Eckhart L, Schmidt M, Mildner M, Mlitz V, Abtin A, Ballaun C, Fischer H, Mrass P, Tschachler E. Histidase expression in human epidermal keratinocytes: regulation by differentiation status and all-trans retinoic acid.
J Dermatol Sci 2008;
50:209-15. [PMID:
18280705 DOI:
10.1016/j.jdermsci.2007.12.009]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND
Histidase (histidine ammonia lyase) converts histidine into urocanic acid, the main ultraviolet (UV) light absorption factor of the stratum corneum. It is unknown if and how histidase is regulated in the epidermis.
OBJECTIVE
We have investigated the transcriptional regulation of histidase expression in epidermal keratinocytes.
METHODS
Human epidermal keratinocytes were cultured in vitro and exposed to UV irradiation, a number of cytokines and all-trans retinoic acid (ATRA) (1 microM). Keratinocyte differentiation was triggered by maintaining confluent cells in monolayer culture and by establishing three-dimensional skin equivalents. The mRNA expression level of histidase in keratinoytes as well as in the epidermis and other tissues was determined by quantitative real-time PCR. Protein expression was determined by Western blot analysis.
RESULTS
Human epidermis contained higher levels of histidase transcripts than all other tissues investigated. Expression of histidase strongly increased at the mRNA and protein levels during differentiation of primary keratinocytes in vitro. Treatment of keratinocytes with UVA and UVB did not significantly change the expression level of histidase. By contrast, ATRA suppressed histidase expression almost completely.
CONCLUSIONS
Our results show that histidase is upregulated during keratinocyte differentiation and that ATRA but not UV irradiation modulates the expression level of histidase. Suppression of histidase-mediated production of urocanic acid may contribute to the increase in UV sensitivity that is caused by treatment with retinoids.
Collapse