217
|
Abstract
Toll-like receptors (TLRs) are pivotal components of the innate immune response, which is responsible for eradicating invading microorganisms through the induction of inflammatory molecules. These receptors are also involved in responding to harmful endogenous molecules and have crucial roles in the activation of the innate immune system and shaping the adaptive immune response. However, TLR signaling pathways must be tightly regulated because undue TLR stimulation may disrupt the fine balance between pro- and anti-inflammatory responses. Such disruptions may harm the host through the development of autoimmune and inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Several studies have investigated the regulatory pathways of TLRs that are essential for modulating proinflammatory responses. These studies reported several pathways and molecules that act individually or in combination to regulate immune responses. In this review, we have summarized recent advancements in the elucidation of the negative regulation of TLR signaling. Moreover, this review covers the modulation of TLR signaling at multiple levels, including adaptor complex destabilization, phosphorylation and ubiquitin-mediated degradation of signal proteins, manipulation of other receptors, and transcriptional regulation. Lastly, synthetic inhibitors have also been briefly discussed to highlight negative regulatory approaches in the treatment of inflammatory diseases.
Collapse
|
218
|
Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 2013; 14:205-10. [PMID: 23416678 DOI: 10.1038/ni.2537] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/29/2012] [Indexed: 02/08/2023]
Abstract
Cellular microRNAs serve key roles in the post-transcriptional regulation of almost every cellular gene-regulatory pathway, and it therefore is not surprising that viruses have found ways to subvert this process. Several viruses encode microRNAs that directly downregulate the expression of factors of the innate immune system, including proteins involved in promoting apoptosis and recruiting effector cells of the immune system. Viruses have also evolved the ability to downregulate or upregulate the expression of specific cellular miRNAs to enhance their replication. This Review provides an overview of the present knowledge of the complex interactions of viruses with the microRNA machinery of cells.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
219
|
Wang Y, Huang R, Song C, Hu H, Zhang M. Some viral microRNAs were up-regulated in megakaryocytes incubated with immune thrombocytopenia plasma. Eur J Haematol 2013; 90:220-7. [PMID: 23282244 DOI: 10.1111/ejh.12063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ya Wang
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Rui Huang
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Chaoyang Song
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Haiyan Hu
- Department of Oncology; The Sixth People's Hospital; Shanghai JiaoTong University; Shanghai; China
| | | |
Collapse
|
220
|
Tong L, Lin L, Wu S, Guo Z, Wang T, Qin Y, Wang R, Zhong X, Wu X, Wang Y, Luan T, Wang Q, Li Y, Chen X, Zhang F, Zhao W, Zhong Z. MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. Nucleic Acids Res 2013; 41:3760-71. [PMID: 23389951 PMCID: PMC3616696 DOI: 10.1093/nar/gkt058] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can posttranscriptionally regulate gene expression by targeting messenger RNAs. During miRNA biogenesis, the star strand (miRNA*) is generally degraded to a low level in the cells. However, certain miRNA* express abundantly and can be recruited into the silencing complex to regulate gene expression. Most miRNAs function as suppressive regulators on gene expression. Group B coxsackieviruses (CVB) are the major pathogens of human viral myocarditis and dilated cardiomyopathy. CVB genome is a positive-sense, single-stranded RNA. Our previous study shows that miR-342-5p can suppress CVB biogenesis by targeting its 2C-coding sequence. In this study, we found that the miR-10a duplex could significantly up-regulate the biosynthesis of CVB type 3 (CVB3). Further study showed that it was the miR-10a star strand (miR-10a*) that augmented CVB3 biosynthesis. Site-directed mutagenesis showed that the miR-10a* target was located in the nt6818–nt6941 sequence of the viral 3D-coding region. MiR-10a* was detectable in the cardiac tissues of suckling Balb/c mice, suggesting that miR-10a* may impact CVB3 replication during its cardiac infection. Taken together, these data for the first time show that miRNA* can positively modulate gene expression. MiR-10a* might be involved in the CVB3 cardiac pathogenesis.
Collapse
Affiliation(s)
- Lei Tong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Monsálvez V, Montes-Moreno S, Artiga MJ, Rodríguez ME, Sanchez-Espiridion B, Espiridión BS, Lozano M, Fernández-de-Misa R, Rodríguez-Peralto JL, Piris MA, Ortíz-Romero PL. MicroRNAs as prognostic markers in indolent primary cutaneous B-cell lymphoma. Mod Pathol 2013; 26:171-81. [PMID: 22936066 DOI: 10.1038/modpathol.2012.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Indolent primary cutaneous B-cell lymphoma is a group of malignant lymphomas comprising marginal zone B-cell lymphoma and centrofollicular B-cell lymphoma. Relapse rate of these tumors is close to 40%, and identifying those patients who are likely to progress remains a challenge. The aim of this study was to characterize the microRNA (miRNA) expression profile of a series of primary cutaneous B-cell lymphomas and correlate with histological and clinical findings. We studied a series of 68 patients with primary cutaneous B-cell lymphomas (30 cutaneous marginal-zone B-cell lymphomas and 38 primary cutaneous centrofollicular lymphomas). A set of 11 miRNAs associated with the differentiation stage of B cells was quantified by real-time PCR, using RNA extracted from formalin-fixed, paraffin-embedded tissue diagnostic samples. Relevant clinical variables were retrieved in a subset of 57 patients (28 cutaneous marginal zone B-cell lymphomas and 29 primary cutaneous centrofollicular lymphomas). miR-150 was upregulated in cutaneous marginal zone B-cell lymphomas relative to primary cutaneous centrofollicular lymphoma samples (false discovery rate <0.05). miR-155 and miR-150 expression levels were associated with progression-free survival in a univariate Cox regression analysis (P<0.1). After stratification by histological subtype, low-expression levels of miR-155 and miR-150 were both associated with shorter progression-free survival only in primary cutaneous marginal zone B-cell lymphomas cases (log-rank test, P<0.05). In summary, miRNA expression analysis can be used as a tool for diagnosis and outcome prognosis in indolent primary cutaneous B-cell lymphoma.
Collapse
Affiliation(s)
- Veronica Monsálvez
- Department of Dermatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Liang H, Zen K, Zhang J, Zhang CY, Chen X. New roles for microRNAs in cross-species communication. RNA Biol 2013; 10:367-70. [PMID: 23364352 DOI: 10.4161/rna.23663] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Communication between cells ensures coordinated behavior. In prokaryotes, this signaling is typically referred to as quorum sensing, whereas in eukaryotic cells, communication occurs through hormones. In recent years, reports have shown that small noncoding RNAs, called microRNAs (miRNAs), can be transmitted from one species to another, inducing signal interference in distant species, even in a cross-kingdom manner. This new mode of cross-species communication might mediate symbiotic and pathogenic relationships between various organisms (e.g., microorganisms and their hosts). Here, we discuss several recent studies concerning miRNA-mediated cross-species gene regulation.
Collapse
Affiliation(s)
- Hongwei Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, P.R. China
| | | | | | | | | |
Collapse
|
223
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
224
|
Dhanasekaran K, Kumari S, Kanduri C. Noncoding RNAs in chromatin organization and transcription regulation: an epigenetic view. Subcell Biochem 2013; 61:343-72. [PMID: 23150258 DOI: 10.1007/978-94-007-4525-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Genome of a eukaryotic cell harbors genetic material in the form of DNA which carries the hereditary information encoded in their bases. Nucleotide bases of DNA are transcribed into complimentary RNA bases which are further translated into protein, performing defined set of functions. The central dogma of life ensures sequential flow of genetic information among these biopolymers. Noncoding RNAs (ncRNAs) serve as exceptions for this principle as they do not code for any protein. Nevertheless, a major portion of the human transcriptome comprises noncoding RNAs. These RNAs vary in size, as well as they vary in the spatio-temporal distribution. These ncRnAs are functional and are shown to be involved in diverse cellular activities. Precise location and expression of ncRNA is essential for the cellular homeostasis. Failures of these events ultimately results in numerous disease conditions including cancer. The present review lists out the various classes of ncRNAs with a special emphasis on their role in chromatin organization and transcription regulation.
Collapse
Affiliation(s)
- Karthigeyan Dhanasekaran
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | | | | |
Collapse
|
225
|
Forte E, Luftig MA. Use of viral systems to study miRNA-mediated regulation of gene expression in human cells. Methods Mol Biol 2013; 936:143-156. [PMID: 23007506 DOI: 10.1007/978-1-62703-083-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are a class of small ∼22 nt regulatory RNAs that modulate mRNA expression in all multicellular eukaryotic organisms. Interestingly, viruses also encode miRNAs and these viral miRNAs target cellular and viral mRNAs to regulate virus replication and latent infection. In particular, herpesviruses encode a large number of miRNAs. Herpesvirus infection also changes the normal expression profile of cellular miRNAs. New genetic tools have recently been generated to study the function of viral and cellular miRNAs in virus-infected cells. The creation of these reagents and use in Epstein-Barr virus-infected lymphoblastoid cell lines are discussed as a model viral system for the investigation of miRNA function.
Collapse
Affiliation(s)
- Eleonora Forte
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
226
|
Bonkovsky HL, Guo J, Hou W, Li T, Narang T, Thapar M. Porphyrin and Heme Metabolism and the Porphyrias. Compr Physiol 2013; 3:365-401. [DOI: 10.1002/cphy.c120006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
227
|
Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 2013; 10:65-71. [PMID: 23262976 PMCID: PMC4003181 DOI: 10.1038/cmi.2012.55] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022] Open
Abstract
The innate immune system recognizes invading pathogens through germline-encoded pattern recognition receptors (PRRs), which elicit innate antimicrobial and inflammatory responses and initiate adaptive immunity to control or eliminate infection. Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I) are the key innate immune PRRs and are tightly regulated by elaborate mechanisms to ensure a beneficial outcome in response to foreign invaders. Although much of the focus in the literature has been on the study of protein regulators of inflammation, microRNAs (miRNAs) have emerged as important controllers of certain features of the inflammatory process. Several miRNAs are induced by TLR and RIG-I activation in myeloid cells and act as feedback regulators of TLR and RIG-I signaling. In this review, we comprehensively discuss the recent understanding of how miRNA networks respond to TLR and RIG-I signaling and their role in the initiation and termination of inflammatory responses. Increasing evidence also indicates that both virus-encoded miRNAs and cellular miRNAs have important functions in viral replication and host anti-viral immunity.
Collapse
Affiliation(s)
- Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
228
|
Abstract
MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.
Collapse
Affiliation(s)
- Rodney P. Kincaid
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, United States of America
| | - Christopher S. Sullivan
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
229
|
Sampey GC, Van Duyne R, Currer R, Das R, Narayanan A, Kashanchi F. Complex role of microRNAs in HTLV-1 infections. Front Genet 2012; 3:295. [PMID: 23251140 PMCID: PMC3523292 DOI: 10.3389/fgene.2012.00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/29/2012] [Indexed: 12/15/2022] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) was the first human retrovirus to be discovered and is the causative agent of adult T-cell leukemia/lymphoma (ATL) and the neurodegenerative disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The importance of microRNA (miRNA) in the replicative cycle of several other viruses, as well as in the progression of associated pathologies, has been well established in the past decade. Moreover, involvement of miRNA alteration in the HTLV-1 life cycle, and in the progression of its related oncogenic and neurodegenerative diseases, has recently come to light. Several HTLV-1 derived proteins alter transcription factor functionalities, interact with chromatin remodelers, or manipulate components of the RNA interference (RNAi) machinery, thereby establishing various routes by which miRNA expression can be up- or down-regulated in the host cell. Furthermore, the mechanism of action through which dysregulation of host miRNAs affects HTLV-1 infected cells can vary substantially and include mRNA silencing via the RNA-induced silencing complex (RISC), transcriptional gene silencing, inhibition of RNAi components, and chromatin remodeling. These miRNA-induced changes can lead to increased cell survival, invasiveness, proliferation, and differentiation, as well as allow for viral latency. While many recent studies have successfully implicated miRNAs in the life cycle and pathogenesis of HTLV-1 infections, there are still significant outstanding questions to be addressed. Here we will review recent discoveries elucidating HTLV-1 mediated manipulation of host cell miRNA profiles and examine the impact on pathogenesis, as well as explore future lines of inquiry that could increase understanding in this field of study.
Collapse
Affiliation(s)
- Gavin C Sampey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | | | | | | | | | | |
Collapse
|
230
|
Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2012; 532:1-12. [PMID: 23246696 DOI: 10.1016/j.gene.2012.12.009] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), a family of small nonprotein-coding RNAs, play a critical role in posttranscriptional gene regulation by acting as adaptors for the miRNA-induced silencing complex to inhibit gene expression by targeting mRNAs for translational repression and/or cleavage. miR-155-5p and miR-155-3p are processed from the B-cell Integration Cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). MiR-155-5p is highly expressed in both activated B- and T-cells and in monocytes/macrophages. MiR-155-5p is one of the best characterized miRNAs and recent data indicate that miR-155-5p plays a critical role in various physiological and pathological processes such as hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular disease, and Down syndrome. In this review we summarize the mechanisms by which MIR155HG expression can be regulated. Given that the pathologies mediated by miR-155-5p result from the over-expression of this miRNA it may be possible to therapeutically attenuate miR-155-5p levels in the treatment of several pathological processes.
Collapse
Affiliation(s)
- Terry S Elton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA; Department of Medicine, Division of Cardiology, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
231
|
Abstract
The relatively recent discovery of microRNAs (miRNAs) has exposed an extra layer of gene expression regulation that affects many physiological and pathological processes of biology. Dysregulation of miRNAs is a ubiquitous feature of cancer in general, including lymphomas. The identity of these aberrantly-expressed miRNAs has been thoroughly investigated in all but a few types of lymphomas, however their functional role in lymphomagenesis much less so. This review focuses on those miRNAs that have an experimentally confirmed functional role in the pathogenesis of the most frequent forms of lymphoma. In particular, the MIR15A/16-1 cluster, MIR21, MIR155, MIR17HG (MIR17-92 cluster), MIR34A and MIR125B, which have in vivo animal model evidence for their involvement in lymphomagenesis, are highlighted.
Collapse
|
232
|
Veksler-Lublinsky I, Shemer-Avni Y, Meiri E, Bentwich Z, Kedem K, Ziv-Ukelson M. Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV). BMC Bioinformatics 2012. [PMID: 23206407 PMCID: PMC3598692 DOI: 10.1186/1471-2105-13-322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms, including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs. In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes. Results In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus (HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function. To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For two of the reported quasi-modules, supporting evidence from biological and medical literature is provided. Conclusions The modules found by our method may advance the understanding of the role of miRNAs in host-viral interactions, and the genes in these modules may serve as candidates for further experimental validation.
Collapse
|
233
|
Dahlke C, Maul K, Christalla T, Walz N, Schult P, Stocking C, Grundhoff A. A microRNA encoded by Kaposi sarcoma-associated herpesvirus promotes B-cell expansion in vivo. PLoS One 2012. [PMID: 23185331 PMCID: PMC3502504 DOI: 10.1371/journal.pone.0049435] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human gammaherpesvirus Kaposi sarcoma-associated herpesvirus is strongly linked to neoplasms of endothelial and B-cell origin. The majority of tumor cells in these malignancies are latently infected, and latency genes are consequently thought to play a critical role in virus-induced tumorigenesis. One such factor is kshv-miR-K12-11, a viral microRNA that is constitutively expressed in cell lines derived from KSHV-associated tumors, and that shares perfect homology of its seed sequence with the cellular miR-155. Since miR-155 is overexpressed in a number of human tumors, it is conceivable that mimicry of miR-155 by miR-K12-11 may contribute to cellular transformation in KSHV-associated disease. Here, we have performed a side-by-side study of phenotypic alterations associated with constitutive expression of either human miR-155 or viral miR-K12-11 in bone marrow-derived hematopoietic stem cells. We demonstrate that retroviral-mediated gene transfer and hematopoietic progenitor cell transplantation into C57BL/6 mice leads to increased B-cell fractions in lymphoid organs, as well as to enhanced germinal center formation in both microRNA-expressing mouse cohorts. We furthermore identify Jarid2, a component of Polycomb repressive complex 2, as a novel validated target of miR-K12-11, and confirm its downregulation in miR-K12-11 as well as miR-155 expressing bone marrow cells. Our findings confirm and extend previous observations made in other mouse models, and underscore the notion that miR-K12-11 may have arisen to mimic miR-155 functions in KSHV-infected B-cells. The expression of miR-K12-11 may represent one mechanism by which KSHV presumably aims to reprogram naïve B-cells towards supporting long-term latency, which at the same time is likely to pre-dispose infected lymphocytes to malignant transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
234
|
Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 2012; 41:542-53. [PMID: 23143100 PMCID: PMC3592429 DOI: 10.1093/nar/gks1030] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many microRNAs (miRNAs) are co-regulated during the same physiological process but the underlying cellular logic is often little understood. The conserved, immunomodulatory miRNAs miR-146 and miR-155, for instance, are co-induced in many cell types in response to microbial lipopolysaccharide (LPS) to feedback-repress LPS signalling through Toll-like receptor TLR4. Here, we report that these seemingly co-induced regulatory RNAs dramatically differ in their induction behaviour under various stimuli strengths and act non-redundantly through functional specialization; although miR-146 expression saturates at sub-inflammatory doses of LPS that do not trigger the messengers of inflammation markers, miR-155 remains tightly associated with the pro-inflammatory transcriptional programmes. Consequently, we found that both miRNAs control distinct mRNA target profiles; although miR-146 targets the messengers of LPS signal transduction components and thus downregulates cellular LPS sensitivity, miR-155 targets the mRNAs of genes pervasively involved in pro-inflammatory transcriptional programmes. Thus, miR-155 acts as a broad limiter of pro-inflammatory gene expression once the miR-146 dependent barrier to LPS triggered inflammation has been breached. Importantly, we also report alternative miR-155 activation by the sensing of bacterial peptidoglycan through cytoplasmic NOD-like receptor, NOD2. We predict that dose-dependent responses to environmental stimuli may involve functional specialization of seemingly co-induced miRNAs in other cellular circuitries as well.
Collapse
Affiliation(s)
- Leon N Schulte
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider Strasse 2/D15, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
235
|
Abstract
As an important regulator in eukaryote, miRNAs could be in the animal body fluids, including serum, blood plasma, saliva, urine and so on. More recently, it was reported that miRNAs were also in the breast milk of human or cow, which indicates that miRNAs could probably be transferred into the body of the next generation by lactation and play their key roles. This might be the prelude of studies on the regulation function of miRNAs in generations. Here, we introduced the process of finding miRNAs in mammal milk, the format of miRNAs in milk and the method for isolating miRNAs, and reviewed the main functions of several miRNAs in milk. We also discussed the research task and challenge associated with miRNAs in milk at the next.
Collapse
|
236
|
Kaposi's sarcoma-associated herpesvirus suppression of DUSP1 facilitates cellular pathogenesis following de novo infection. J Virol 2012; 87:621-35. [PMID: 23097457 DOI: 10.1128/jvi.01441-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), and KSHV activation of mitogen-activated protein kinases (MAPKs) initiates a number of key pathogenic determinants of KS. Direct inhibition of signal transduction as a therapeutic approach presents several challenges, and a better understanding of KSHV-induced mechanisms regulating MAPK activation may facilitate the development of new treatment or prevention strategies for KS. MAPK phosphatases, including dual-specificity phosphatase-1 (DUSP1), negatively regulate signal transduction and cytokine activation through MAPK dephosphorylation or interference with effector molecule binding to MAPKs, including the extracellular signal-regulated kinase (ERK). We found that ERK-dependent latent viral gene expression, the induction of promigratory factors, and cell invasiveness following de novo infection of primary human endothelial cells are in part dependent on KSHV suppression of DUSP1 expression during de novo infection. KSHV-encoded miR-K12-11 upregulates the expression of xCT (an amino acid transporter and KSHV fusion/entry receptor), and existing data indicate a role for xCT in the regulation of 14-3-3β, a transcriptional repressor of DUSP1. We found that miR-K12-11 induces endothelial cell secretion of promigratory factors and cell invasiveness through upregulation of xCT-dependent, 14-3-3β-mediated suppression of DUSP1. Finally, proof-of-principle experiments revealed that pharmacologic upregulation of DUSP1 inhibits the induction of promigratory factors and cell invasiveness during de novo KSHV infection. These data reveal an indirect role for miR-K12-11 in the regulation of DUSP1 and downstream pathogenesis.
Collapse
|
237
|
Liu Y, Yin Q, Yuan Y, Yang W, Jiang C, Huang C. Infectomics Screening for Novel Antiviral Drug Targets. Drug Dev Res 2012. [PMCID: PMC7163650 DOI: 10.1002/ddr.21027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Copyright 2012 Wiley-Liss, Inc., A Wiley Company Infectomics, a novel way to globally and comprehensively understand the interactions between microbial pathogens and their hosts, has significantly expanded understanding of the microbial infections. The infectomics view of viral–host interactions on the viral perspective principally focuses on gene acquisition, deletion, and point mutation, while traditional antiviral drug discovery concentrates on viral encoding proteins. Recently, high‐throughput technologies, such as mass spectrometry‐based proteomics, activity‐based protein profiling, microarray analysis, yeast two‐hybrid assay, small interfering RNA screening, and micro RNA profiling, have been gradually employed in the research of virus–host interactions. Besides, signaling pathways and cellular processes involved in viral–host interactions provide new insights of infectomics in antiviral drug discovery. In this review, we summarize related infectomics approaches in the studies of virus–host interactions, which shed light on the development of novel antiviral drug targets screening.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Biotherapy; West China Hospital, West China, Sichuan University; Chengdu; 610041; China
| | - Qi Yin
- The State Key Laboratory of Biotherapy; West China Hospital, West China, Sichuan University; Chengdu; 610041; China
| | - Yao Yuan
- The State Key Laboratory of Biotherapy; West China Hospital, West China, Sichuan University; Chengdu; 610041; China
| | - Wenyong Yang
- The State Key Laboratory of Biotherapy; West China Hospital, West China, Sichuan University; Chengdu; 610041; China
| | - Chuangui Jiang
- The State Key Laboratory of Biotherapy; West China Hospital, West China, Sichuan University; Chengdu; 610041; China
| | - Canhua Huang
- The State Key Laboratory of Biotherapy; West China Hospital, West China, Sichuan University; Chengdu; 610041; China
| |
Collapse
|
238
|
IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A 2012; 109:E3101-10. [PMID: 23071313 DOI: 10.1073/pnas.1209100109] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IL-10 is a potent anti-inflammatory molecule that, in phagocytes, negatively targets cytokine expression at transcriptional and posttranscriptional levels. Posttranscriptional checkpoints also represent the specific target of a recently discovered, evolutionary conserved class of small silencing RNAs known as "microRNAs" (miRNAs), which display the peculiar function of negatively regulating mRNA processing, stability, and translation. In this study, we report that activation of primary human monocytes up-regulates the expression of miR-187 both in vitro and in vivo. Accordingly, we identify miR-187 as an IL-10-dependent miRNA playing a role in IL-10-mediated suppression of TNF-α, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by primary human monocytes following activation of Toll-like receptor 4 (TLR4). Ectopic expression of miR-187 consistently and selectively reduces TNFα, IL-6, and IL-12p40 produced by LPS-activated monocytes. Conversely, the production of LPS-induced TNF-α, IL-6, and IL-12p40 is increased significantly when miR-187 expression is silenced. Our data demonstrate that miR-187 directly targets TNF-α mRNA stability and translation and indirectly decreases IL-6 and IL-12p40 expression via down-modulation of IκBζ, a master regulator of the transcription of these latter two cytokines. These results uncover an miRNA-mediated pathway controlling cytokine expression and demonstrate a central role of miR-187 in the physiological regulation of IL-10-driven anti-inflammatory responses.
Collapse
|
239
|
The oncogenic microRNA OncomiR-21 overexpressed during Marek's disease lymphomagenesis is transactivated by the viral oncoprotein Meq. J Virol 2012; 87:80-93. [PMID: 23055556 DOI: 10.1128/jvi.02449-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gallid herpesvirus 2 (GaHV-2) is an oncogenic herpesvirus that causes T lymphoma in chicken. GaHV-2 encodes a basic leucine zipper (bZIP) protein of the AP-1 family, Meq. Upon formation of homo- or heterodimers with c-Jun, Meq may modulate the expression of viral and cellular genes involved in lymphomagenesis. GaHV-2 also encodes viral microRNAs (miRNAs) involved in latency and apoptosis escape. However, little is known about cellular miRNA deregulation during the development of GaHV-2-associated lymphoma. We determined the cellular miRNA expression profiles of chickens infected with a very virulent strain (RB-1B) or a vaccine strain (CVI988) or noninfected. Among the most deregulated cellular miRNAs, we focused our efforts on gga-miR-21, which is upregulated during GaHV-2 infection. We mapped the gga-miR-21 promoter to the 10th intron of the TMEM49 gene and found it to be driven by AP-1- and Ets-responsive elements. We show here that the viral oncoprotein Meq binds to this promoter, thereby transactivating gga-miR-21 expression. We confirmed that this miRNA targets chicken programmed death cell 4 (PDCD4) and promotes tumor cell growth and apoptosis escape. Finally, gga-miR-21 was overexpressed only during infection with a very virulent strain (RB-1B) and not during infection with a nononcogenic strain (CVI988), providing further evidence for its role in GaHV-2 lymphomagenesis. Our data therefore suggest an additional role for Meq in GaHV-2-mediated lymphomagenesis through the induction of miR-21 expression.
Collapse
|
240
|
Li Y, Fan X, He X, Sun H, Zou Z, Yuan H, Xu H, Wang C, Shi X. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha. Cell Mol Immunol 2012; 9:497-502. [PMID: 23042536 DOI: 10.1038/cmi.2012.35] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Effective recognition of viral infections and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs (miRNAs). A previous study showed that miR-466l upregulates IL-10 expression in macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. However, the ability of miR-466l to regulate antiviral immune responses remains unknown. Here, we found that interferon-alpha (IFN-α) expression was repressed in Sendai virus (SeV)- and vesicular stomatitis virus (VSV)-infected macrophages and in dendritic cells transfected with miR-466l expression. Moreover, multiple IFN-α species can be directly targeted by miR-466l through their 3' untranslated region (3'UTR). This study has demonstrated that miR-466l could directly target IFN-α expression to inhibit host antiviral innate immune response.
Collapse
Affiliation(s)
- Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
242
|
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that have attracted tremendous attention from the biological and biomedical research communities over the past decade. With over 1900 miRNAs discovered in humans to date, many of them have already been implicated in common human disorders. Facilitated by high-throughput genomics and bioinformatics in conjunction with traditional molecular biology techniques and animal models, miRNA research is now positioned to make the transition from laboratories to clinics to deliver profound benefits to public health. Herein, we overview the progress of miRNA research related to human diseases, as well as the potential for miRNA to becoming the next generation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yu Li
- Benaroya Research Institute and Center for Liver Disease, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, WA 98101, USA.
| | | |
Collapse
|
243
|
Valli A, Busnadiego I, Maliogka V, Ferrero D, Castón JR, Rodríguez JF, García JA. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes. PLoS One 2012; 7:e45957. [PMID: 23049903 PMCID: PMC3458112 DOI: 10.1371/journal.pone.0045957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/23/2012] [Indexed: 12/23/2022] Open
Abstract
RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | | | - Diego Ferrero
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
244
|
Ramalingam D, Kieffer-Kwon P, Ziegelbauer JM. Emerging themes from EBV and KSHV microRNA targets. Viruses 2012; 4:1687-710. [PMID: 23170179 PMCID: PMC3499826 DOI: 10.3390/v4091687] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 12/14/2022] Open
Abstract
EBV and KSHV are both gamma-herpesviruses which express multiple viral microRNAs. Various methods have been used to investigate the functions of these microRNAs, largely through identification of microRNA target genes. Surprisingly, these related viruses do not share significant sequence homology in their microRNAs. A number of reports have described functions of EBV and KSHV microRNA targets, however only three experimentally validated target genes have been shown to be targeted by microRNAs from both viruses. More sensitive methods to identify microRNA targets have predicted approximately 60% of host targets could be shared by EBV and KSHV microRNAs, but by targeting different sequences in the host targets. In this review, we explore the similarities of microRNA functions and targets of these related viruses.
Collapse
|
245
|
Tomita M. Important Roles of Cellular MicroRNA miR-155 in Leukemogenesis by Human T-Cell Leukemia Virus Type 1 Infection. ISRN MICROBIOLOGY 2012; 2012:978607. [PMID: 23762762 PMCID: PMC3671690 DOI: 10.5402/2012/978607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the pathogen that causes the aggressive and lethal malignancy of CD4+ T-lymphocytes called adult T-cell leukemia/lymphoma (ATLL). MicroRNAs (miRNAs), a class of short, noncoding RNAs, regulate gene expression by targeting mRNAs for translational repression or cleavage. miRNAs are involved in many aspects of cell biology linked with formation of several cancer phenotypes. However, the relation between miRNAs and pathologic implication in ATLL is not well elucidated. Here, we evaluated the roles of cellular miRNAs in ATLL caused by HTLV-1. We found that the expression of miR-155 was increased in HTLV-1-positive T-cell lines. miR-155 expression was enhanced by Tax and binding of transcription factors, NF-κB and AP-1, on the transcription binding sites of miR-155 gene promoter region is important to increase the expression of miR-155 by Tax. Transfection of anti-miR-155 inhibitor, which inhibits the function of miR-155, inhibited the growth of HTLV-1-positive T-cell lines. On the other hand, the growth of HTLV-1-negative T-cell lines was not changed by transfection of anti-miR-155. Forced expression of miR-155 enhanced the growth of HTLV-1-positive T-cell lines. These findings indicate that targeting the functions of miRNAs is a novel approach to the prevention or treatment of ATLL.
Collapse
Affiliation(s)
- Mariko Tomita
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
246
|
Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog 2012; 8:e1002884. [PMID: 22927820 PMCID: PMC3426530 DOI: 10.1371/journal.ppat.1002884] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/13/2012] [Indexed: 12/27/2022] Open
Abstract
KSHV is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and a subset of multicentricCastleman's disease (MCD). The fact that KSHV-encoded miRNAs are readily detectable in all KSHV-associated tumors suggests a potential role in viral pathogenesis and tumorigenesis. MiRNA-mediated regulation of gene expression is a complex network with each miRNA having many potential targets, and to date only few KSHV miRNA targets have been experimentally determined. A detailed understanding of KSHV miRNA functions requires high-through putribonomics to globally analyze putative miRNA targets in a cell type-specific manner. We performed Ago HITS-CLIP to identify viral and cellular miRNAs and their cognate targets in two latently KSHV-infected PEL cell lines. Ago HITS-CLIP recovered 1170 and 950 cellular KSHVmiRNA targets from BCBL-1 and BC-3, respectively. Importantly, enriched clusters contained KSHV miRNA seed matches in the 3′UTRs of numerous well characterized targets, among them THBS1, BACH1, and C/EBPβ. KSHV miRNA targets were strongly enriched for genes involved in multiple pathways central for KSHV biology, such as apoptosis, cell cycle regulation, lymphocyte proliferation, and immune evasion, thus further supporting a role in KSHV pathogenesis and potentially tumorigenesis. A limited number of viral transcripts were also enriched by HITS-CLIP including vIL-6 expressed only in a subset of PEL cells during latency. Interestingly, Ago HITS-CLIP revealed extremely high levels of Ago-associated KSHV miRNAs especially in BC-3 cells where more than 70% of all miRNAs are of viral origin. This suggests that in addition to seed match-specific targeting of cellular genes, KSHV miRNAs may also function by hijacking RISCs, thereby contributing to a global de-repression of cellular gene expression due to the loss of regulation by human miRNAs. In summary, we provide an extensive list of cellular and viral miRNA targets representing an important resource to decipher KSHV miRNA function. Kaposi's sarcoma-associated herpesvirus is the etiological agent of KS and two lymphoproliferative diseases: multicentricCastleman's disease and primary effusion lymphomas (PEL). KSHV tumors are the most prevalent AIDS malignancies and within Sub-Saharan Africa KS is the most common cancer in males, both in the presence and absence of HIV infection. KSHV encodes 12 miRNA genes whose function is largely unknown. Viral miRNAs are incorporated into RISCs, which regulate gene expression mostly by binding to 3′UTRs of mRNAs to inhibit their translation and/or induce degradation. The small subset of viral miRNA targets identified to date suggests that these small posttranscriptional regulators target important cellular pathways involved in pathogenesis and tumorgenesis. Using Ago HITS-CLIP, a technique which combines UV cross-linking, immunoprecipitation of Ago-miRNA-mRNA complexes, and high throughput sequencing, we performed a detailed analysis of the KSHV miRNA targetome in two commonly studied PEL cell lines, BCBL-1 and BC-3 and identified 1170 and 950 putative miRNA targets, respectively. This data set provides a valuable resource to decipher how KSHV miRNAs contribute to viral biology and pathogenesis.
Collapse
|
247
|
A Kaposi's sarcoma-associated herpesvirus microRNA and its variants target the transforming growth factor β pathway to promote cell survival. J Virol 2012; 86:11698-711. [PMID: 22915806 DOI: 10.1128/jvi.06855-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling regulates cell growth and survival. Dysregulation of the TGF-β pathway is common in viral infection and cancer. Latent infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma and primary effusion lymphoma (PEL). KSHV encodes more than two dozen microRNAs (miRs) derived from 12 pre-miRs with largely unknown functions. In this study, we show that miR variants processed from pre-miR-K10 are expressed in KSHV-infected PEL cells and endothelial cells, while cellular miR-142-3p and its variant miR-142-3p_-1_5, which share the same seed sequence with miR-K10a_ +1_5, are expressed only in PEL cells and not in uninfected and KSHV-infected TIME cells. KSHV miR-K10 variants inhibit TGF-β signaling by targeting TGF-β type II receptor (TβRII). Computational and reporter mutagenesis analyses identified three functional target sites in the TβRII 3' untranslated region (3'UTR). Expression of miR-K10 variants is sufficient to inhibit TGF-β-induced cell apoptosis. A suppressor of the miRs sensitizes latent KSHV-infected PEL cells to TGF-β and induces apoptosis. These results indicate that miR-K10 variants manipulate the TGF-β pathway to confer cells with resistance to the growth-inhibitory effect of TGF-β. Thus, KSHV miRs might target the tumor-suppressive TGF-β pathway to promote viral latency and contribute to malignant cellular transformation.
Collapse
|
248
|
Abstract
Recently, it has become clear that herpesviruses are unique among pathogenic virus families in that they express multiple virally-encoded microRNAs in latently and/or lytically infected cells. The large size of herpesvirus genomes, combined with the inability of most human herpesviruses to replicate in animals, has until recently limited our ability to examine the contribution of viral miRNAs to herpesvirus replication and pathogenesis in vivo. However, recent data, primarily obtained using model animal herpesviruses, suggest that viral miRNAs, while not required for lytic replication in culture, can nevertheless strongly enhance viral pathogenesis, including oncogenesis, in vivo and also promote the establishment of a reservoir of latently infected cells.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
249
|
Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J Virol 2012; 86:11663-74. [PMID: 22896623 DOI: 10.1128/jvi.01147-12] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, an important AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs). We identified interleukin-1 receptor (IL-1R)-associated kinase 1 (IRAK1) as a potential target of miR-K12-9 (miR-K9) in an array data set examining changes in cellular gene expression levels in the presence of KSHV miRNAs. Using 3'-untranslated region (3'UTR) luciferase reporter assays, we confirmed that miR-K9 and other miRNAs inhibit IRAK1 expression. In addition, IRAK1 expression is downregulated in cells transfected with miR-K9 and during de novo KSHV infection. IRAK1 is an important component of the Toll-like receptor (TLR)/IL-1R signaling cascade. The downregulation of IRAK1 by miR-K9 resulted in the decreased stimulation of NF-κB activity in endothelial cells treated with IL-1α and in B cells treated with a TLR7/8 agonist. Interestingly, miR-K9 had a greater effect on NF-κB activity than did a small interfering RNA (siRNA) targeting IRAK1 despite the more efficient downregulation of IRAK1 expression with the siRNA. We hypothesized that KSHV miRNAs may also be regulating a second component of the TLR/IL-1R signaling cascade, resulting in a stronger phenotype. Reanalysis of the array data set identified myeloid differentiation primary response protein 88 (MYD88) as an additional potential target. 3'UTR luciferase reporter assays and Western blot analysis confirmed the targeting of MYD88 by miR-K5. The presence of miR-K9 and miR-K5 inhibited the production of IL-6 and IL-8 upon the IL-1α stimulation of endothelial cells. These results demonstrate KSHV-encoded miRNAs regulating the TLR/IL-1R signaling cascade at two distinct points and suggest the importance of these pathways during viral infection.
Collapse
|
250
|
Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J Bacteriol 2012; 194:5209-17. [PMID: 22821981 DOI: 10.1128/jb.00510-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.
Collapse
|