201
|
Zainfeld D, Goldkorn A. Liquid Biopsy in Prostate Cancer: Circulating Tumor Cells and Beyond. Cancer Treat Res 2018; 175:87-104. [PMID: 30168118 DOI: 10.1007/978-3-319-93339-9_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a common malignancy impacting countless men without curative options in the advanced state. Numerous therapies have been introduced in recent years improving survival and symptom control, yet optimal methods for predicting or monitoring response have not been developed. In the era of precision medicine, characterization of individual cancers is necessary to inform treatment decisions. Liquid biopsies, through evaluation of various blood-based analytes, provide a method of patient evaluation with potential applications in virtually all disease states. In this review, we will describe current approaches with a particular focus on demonstrated clinical utility in the evaluation and management of prostate cancer.
Collapse
Affiliation(s)
- Daniel Zainfeld
- USC Keck/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Amir Goldkorn
- USC Keck/Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
202
|
Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S, Wang L, Chen S. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy. Nanotheranostics 2018; 2:21-41. [PMID: 29291161 PMCID: PMC5743836 DOI: 10.7150/ntno.22091] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xingxiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
203
|
Application of Single Cell Sequencing in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:135-148. [PMID: 29943301 DOI: 10.1007/978-981-13-0502-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a heterogenetic disease at both the level of clinical manifestation and the level of the genome. Single-cell sequencing provides an unprecedented means of characterizing the intra-tumor heterogeneity and detecting and analyzing the genomes of cancer cells. These data will help to reconstruct the understanding of the evolutionary lineage of cancer cells. In the future, single-cell technology is believed to be a useful tool in diagnostic and prognostic application in oncology. The application of single cell technology in clinics will make it possible to detect cancer non-invasively at early stages and to develop precision medicine. In this chapter, we review the research and application status of the single cell technology in cancer.
Collapse
|
204
|
Heymann D, Téllez-Gabriel M. Circulating Tumor Cells: The Importance of Single Cell Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:45-58. [DOI: 10.1007/978-981-13-0502-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
205
|
Castro-Giner F, Scheidmann MC, Aceto N. Beyond Enumeration: Functional and Computational Analysis of Circulating Tumor Cells to Investigate Cancer Metastasis. Front Med (Lausanne) 2018; 5:34. [PMID: 29520361 PMCID: PMC5827555 DOI: 10.3389/fmed.2018.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are defined as those cells that detach from a cancerous lesion and enter the bloodstream. While generally most CTCs are subjected to high shear stress, anoikis signals, and immune attack in the circulatory system, few are able to survive and reach a distant organ in a viable state, possibly leading to metastasis formation. A large number of studies, both prospective and retrospective, have highlighted the association between CTC abundance and bad prognosis in patients with various cancer types. Yet, beyond CTC enumeration, much less is known about the distinction between metastatic and nonmetastatic CTCs, namely those features that enable only some CTCs to survive and seed a cancerous lesion at a distant site. In addition, critical aspects such as CTC heterogeneity, mechanisms that trigger CTC intravasation and extravasation, as well as vulnerabilities of metastatic CTCs subpopulations are poorly understood. In this short review, we highlight recent studies that successfully adopted functional and computational analysis to gain insights into CTC biology. We also discuss approaches to overcome challenges that are associated with CTC isolation, molecular and computational analysis, and speculate regarding few open questions that currently frame the CTC research field.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Manuel C. Scheidmann
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, University Hospital Basel, Basel, Switzerland
- *Correspondence: Nicola Aceto,
| |
Collapse
|
206
|
Single-cell sequencing to quantify genomic integrity in cancer. Int J Biochem Cell Biol 2018; 94:146-150. [DOI: 10.1016/j.biocel.2017.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/23/2017] [Indexed: 11/23/2022]
|
207
|
Lohr JG, Knoechel B, Golub TR. Genomic Approaches to Hematology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
208
|
Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ, Gray D, Birrer N, Wong B, Ha G, Zhang CZ, Guo G, Meyerson M, Yee AJ, Boehm JS, Raje N, Golub TR. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med 2017; 8:363ra147. [PMID: 27807282 DOI: 10.1126/scitranslmed.aac7037] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/13/2016] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) remains an incurable disease, with a treatment-refractory state eventually developing in all patients. Constant clonal evolution and genetic heterogeneity of MM are a likely explanation for the emergence of drug-resistant disease. Monitoring of MM genomic evolution on therapy by serial bone marrow biopsy is unfortunately impractical because it involves an invasive and painful procedure. We describe how noninvasive and highly sensitive isolation and characterization of circulating tumor cells (CTCs) from peripheral blood at single-cell resolution recapitulate MM in the bone marrow. We demonstrate that CTCs provide the same genetic information as bone marrow MM cells and even reveal mutations with greater sensitivity than bone marrow biopsies in some cases. Single CTC RNA sequencing enables classification of MM and quantitative assessment of genes that are relevant for prognosis. We propose that the genomic characterization of CTCs should be included in clinical trials to follow the emergence of resistant subclones after MM therapy.
Collapse
Affiliation(s)
- Jens G Lohr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Sora Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Gould
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Birgit Knoechel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Yotam Drier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Medical School, Boston, MA 02115, USA.,Division of Hematology and Oncology/Pathology, Massachusetts General Hospital Cancer Center, MA 02114, USA
| | - Matthew J Cotton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Division of Hematology and Oncology/Pathology, Massachusetts General Hospital Cancer Center, MA 02114, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Daniel Gray
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicole Birrer
- Division of Hematology and Oncology/Pathology, Massachusetts General Hospital Cancer Center, MA 02114, USA
| | - Bang Wong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gavin Ha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA
| | - Cheng-Zhong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA
| | - Guangwu Guo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Yee
- Harvard Medical School, Boston, MA 02115, USA.,Division of Hematology and Oncology/Pathology, Massachusetts General Hospital Cancer Center, MA 02114, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Noopur Raje
- Harvard Medical School, Boston, MA 02115, USA.,Division of Hematology and Oncology/Pathology, Massachusetts General Hospital Cancer Center, MA 02114, USA
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,Departments of Medical Oncology, Pathology, and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02214, USA.,Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
209
|
Wu X, Liu Z, Zhang X, Wang D, Long E, Wang J, Li W, Lai W, Cao Q, Hu K, Chen W, Lin H, Liu Y. Proteomics analysis and proteogenomic characterization of different physiopathological human lenses. BMC Ophthalmol 2017; 17:253. [PMID: 29258473 PMCID: PMC5735820 DOI: 10.1186/s12886-017-0642-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the present study was to identify the proteomic differences among human lenses in different physiopathological states and to screen for susceptibility genes/proteins via proteogenomic characterization. METHODS The total proteomes identified across the regenerative lens with secondary cataract (RLSC), congenital cataract (CC) and age-related cataract (ARC) groups were compared to those of normal lenses using isobaric tagging for relative and absolute protein quantification (iTRAQ). The up-regulated proteins between the groups were subjected to biological analysis. Whole exome sequencing (WES) was performed to detect genetic variations. RESULTS The most complete human lens proteome to date, which consisted of 1251 proteins, including 55.2% previously unreported proteins, was identified across the experimental groups. Bioinformatics functional annotation revealed the common involvement of cellular metabolic processes, immune responses and protein folding disturbances among the groups. RLSC-over-expressed proteins were characteristically enriched in the intracellular immunological signal transduction pathways. The CC groups featured biological processes relating to gene expression and vascular endothelial growth factor (VEGF) signaling transduction, whereas the molecular functions corresponding to external stress were specific to the ARC groups. Combined with WES, the proteogenomic characterization narrowed the list to 16 candidate causal molecules. CONCLUSIONS These findings revealed common final pathways with diverse upstream regulation of cataractogenesis in different physiopathological states. This proteogenomic characterization shows translational potential for detecting susceptibility genes/proteins in precision medicine.
Collapse
Affiliation(s)
- Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Erping Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Wangting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Weiyi Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Qianzhong Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54# Xianlie Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
210
|
The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep 2017; 19:218-224. [PMID: 28380360 PMCID: PMC5439509 DOI: 10.1016/j.celrep.2017.03.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs) is prognostic in multiple myeloma (MM), but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM) tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.
Collapse
|
211
|
Wu J, Dong M, Santos S, Rigatto C, Liu Y, Lin F. Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. SENSORS 2017; 17:s17122934. [PMID: 29258216 PMCID: PMC5751502 DOI: 10.3390/s17122934] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated diseases is of high interest to both the research and healthcare communities. Most conventional methods for CVD and cancer biomarker detection such as microwell plate-based immunoassay and polymerase chain reaction often suffer from high costs, low test speeds, and complicated procedures. Recently, lab-on-a-chip (LoC)-based platforms have been increasingly developed for CVD and cancer biomarker sensing and analysis using various molecular and cell-based diagnostic biomarkers. These new platforms not only enable better sample preparation, chemical manipulation and reaction, high-throughput and portability, but also provide attractive features such as label-free detection and improved sensitivity due to the integration of various novel detection techniques. These features effectively improve the diagnostic test speed and simplify the detection procedure. In addition, microfluidic cell assays and organ-on-chip models offer new potential approaches for CVD and cancer diagnosis. Here we provide a mini-review focusing on recent development of LoC-based methods for CVD and cancer diagnostic biomarker measurements, and our perspectives of the challenges, opportunities and future directions.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Meili Dong
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China.
| | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community Areas, Winnipeg, MB, R3T 2E8, Canada.
| | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China.
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
212
|
Cheng F, Hong H, Yang S, Wei Y. Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era. Brief Bioinform 2017; 18:682-697. [PMID: 27296652 DOI: 10.1093/bib/bbw051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
Advances in next-generation sequencing technologies have generated the data supporting a large volume of somatic alterations in several national and international cancer genome projects, such as The Cancer Genome Atlas and the International Cancer Genome Consortium. These cancer genomics data have facilitated the revolution of a novel oncology drug discovery paradigm from candidate target or gene studies toward targeting clinically relevant driver mutations or molecular features for precision cancer therapy. This focuses on identifying the most appropriately targeted therapy to an individual patient harboring a particularly genetic profile or molecular feature. However, traditional experimental approaches that are used to develop new chemical entities for targeting the clinically relevant driver mutations are costly and high-risk. Drug repositioning, also known as drug repurposing, re-tasking or re-profiling, has been demonstrated as a promising strategy for drug discovery and development. Recently, computational techniques and methods have been proposed for oncology drug repositioning and identifying pharmacogenomics biomarkers, but overall progress remains to be seen. In this review, we focus on introducing new developments and advances of the individualized network-based drug repositioning approaches by targeting the clinically relevant driver events or molecular features derived from cancer panomics data for the development of precision oncology drug therapies (e.g. one-person trials) to fully realize the promise of precision medicine. We discuss several potential challenges (e.g. tumor heterogeneity and cancer subclones) for precision oncology. Finally, we highlight several new directions for the precision oncology drug discovery via biotherapies (e.g. gene therapy and immunotherapy) that target the 'undruggable' cancer genome in the functional genomics era.
Collapse
|
213
|
Gammon JM, Dold NM, Jewell CM. Improving the clinical impact of biomaterials in cancer immunotherapy. Oncotarget 2017; 7:15421-43. [PMID: 26871948 PMCID: PMC4941251 DOI: 10.18632/oncotarget.7304] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials–such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices–offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.
Collapse
Affiliation(s)
- Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Neil M Dold
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| |
Collapse
|
214
|
Ellsworth DL, Blackburn HL, Shriver CD, Rabizadeh S, Soon-Shiong P, Ellsworth RE. Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis. Clin Transl Med 2017; 6:15. [PMID: 28405930 PMCID: PMC5389955 DOI: 10.1186/s40169-017-0145-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Extensive genomic and transcriptomic heterogeneity in human cancer often negatively impacts treatment efficacy and survival, thus posing a significant ongoing challenge for modern treatment regimens. State-of-the-art DNA- and RNA-sequencing methods now provide high-resolution genomic and gene expression portraits of individual cells, facilitating the study of complex molecular heterogeneity in cancer. Important developments in single-cell sequencing (SCS) technologies over the past 5 years provide numerous advantages over traditional sequencing methods for understanding the complexity of carcinogenesis, but significant hurdles must be overcome before SCS can be clinically useful. In this review, we: (1) highlight current methodologies and recent technological advances for isolating single cells, single-cell whole-genome and whole-transcriptome amplification using minute amounts of nucleic acids, and SCS, (2) summarize research investigating molecular heterogeneity at the genomic and transcriptomic levels and how this heterogeneity affects clonal evolution and metastasis, and (3) discuss the promise for integrating SCS in the clinical care arena for improved patient care.
Collapse
Affiliation(s)
- Darrell L. Ellsworth
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, 620 Seventh Street, Windber, PA 15963 USA
| | - Heather L. Blackburn
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, 620 Seventh Street, Windber, PA 15963 USA
| | - Craig D. Shriver
- Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889 USA
| | | | | | | |
Collapse
|
215
|
Ooi CC, Mantalas GL, Koh W, Neff NF, Fuchigami T, Wong DJ, Wilson RJ, Park SM, Gambhir SS, Quake SR, Wang SX. High-throughput full-length single-cell mRNA-seq of rare cells. PLoS One 2017; 12:e0188510. [PMID: 29186152 PMCID: PMC5706670 DOI: 10.1371/journal.pone.0188510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Collapse
Affiliation(s)
- Chin Chun Ooi
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Gary L. Mantalas
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Winston Koh
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Norma F. Neff
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Teruaki Fuchigami
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Dawson J. Wong
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Robert J. Wilson
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
| | - Seung-min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv S. Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Shan X. Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
216
|
Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol 2017; 34:405-415. [PMID: 29168077 PMCID: PMC6132989 DOI: 10.1007/s10565-017-9418-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/29/2017] [Indexed: 01/09/2023]
Abstract
Circulating tumor cells (CTCs) slough off primary tumor tissues and are swept away by the circulatory system. These CTCs can remain in circulation or colonize new sites, forming metastatic clones in distant organs. Recently, CTC analyses have been successfully used as effective clinical tools to monitor tumor progression and prognosis. With advances in next-generation sequencing (NGS) and single-cell sequencing (SCS) technologies, scientists can obtain the complete genome of a CTC and compare it with corresponding primary and metastatic tumors. CTC sequencing has been successfully applied to monitor genomic variations in metastatic and recurrent tumors, infer tumor evolution during treatment, and examine gene expression as well as the mechanism of the epithelial-mesenchymal transition. However, compared with cancer biopsy sequencing and circulating tumor DNA sequencing, the sequencing of CTC genomes and transcriptomes is more complex and technically difficult. Challenges include enriching pure tumor cells from a background of white blood cells, isolating and collecting cells without damaging or losing DNA and RNA, obtaining unbiased and even whole-genome and transcriptome amplification material, and accurately analyzing CTC sequencing data. Here, we review and summarize recent studies using NGS on CTCs. We mainly focus on CTC genome and transcriptome sequencing and the biological and potential clinical applications of these methodologies. Finally, we discuss challenges and future perspectives of CTC sequencing.
Collapse
|
217
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
218
|
Chiodi I, Scovassi AI, Mondello C. Circulating Molecular and Cellular Biomarkers in Cancer. TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:607-656. [DOI: 10.1002/9781119023647.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
219
|
Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 2017; 8:1324. [PMID: 29109393 PMCID: PMC5673918 DOI: 10.1038/s41467-017-00965-y] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.
Collapse
|
220
|
Quinn DI, Sandler HM, Horvath LG, Goldkorn A, Eastham JA. The evolution of chemotherapy for the treatment of prostate cancer. Ann Oncol 2017; 28:2658-2669. [PMID: 29045523 DOI: 10.1093/annonc/mdx348] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy has been explored as a treatment option for metastatic prostate cancer since the early 1980s. Docetaxel, a taxane chemotherapeutic, was approved for the treatment of men with metastatic castration-resistant prostate cancer in 2004, and is now standard of care for late stage disease. Recent clinical studies demonstrated that patients with metastatic castration-sensitive disease, and possibly those with high-risk localized prostate cancer also benefit from docetaxel administration, expanding the role of chemotherapy in the prostate cancer treatment landscape. Another taxane, cabazitaxel, is approved for post-docetaxel metastatic castration-resistant prostate cancer. Taxanes and other chemotherapeutics, such as carboplatin, are now being tested in combination regimens. This review presents an outline of recent and ongoing clinical studies assessing docetaxel and its derivative cabazitaxel at different stages of the disease, and in various combinations with other agents. We summarize current knowledge on biomarkers predictive of response to chemotherapy, which may in future be used to guide individualized treatment decisions.
Collapse
Affiliation(s)
- D I Quinn
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles;.
| | - H M Sandler
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - L G Horvath
- Department of Medical Oncology, Chris O'Brien Lifehouse and University of Sydney, Sydney, Australia
| | - A Goldkorn
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles
| | - J A Eastham
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
221
|
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.
Collapse
|
222
|
Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther 2017; 10:5219-5228. [PMID: 29138574 PMCID: PMC5667781 DOI: 10.2147/ott.s140854] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
More recently, disease metastasis and relapse in many cancer patients several years (even some decades) after surgical remission are regarded as tumor dormancy. However, the knowledge of this phenomenon is cripplingly limited. Substantial quantities of reviews have summarized three main potential models that can be put forth to explain such process, including angiogenic dormancy, immunologic dormancy, and cellular dormancy. In this review, newly uncovered mechanisms governing cancer cell dormancy are discussed, with an emphasis on the cross talk between dormant cancer cells and their microenvironments. In addition, potential mechanisms of reactivation of these dormant cells in certain anatomic sites including lymph nodes and bone marrow are discussed. Molecular mechanism of cellular dormancy in head and neck cancer is also involved.
Collapse
Affiliation(s)
- Xiao-Lei Gao
- State Key Laboratory of Oral Diseases.,Department of Oral and Maxillofacial Surgery
| | - Mei Zhang
- State Key Laboratory of Oral Diseases.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases.,Department of Oral and Maxillofacial Surgery
| |
Collapse
|
223
|
Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer. Proteomes 2017; 5:proteomes5040028. [PMID: 29068423 PMCID: PMC5748563 DOI: 10.3390/proteomes5040028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS) data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.
Collapse
|
224
|
Molecular Profiling and Significance of Circulating Tumor Cell Based Genetic Signatures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:143-167. [PMID: 28560673 DOI: 10.1007/978-3-319-55947-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer kills by metastasizing beyond the primary site. Early detection, surgical intervention and other treatments have improved the survival rates of patients with cancer, however, once metastasis occurs, responses to conventional therapies become significantly less effective, and this remains the leading cause of death. Circulating tumor cells (CTCs) are tumor cells that have preferentially disseminated from the primary tumor mass into the hematological system, and are en route to favorable distant sites where if they survive, can develop into metastases. They may be the earliest detectable cells with metastatic ability, and are gaining increasing attention because of their prognostic value in many types of cancers including breast, prostate, colon and lung. Recent technological advances have removed barriers that previously hindered the detection and isolation of these rare cells from blood, and have exponentially improved the genetic resolution at which we can characterize signatures that define CTCs. Some of the most significant observations from such examinations are described here. Firstly, aberrations that were thought to be unique to CTCs are detected at subclonal frequencies within primary tumors with measurable heterogeneity, indicating pre-existing genetic signatures for metastasis. Secondly, these subclonal events are enriched in CTCs and metastases, pointing towards the selection of a more 'fit' component of tumor cells with survival advantages. Lastly, this component of cancer cells may also be the chemoresistant portion that escapes systemic treatment, or acquires resistance during progression of the disease. The future of cancer management may include a standardized method of measuring intratumor heterogeneity of the primary as well as matched CTCs. This will help identify and target rare aberrations within primary tumors that make them more adept to disseminate, and also to monitor the development of treatment resistant subclones as cancer progresses.
Collapse
|
225
|
赵 倩, 司 徒, 郑 磊. [Current progress in research of circulating tumor cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1423-1426. [PMID: 29070479 PMCID: PMC6743959 DOI: 10.3969/j.issn.1673-4254.2017.10.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Circulating tumor cells are tumor cells that spontaneously or, following operations, migrate into the peripheral blood circulation from the primary tumor or metastatic tumor. As diagnostic, prognostic and predictive biomarkers in many types of cancers including breast cancer, lung cancer, pancreatic cancer and colorectal cancer, circulating tumor cells contribute to the early diagnosis of cancers, drug resistance monitoring, prognostic assessment, survival analysis, detection of tumor recurrence and evaluation of drug efficacy to assist in treatment decision?making and adjustment of treatment plans. However, the current approaches to the detection of circulating tumor cells still have limitations, and the development of new detection methods with higher sensitivity and specificity will be helpful for better use of these cells. Herein the authors review the research progress in circulating tumor cells in terms of the detection techniques, clinical applications of circulating tumor cells, and their prospects in future clinical practice.
Collapse
Affiliation(s)
- 倩雯 赵
- />南方医科大学南方医院检验医学科, 广东 广州 510515Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 徒博 司
- />南方医科大学南方医院检验医学科, 广东 广州 510515Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 磊 郑
- />南方医科大学南方医院检验医学科, 广东 广州 510515Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
226
|
Zhou M, Zheng H, Wang Z, Li R, Liu X, Zhang W, Wang Z, Li H, Wei Z, Hu Z. Precisely Enumerating Circulating Tumor Cells Utilizing a Multi-Functional Microfluidic Chip and Unique Image Interpretation Algorithm. Theranostics 2017; 7:4710-4721. [PMID: 29187898 PMCID: PMC5706094 DOI: 10.7150/thno.20440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Enumerating circulating tumor cells (CTCs) has been demonstrably useful in cancer treatment. Although there are several approaches that have proved effective in isolating CTC-like cells, the crucial identification of CTCs continues to rely on the manual interpretation of immunofluorescence images of all cells that have been isolated. This procedure is time consuming and more importantly, CTC identification relies on subjective criteria that may differ between examiners. In this study, we describe the design, testing, and verification of a microfluidic platform that provides accurate and automated CTC enumeration using a common objective criterion. Methods: The platform consists of a multi-functional microfluidic chip and a unique image processing algorithm. The microfluidic chip integrates blood filtering, cell isolation, and single cell positioning to ensure minimal cell loss, efficient cell isolation, and fixed arraying of single cells to facilitate downstream image processing. By taking advantage of the microfluidic chip design to reduce calculation loads and eliminate measurement errors, our specially designed algorithm has the capability of rapidly interpreting hundreds of images to provide accurate CTC counts. Results: Following intensive optimization of the microfluidic chip, the image processing algorithm, and their collaboration, we verified the complete platform by enumerating CTCs from six clinical blood samples of patients with breast cancer. Compared to tube-based CTC isolation and manual CTC identification, our platform had better accuracy and reduced the time needed from sample loading to result review by 50%. Conclusion: This automated CTC enumeration platform demonstrates not only a sound strategy in integrating a specially designed multi-functional microfluidic chip with a unique image processing algorithm for robust, accurate, and "hands-free" CTC enumeration, but may also lead to its use as a novel in vitro diagnostic device used in clinics and laboratories as readily as a routine blood test.
Collapse
Affiliation(s)
- Mingxing Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
| | - Hui Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhaoba Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
| | - Ren Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weikai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zihua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zewen Wei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing 314000, China
| |
Collapse
|
227
|
Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, Charafe-Jauffret E, Pham K, Molck C, Rolland N, Bourgaux JF, Prudhomme M, Philippe C, Bravo S, Boyer JC, Canterel-Thouennon L, Taylor GR, Hsu A, Pascussi JM, Hollande F, Pannequin J. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 2017; 66:1802-1810. [PMID: 27456153 PMCID: PMC5595103 DOI: 10.1136/gutjnl-2016-311447] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Although counting of circulating tumour cells (CTC) has attracted a broad interest as potential markers of tumour progression and treatment response, the lack of functional characterisation of these cells had become a bottleneck in taking these observations to the clinic. Our objective was to culture these cells in order to understand them and exploit their therapeutic potential to the full. DESIGN Here, hypothesising that some CTC potentially have cancer stem cell (CSC) phenotype, we generated several CTC lines from the blood of patients with advanced metastatic colorectal cancer (CRC) based on their self-renewal abilities. Multiple standard tests were then employed to characterise these cells. RESULTS Our CTC lines self-renew, express CSC markers and have multilineage differentiation ability, both in vitro and in vivo. Patient-derived CTC lines are tumorigenic in subcutaneous xenografts and are also able to colonise the liver after intrasplenic injection. RNA sequencing analyses strikingly demonstrate that drug metabolising pathways represent the most upregulated feature among CTC lines in comparison with primary CRC cells grown under similar conditions. This result is corroborated by the high resistance of the CTC lines to conventional cytotoxic compounds. CONCLUSIONS Taken together, our results directly demonstrate the existence of patient-derived colorectal CTCs that bear all the functional attributes of CSCs. The CTC culture model described here is simple and takes <1 month from blood collection to drug testing, therefore, routine clinical application could facilitate access to personalised medicine. CLINICAL TRIAL REGISTRATION ClinicalTrial.gov NCT01577511.
Collapse
Affiliation(s)
- Fanny Grillet
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Elsa Bayet
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Olivia Villeronce
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Luke Zappia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ebba Louise Lagerqvist
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Sebastian Lunke
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Kym Pham
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia,Center for Translational Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christina Molck
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | - Sophie Bravo
- Laboratoire de Biochimie, CHU Carémeau, Nîmes, France
| | | | | | - Graham Roy Taylor
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Arthur Hsu
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Jean Marc Pascussi
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| | - Frédéric Hollande
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie Pannequin
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France,Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, France,Université de Montpellier, UMR5203, Montpellier, France
| |
Collapse
|
228
|
Abstract
INTRODUCTION Minimally invasive methods will augment the clinical approach for establishing the diagnosis or monitoring treatment response of central nervous system tumors. Liquid biopsy by blood or cerebrospinal fluid sampling holds promise in this regard. Areas covered: In this literature review, the authors highlight recent studies describing the analysis of circulating tumor cells, cell free nucleic acids, and extracellular vesicles as strategies to accomplish liquid biopsy in glioblastoma and metastatic tumors. The authors then discuss the continued efforts to improve signal detection, standardize the liquid biopsy handling and preparation, develop platforms for clinical application, and establish a role for liquid biopsies in personalized medicine. Expert commentary: As the technologies used to analyze these biomarkers continue to evolve, we propose that there is a future potential to precisely diagnose and monitor treatment response with liquid biopsies.
Collapse
Affiliation(s)
- Ganesh M. Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shannon L. Stott
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brian Nahed
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
229
|
Galletti G, Worroll D, Nanus DM, Giannakakou P. Using circulating tumor cells to advance precision medicine in prostate cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:190-205. [PMID: 29707651 PMCID: PMC5913755 DOI: 10.20517/2394-4722.2017.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The field of CTC enrichment has seen many emerging technologies in recent years, which have resulted in the identification and monitoring of clinically relevant, CTC-based biomarkers that can be analyzed routinely without invasive procedures. Several molecular platforms have been used to investigate the molecular profile of the disease, from high throughput gene expression analyses down to single cell biological dissection. The established presence of CTC heterogeneity nevertheless constitutes a challenge for cell isolation as the several subpopulations can potentially display different molecular characteristics; in this scenario, careful consideration must be given to the isolation approach, whereas methods that discriminate against certain subpopulations may result in the exclusion of CTCs that carry biological relevance. In the context of prostate cancer (PC), CTC molecular interrogation can enable longitudinal monitoring of key biological features during treatment with substantial clinical impact, as several biomarkers could predict tumor response to AR signaling inhibitors (abiraterone, enzalutamide) or standard chemotherapy (taxanes). Thus, CTCs represent a valuable opportunity to personalize medicine in current clinical practice.
Collapse
Affiliation(s)
- Giuseppe Galletti
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Daniel Worroll
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - David M Nanus
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Paraskevi Giannakakou
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
230
|
Cao Z, Wu S. Current research development of single cell genome in urological tumor. Int J Biochem Cell Biol 2017; 90:167-171. [DOI: 10.1016/j.biocel.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 02/03/2023]
|
231
|
Wang L, Livak KJ, Wu CJ. High-dimension single-cell analysis applied to cancer. Mol Aspects Med 2017; 59:70-84. [PMID: 28823596 DOI: 10.1016/j.mam.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
High-dimension single-cell technology is transforming our ability to study and understand cancer. Numerous studies and reviews have reported advances in technology development. The biological insights gleaned from single-cell technology about cancer biology are less reviewed. Here we focus on research studies that illustrate novel aspects of cancer biology that bulk analysis could not achieve, and discuss the fresh insights gained from the application of single-cell technology across basic and clinical cancer studies.
Collapse
Affiliation(s)
- Lili Wang
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Kenneth J Livak
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Catherine J Wu
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
232
|
Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genet 2017; 228-229:151-158. [PMID: 28958406 DOI: 10.1016/j.cancergen.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023]
Abstract
The therapeutic landscape of advanced prostate cancer (PCa) has rapidly expanded in recent years. Despite significant improvements in patient overall survival, it remains challenging to determine the optimal therapy and sequence of therapies for individual patients. The development of molecular biomarkers will be key for patient stratification, and for monitoring response and resistance to therapy. In this context, minimally-invasive blood-based "liquid" biopsies are attractive as a practical surrogate for solid tumor tissue, providing a window into metastatic disease. Circulating tumor cells and circulating cell-free tumor DNA in particular have demonstrated remarkable potential to inform on PCa patient outcomes through the detection of specific genomic and transcriptomic alterations. This review covers recent advances in the development of clinically-informative liquid biomarkers for advanced PCa.
Collapse
|
233
|
Abstract
The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.
Collapse
Affiliation(s)
- Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10044, USA, and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James Hicks
- University of Southern California Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
234
|
Abstract
Molecular biomarkers play little role in the current treatment of metastatic castration-resistant prostate cancer (CRPC). The advent of next-generation sequencing (NGS) has enabled the comprehensive molecular characterization of the genomic and transcriptomic landscape of both untreated primary prostate cancer and CRPC. Recent studies demonstrating the feasibility of interinstitution studies obtaining and NGS profiling of metastatic biopsies, targeted NGS approaches applicable to routine formalin-fixed, paraffin-embedded specimens, and NGS approaches applicable to circulating DNA and circulating tumor cells portend near-term adoption of NGS approaches in the management and treatment of CRPC. Important considerations in the clinical implementation of NGS include interpatient and intrapatient heterogeneity, disease progression to neuroendocrine/small cell prostate carcinoma, and incorporation into clinical trial design to demonstrate clinical utility. We review the recent progress in NGS-based characterization of CRPC to understand disease biology and inform on barriers to widespread clinical adoption.
Collapse
|
235
|
Maas M, Hegemann M, Rausch S, Bedke J, Stenzl A, Todenhöfer T. Circulating tumor cells and their role in prostate cancer. Asian J Androl 2017; 21:213572. [PMID: 28836508 PMCID: PMC6337952 DOI: 10.4103/aja.aja_29_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
Circulating tumor cells (CTC) have become an important biomarker in patients with advanced prostate cancer. CTC count has been demonstrated to be a prognostic factor for overall survival in patients with metastatic castration-resistant prostate cancer (mCRPC). In localized prostate cancer, a clear correlation between CTC counts and clinicopathological risk parameters and outcome has not been observed. Currently, the focus of research is shifting from CTC enumeration towards molecular characterization of CTC leading to the discovery of markers predicting treatment response. The role of androgen receptor splice variants expressed by CTC as markers of resistance to abiraterone and enzalutamide has been assessed by various studies. The identification of CTC markers predicting treatment response represents a key step to guide the selection of treatment (e.g., abiraterone/enzalutamide vs taxanes), particularly in patients with mCRPC. As an alternative to CTC, the analysis of circulating tumor DNA has been shown to enable a noninvasive disease characterization having high potential to promote precision oncology.
Collapse
Affiliation(s)
- Moritz Maas
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, Tuebingen 72076, Germany
| | - Miriam Hegemann
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, Tuebingen 72076, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, Tuebingen 72076, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, Tuebingen 72076, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, Tuebingen 72076, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, Tuebingen 72076, Germany
| |
Collapse
|
236
|
Gulbahce N, Magbanua MJM, Chin R, Agarwal MR, Luo X, Liu J, Hayden DM, Mao Q, Ciotlos S, Li Z, Chen Y, Chen X, Li Y, Zhang RY, Lee K, Tearle R, Park E, Drmanac S, Rugo HS, Park JW, Drmanac R, Peters BA. Quantitative Whole Genome Sequencing of Circulating Tumor Cells Enables Personalized Combination Therapy of Metastatic Cancer. Cancer Res 2017; 77:4530-4541. [PMID: 28811315 DOI: 10.1158/0008-5472.can-17-0688] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Much effort has been dedicated to developing circulating tumor cells (CTC) as a noninvasive cancer biopsy, but with limited success as yet. In this study, we combine a method for isolation of highly pure CTCs using immunomagnetic enrichment/fluorescence-activated cell sorting with advanced whole genome sequencing (WGS), based on long fragment read technology, to illustrate the utility of an accurate, comprehensive, phased, and quantitative genomic analysis platform for CTCs. Whole genomes of 34 CTCs from a patient with metastatic breast cancer were analyzed as 3,072 barcoded subgenomic compartments of long DNA. WGS resulted in a read coverage of 23× per cell and an ensemble call rate of >95%. These barcoded reads enabled accurate detection of somatic mutations present in as few as 12% of CTCs. We found in CTCs a total of 2,766 somatic single-nucleotide variants and 543 indels and multi-base substitutions, 23 of which altered amino acid sequences. Another 16,961 somatic single nucleotide variant and 8,408 indels and multi-base substitutions, 77 of which were nonsynonymous, were detected with varying degrees of prevalence across the 34 CTCs. On the basis of our whole genome data of mutations found in all CTCs, we identified driver mutations and the tissue of origin of these cells, suggesting personalized combination therapies beyond the scope of most gene panels. Taken together, our results show how advanced WGS of CTCs can lead to high-resolution analyses of cancers that can reliably guide personalized therapy. Cancer Res; 77(16); 4530-41. ©2017 AACR.
Collapse
Affiliation(s)
| | - Mark Jesus M Magbanua
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robert Chin
- Complete Genomics, Inc, San Jose, California
| | | | - Xuhao Luo
- Complete Genomics, Inc, San Jose, California
| | - Jia Liu
- Complete Genomics, Inc, San Jose, California
| | | | - Qing Mao
- Complete Genomics, Inc, San Jose, California
| | | | | | | | | | | | | | | | - Rick Tearle
- Complete Genomics, Inc, San Jose, California
| | - Emily Park
- Advanced Cell Diagnostics, Inc, Hayward, California
| | - Snezana Drmanac
- Complete Genomics, Inc, San Jose, California.,BGI-Shenzhen, Shenzhen, China
| | - Hope S Rugo
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - John W Park
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Radoje Drmanac
- Complete Genomics, Inc, San Jose, California. .,BGI-Shenzhen, Shenzhen, China
| | - Brock A Peters
- Complete Genomics, Inc, San Jose, California. .,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
237
|
Zhou L, Dicker DT, Matthew E, El-Deiry WS, Alpaugh RK. Circulating tumor cells: silent predictors of metastasis. F1000Res 2017; 6. [PMID: 28868131 PMCID: PMC5558099 DOI: 10.12688/f1000research.11313.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) were added to the arsenal of clinical testing in 2004 for three cancer types: metastatic breast, prostate, and colorectal cancer. CTCs were found to be an independent prognostic indicator of survival for these three diseases. Multiple enrichment/isolation strategies have been developed and numerous assay applications have been performed using both single and pooled captured/enriched CTCs. We have reviewed the isolation techniques and touched on many analyses. The true utility of a CTC is that it acts as a “silent” predictor of metastatic disease. The mere presence of a single CTC is an indication that disease has spread from the primary site. Comments and suggestions have been set forth for CTCs and cell-free DNA to be used as a screening panel for the early detection of disease recurrence and metastatic spread, providing the opportunity for early intervention with curative intent to treat metastatic disease.
Collapse
Affiliation(s)
- LanLan Zhou
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
238
|
Gao R, Kim C, Sei E, Foukakis T, Crosetto N, Chan LK, Srinivasan M, Zhang H, Meric-Bernstam F, Navin N. Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer. Nat Commun 2017; 8:228. [PMID: 28794488 PMCID: PMC5550415 DOI: 10.1038/s41467-017-00244-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Single cell RNA sequencing has emerged as a powerful tool for resolving transcriptional diversity in tumors, but is limited by throughput, cost and the ability to process archival frozen tissue samples. Here we develop a high-throughput 3' single-nucleus RNA sequencing approach that combines nanogrid technology, automated imaging, and cell selection to sequence up to ~1800 single nuclei in parallel. We compare the transcriptomes of 485 single nuclei to 424 single cells in a breast cancer cell line, which shows a high concordance (93.34%) in gene levels and abundance. We also analyze 416 nuclei from a frozen breast tumor sample and 380 nuclei from normal breast tissue. These data reveal heterogeneity in cancer cell phenotypes, including angiogenesis, proliferation, and stemness, and a minor subpopulation (19%) with many overexpressed cancer genes. Our studies demonstrate the utility of nanogrid single-nucleus RNA sequencing for studying the transcriptional programs of tumor nuclei in frozen archival tissue samples.Single cell RNA sequencing is a powerful tool for understanding cellular diversity but is limited by cost, throughput and sample preparation. Here the authors use nanogrid technology with integrated imaging to sequence thousands of cancer nuclei in parallel from fresh or frozen tissue.
Collapse
Affiliation(s)
- Ruli Gao
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charissa Kim
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emi Sei
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Leong-Keat Chan
- Wafergen Biosystems, Inc, 34700 Campus Drive, Fremont, CA, 94555, USA
| | | | - Hong Zhang
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nicholas Navin
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
239
|
Liu W, Yin B, Wang X, Yu P, Duan X, Liu C, Wang B, Tao Z. Circulating tumor cells in prostate cancer: Precision diagnosis and therapy. Oncol Lett 2017; 14:1223-1232. [PMID: 28789337 PMCID: PMC5529747 DOI: 10.3892/ol.2017.6332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
The primary cause of tumor-associated mortality in prostate cancer (PCa) remains distant metastasis. The dissemination of tumor cells from the primary tumor to distant sites through the bloodstream cannot be detected early by standard imaging methods. Circulating tumor cells (CTCs) represent an effective prognostic and predictive biomarker, which are able to monitor efficacy of adjuvant therapies, detect early development of metastases, and finally, assess therapeutic responses of advanced disease earlier than traditional diagnostic methods. In addition, since repeated tissue biopsies are invasive, costly and not always feasible, the assessment of tumor characteristics on CTCs, by a peripheral blood sample as a liquid biopsy, represents an attractive opportunity. The implementation of molecular and genomic characterization of CTCs may contribute to improve the treatment selection and thus, to move toward more precise diagnosis and therapy in PCa. The present study summarizes the current advances in CTC enrichment and detection strategies and reviews how CTCs may contribute to significant insights in the metastatic process, as well as how they may be utilized in clinical application in PCa. Although it is proposed that CTCs may offer insights into the prognosis and management of PCa, there are a number of challenges in the study of circulating tumor cells, and their clinical utility remains under investigation.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Binbin Yin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunhua Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Ben Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
240
|
Lallo A, Schenk MW, Frese KK, Blackhall F, Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res 2017; 6:397-408. [PMID: 28904884 PMCID: PMC5583071 DOI: 10.21037/tlcr.2017.08.01] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/18/2017] [Indexed: 01/14/2023]
Abstract
Lung cancers are the main cause of cancer-related deaths worldwide. Efforts placed to improve the survival of lung cancer patients and untangle the complexity of this disease, have resulted in the generation of hundreds of lung cancer cell lines and several genetically engineered mouse models (GEMMs). Although these research tools have extended our knowledge of lung cancer, improvement in the clinical care of lung cancer patients have been limited overall, with measured optimism regarding initial responses to targeted therapies in stratified subgroups of patients. Patient-derived xenograft (PDX) models are beginning to assist 'personalized therapy' approaches particularly in non-small cell lung cancer (NSCLC) however biopsies of lung cancers to generate PDXs are not without challenges and risks to the patient. Liquid biopsies, on the other hand, are a rapid and non-invasive procedure allowing the collection of circulating tumor cells (CTCs) with a single 10 mL blood draw. These CTCs recapitulate the molecular heterogeneity of the corresponding tumors and, therefore, can be used as surrogates to study tumor biology and generate new patient-derived models. Here, we discuss the CTC-derived models that have been generated, most notably in small cell lung cancer (SCLC), highlighting challenges and opportunities related to these novel preclinical tools.
Collapse
Affiliation(s)
- Alice Lallo
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Maximilian W. Schenk
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Kristopher K. Frese
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Fiona Blackhall
- Institute of Cancer Sciences, University of Manchester and Christie NHS Foundation Trust, Manchester, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| |
Collapse
|
241
|
Parimi S, Ko JJ. Recent advances in circulating tumor cells and cell-free DNA in metastatic prostate cancer: a review. Expert Rev Anticancer Ther 2017; 17:939-949. [DOI: 10.1080/14737140.2017.1359544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sunil Parimi
- Department of Medical Oncology, BC Cancer Agency, Victoria, Canada
| | - Jenny J. Ko
- Department of Medical Oncology, BC Cancer Agency, Abbotsford, Canada
| |
Collapse
|
242
|
Witek MA, Aufforth RD, Wang H, Kamande JW, Jackson JM, Pullagurla SR, Hupert ML, Usary J, Wysham WZ, Hilliard D, Montgomery S, Bae-Jump V, Carey LA, Gehrig PA, Milowsky MI, Perou CM, Soper JT, Whang YE, Yeh JJ, Martin G, Soper SA. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. NPJ Precis Oncol 2017; 1. [PMID: 29657983 PMCID: PMC5871807 DOI: 10.1038/s41698-017-0028-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
Collapse
Affiliation(s)
- Małgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA.,Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel D Aufforth
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Wang
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joyce W Kamande
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua M Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Mateusz L Hupert
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA.,BioFluidica, Inc., c/o Carolina Kick-Start, 321 Bondurant Hall, Chapel Hill NC27599, USA
| | - Jerry Usary
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Weiya Z Wysham
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Dawud Hilliard
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Montgomery
- Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medicine, Division of Hematology and Oncology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paola A Gehrig
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John T Soper
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pharmacology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Steven A Soper
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047, USA.,Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
243
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
244
|
Chen S, El-Heliebi A, Kroneis T. Biological and Molecular Characterization of Circulating Tumor Cells: A Creative Strategy for Precision Medicine? Adv Clin Chem 2017; 82:71-103. [PMID: 28939214 DOI: 10.1016/bs.acc.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) are a group of rare cells disseminated from either primary or metastatic tumors into the blood stream. CTCs are considered to be the precursor of cancer metastasis. As a critical component of liquid biopsies, CTCs are a unique tool to understand the formation of metastasis and a valuable source of information on intratumor heterogeneity. Much effort has been invested in technologies for the detection of CTCs because they are rare cells among the vast number of blood cells. Studies in various cancers have repeatedly demonstrated that increased CTC counts prior to or during treatment are significantly associated with poor outcomes. In the new era of precision medicine, the study of CTCs reaches far beyond detection and counting. The rapidly growing field of analytical platforms for rare-cell analysis allows in-depth characterization of CTCs at the bulk cell and single-cell level. Genetic profiling of CTCs may provide an insight into the real-time tumor status, may allow the monitoring and evaluation of treatment response in clinical routine, and may lead to the development of novel therapeutic targets as well.
Collapse
Affiliation(s)
- Shukun Chen
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria.
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
| | - Thomas Kroneis
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
245
|
Pancreatic cancer: Circulating Tumor Cells and Primary Tumors show Heterogeneous KRAS Mutations. Sci Rep 2017; 7:4510. [PMID: 28674438 PMCID: PMC5495768 DOI: 10.1038/s41598-017-04601-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Circulating tumor cells (CTC) in the blood are hypothesized as the means of systemic tumor spread. Blood obtained from healthy donors and patients with PDAC was therefore subject to size-based CTC-isolation. We additionally compared Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in pancreatic CTC and corresponding tumors, and evaluated their significance as prognostic markers. Samples from 68 individuals (58 PDAC patients, 10 healthy donors) were analyzed; CTCs were present in patients with UICC stage IA-IV tumors and none of the controls (p < 0.001). Patients with >3 CTC/ml had a trend for worse median overall survival (OS) than patients with 0.3–3 CTC/ml (P = 0.12). Surprisingly, CTCs harbored various KRAS mutations in codon 12 and 13. Patients with a KRASG12V mutation in their CTC (n = 14) had a trend to better median OS (24.5 months) compared to patients with other (10 months), or no detectable KRAS mutations (8 months; P = 0.04). KRAS mutations in CTC and corresponding tumor were discordant in 11 of 26 “tumor-CTC-pairs” (42%), while 15 (58%) had a matching mutation; survival was similar in both groups (P = 0.36). Genetic characterization, including mutations such as KRAS, may prove useful for prognosis and understanding of tumor biology.
Collapse
|
246
|
Chen L, Bode AM, Dong Z. Circulating Tumor Cells: Moving Biological Insights into Detection. Theranostics 2017; 7:2606-2619. [PMID: 28819450 PMCID: PMC5558556 DOI: 10.7150/thno.18588] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
Circulating tumor cells (CTCs) have shown promising potential as liquid biopsies that facilitate early detection, prognosis, therapeutic target selection and monitoring treatment response. CTCs in most cancer patients are low in abundance and heterogeneous in morphological and phenotypic profiles, which complicate their enrichment and subsequent characterization. Several methodologies for CTC enrichment and characterization have been developed over the past few years. However, integrating recent advances in CTC biology into these methodologies and the selection of appropriate enrichment and characterization methods for specific applications are needed to improve the reliability of CTC biopsies. In this review, we summarize recent advances in the studies of CTC biology, including the mechanisms of their generation and their potential forms of existence in blood, as well as the current CTC enrichment technologies. We then critically examine the selection of methods for appropriately enriching CTCs for further investigation of their clinical applications.
Collapse
Affiliation(s)
| | | | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912
| |
Collapse
|
247
|
Moravec R, Divi R, Verma M. Detecting circulating tumor material and digital pathology imaging during pancreatic cancer progression. World J Gastrointest Oncol 2017; 9:235-250. [PMID: 28656074 PMCID: PMC5472554 DOI: 10.4251/wjgo.v9.i6.235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/04/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer-related death worldwide. Clinical symptoms typically present late when treatment options are limited and survival expectancy is very short. Metastatic mutations are heterogeneous and can accumulate up to twenty years before PC diagnosis. Given such genetic diversity, detecting and managing the complex states of disease progression may be limited to imaging modalities and markers present in circulation. Recent developments in digital pathology imaging show potential for early PC detection, making a differential diagnosis, and predicting treatment sensitivity leading to long-term survival in advanced stage patients. Despite large research efforts, the only serum marker currently approved for clinical use is CA 19-9. Utility of CA 19-9 has been shown to improve when it is used in combination with PC-specific markers. Efforts are being made to develop early-screening assays that can detect tumor-derived material, present in circulation, before metastasis takes a significant course. Detection of markers that identify circulating tumor cells and tumor-derived extracellular vesicles (EVs) in biofluid samples offers a promising non-invasive method for this purpose. Circulating tumor cells exhibit varying expression of epithelial and mesenchymal markers depending on the state of tumor differentiation. This offers a possibility for monitoring disease progression using minimally invasive procedures. EVs also offer the benefit of detecting molecular cargo of tumor origin and add the potential to detect circulating vesicle markers from tumors that lack invasive properties. This review integrates recent genetic insights of PC progression with developments in digital pathology and early detection of tumor-derived circulating material.
Collapse
|
248
|
Deleye L, Tilleman L, Vander Plaetsen AS, Cornelis S, Deforce D, Van Nieuwerburgh F. Performance of four modern whole genome amplification methods for copy number variant detection in single cells. Sci Rep 2017; 7:3422. [PMID: 28611458 PMCID: PMC5469777 DOI: 10.1038/s41598-017-03711-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Whole genome amplification (WGA) has become an invaluable tool to perform copy number variation (CNV) detection in single, or a limited number of cells. Unfortunately, current WGA methods introduce representation bias that limits the detection of small CNVs. New WGA methods have been introduced that might have the potential to reduce this bias. We compared the performance of PicoPLEX DNA-Seq (Picoseq), DOPlify, REPLI-g and Ampli-1 WGA for aneuploidy screening and copy number analysis using shallow whole genome massively parallel sequencing (MPS), starting from single or a limited number of cells. Although the four WGA methods perform differently, they are all suited for this application.
Collapse
Affiliation(s)
- Lieselot Deleye
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Senne Cornelis
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
249
|
Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3507671. [PMID: 28685147 PMCID: PMC5480023 DOI: 10.1155/2017/3507671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/15/2017] [Indexed: 12/26/2022]
Abstract
Prostate cancer (PC) is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC). Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2; P = 0.009), MTHFR C/T+T/T (OR = 2.22; P = 0.009), and PC. The SRD5A2 A49T substitution was associated with higher pTNM stage (OR = 2.88; P = 0.039) and elevated Gleason grade (OR = 3.15; P = 0.004). Additionally, patients with ≤21 CAG repeats have an increased risk of developing PC (OR = 2.99; P < 0.001). In conclusion, genotype polymorphism studies are important to characterize genetic variations in high altitude mestizo populations.
Collapse
|
250
|
Gupta RG, Somer RA. Intratumor Heterogeneity: Novel Approaches for Resolving Genomic Architecture and Clonal Evolution. Mol Cancer Res 2017; 15:1127-1137. [DOI: 10.1158/1541-7786.mcr-17-0070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/29/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
|