201
|
Lafon-Hughes L, Vilchez Larrea SC, Kun A, Fernández Villamil SH. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt. PeerJ 2014; 2:e617. [PMID: 25332845 PMCID: PMC4201144 DOI: 10.7717/peerj.617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/22/2014] [Indexed: 12/18/2022] Open
Abstract
Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) , Montevideo , Uruguay
| | - Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires , Argentina
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) , Montevideo , Uruguay ; Departamento de Biología Celular y Molecular, Sección Bioquímica, Facultad de Ciencias, Universidad de la República , Montevideo , Uruguay
| | - Silvia H Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires , Argentina ; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires , Argentina
| |
Collapse
|
202
|
ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 2014; 8:1819-1831. [PMID: 25220464 DOI: 10.1016/j.celrep.2014.08.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 12/31/2022] Open
Abstract
ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD(+) depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.
Collapse
|
203
|
Michels J, Obrist F, Castedo M, Vitale I, Kroemer G. PARP and other prospective targets for poisoning cancer cell metabolism. Biochem Pharmacol 2014; 92:164-71. [PMID: 25199458 DOI: 10.1016/j.bcp.2014.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022]
Abstract
Increasing evidence indicates that cancer cells rewire their metabolism during tumorigenesis. The high intracellular levels of lactate and reactive oxygen species (ROS) generated during enhanced aerobic glycolysis and mitochondrial oxidative phosphorylation respectively led to oxidative stress. The detoxification of these accumulating metabolites and the equilibrium between reduced and oxidized nicotine adenine dinucleotide (NADH and NAD(+)) are two prominent mechanisms regulating redox status and hence energy homeostasis in tumors. Targeting both processes may thus be selectively cytotoxic for cancer cells. In this context, the impact of poly(ADP-ribose) polymerase (PARP) inhibitors, a class of anticancer agents employed for the treatment of DNA repair deficient tumors, on energy homeostasis and mitochondrial respiration regulation has potential clinical implications. Here we provide an overview of the metabolic reprogramming occurring in cancer cells and discuss the translational perspectives of targeting tumor metabolism and redox balance for antineoplastic therapy.
Collapse
Affiliation(s)
- Judith Michels
- Institut Gustave Roussy, 94805 Villejuif, France; Equipe 11, Centre de Recherche des Cordeliers, Paris 75005, France; Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France
| | - Florine Obrist
- Equipe 11, Centre de Recherche des Cordeliers, Paris 75005, France; Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France; Université de Paris Sud, Paris 11, 94805 Villejuif, France
| | - Maria Castedo
- Equipe 11, Centre de Recherche des Cordeliers, Paris 75005, France; Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, 00144 Roma, Italy.
| | - Guido Kroemer
- Institut Gustave Roussy, 94805 Villejuif, France; Equipe 11, Centre de Recherche des Cordeliers, Paris 75005, France; Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75908, France; Université Paris Descartes, Faculty of Medicine, Paris 75005, France.
| |
Collapse
|
204
|
Basal activity of a PARP1-NuA4 complex varies dramatically across cancer cell lines. Cell Rep 2014; 8:1808-1818. [PMID: 25199834 DOI: 10.1016/j.celrep.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) catalyze poly(ADP-ribose) addition onto proteins, an important posttranslational modification involved in transcription, DNA damage repair, and stem cell identity. Previous studies established the activation of PARP1 in response to DNA damage, but little is known about PARP1 regulation outside of DNA repair. We developed an assay for measuring PARP activity in cell lysates and found that the basal activity of PARP1 was highly variable across breast cancer cell lines, independent of DNA damage. Sucrose gradient fractionation demonstrated that PARP1 existed in at least three biochemically distinct states in both high- and low-activity lines. A discovered complex containing the NuA4 chromatin-remodeling complex and PARP1 was responsible for high basal PARP1 activity, and NuA4 subunits were required for this activity. These findings present a pathway for PARP1 activation and a direct link between PARP1 and chromatin remodeling outside of the DNA damage response.
Collapse
|
205
|
Abstract
Distinct properties of poly(ADP-ribose)—including its structural diversity, nucleation potential, and low complexity, polyvalent, highly charged nature—could contribute to organizing cellular architectures. Emergent data indicate that poly(ADP-ribose) aids in the formation of nonmembranous structures, such as DNA repair foci, spindle poles, and RNA granules. Informatics analyses reported here show that RNA granule proteins enriched for low complexity regions, which aid self-assembly, are preferentially modified by poly(ADP-ribose), indicating how poly(ADP-ribose) could direct cellular organization.
Collapse
Affiliation(s)
- Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
206
|
Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 2014; 5:4426. [PMID: 25043379 DOI: 10.1038/ncomms5426] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
The poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD(+) as substrate. Based on the composition of three NAD(+) coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADPr) (PAR) or mono(ADPr) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino-acid targets. In addition, we identify cysteine as a novel amino-acid target for ADP-ribosylation on PARPs.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ivan Matic
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Lilen Uchima
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Rood
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.,Division for Marine and Environmental Research, Rudjer Boskovic Institute, Zagreb 10002, Croatia
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
207
|
Fischer JMF, Popp O, Gebhard D, Veith S, Fischbach A, Beneke S, Leitenstorfer A, Bergemann J, Scheffner M, Ferrando-May E, Mangerich A, Bürkle A. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J 2014; 281:3625-41. [PMID: 24953096 PMCID: PMC4160017 DOI: 10.1111/febs.12885] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
Abstract
Poly(ADP‐ribose) (PAR) is a complex and reversible post‐translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high‐affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functional relevance of this interaction. First, we confirm that pharmacological inhibition of cellular poly(ADP‐ribosyl)ation (PARylation) impairs NER efficacy. Second, we demonstrate that the XPA–PAR interaction is mediated by specific basic amino acids within a highly conserved PAR‐binding motif, which overlaps the DNA damage‐binding protein 2 (DDB2) and transcription factor II H (TFIIH) interaction domains of XPA. Third, biochemical studies reveal a mutual regulation of PARP1 and XPA functions showing that, on the one hand, the XPA–PAR interaction lowers the DNA binding affinity of XPA, whereas, on the other hand, XPA itself strongly stimulates PARP1 enzymatic activity. Fourth, microirradiation experiments in U2OS cells demonstrate that PARP inhibition alters the recruitment properties of XPA‐green fluorescent protein to sites of laser‐induced DNA damage. In conclusion, our results reveal that XPA and PARP1 regulate each other in a reciprocal and PAR‐dependent manner, potentially acting as a fine‐tuning mechanism for the spatio‐temporal regulation of the two factors during NER.
Collapse
Affiliation(s)
- Jan M F Fischer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Lupo B, Trusolino L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta Rev Cancer 2014; 1846:201-15. [PMID: 25026313 DOI: 10.1016/j.bbcan.2014.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
209
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
210
|
Daniels CM, Ong SE, Leung AKL. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res 2014; 13:3510-22. [PMID: 24920161 PMCID: PMC4123941 DOI: 10.1021/pr401032q] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Poly(ADP-ribose),
or PAR, is a cellular polymer implicated in DNA/RNA
metabolism, cell death, and cellular stress response via its role
as a post-translational modification, signaling molecule, and scaffolding
element. PAR is synthesized by a family of proteins known as poly(ADP-ribose)
polymerases, or PARPs, which attach PAR polymers to various amino
acids of substrate proteins. The nature of these polymers (large,
charged, heterogeneous, base-labile) has made these attachment sites
difficult to study by mass spectrometry. Here we propose a new pipeline
that allows for the identification of mono(ADP-ribosyl)ation and poly(ADP-ribosyl)ation
sites via the enzymatic product of phosphodiesterase-treated ADP-ribose,
or phospho(ribose). The power of this method lies in the enrichment
potential of phospho(ribose), which we show to be enriched by phosphoproteomic
techniques when a neutral buffer, which allows for retention of the
base-labile attachment site, is used for elution. Through the identification
of PARP-1 in vitro automodification sites as well as endogenous ADP-ribosylation
sites from whole cells, we have shown that ADP-ribose can exist on
adjacent amino acid residues as well as both lysine and arginine in
addition to known acidic modification sites. The universality of this
technique has allowed us to show that enrichment of ADP-ribosylated
proteins by macrodomain leads to a bias against ADP-ribose modifications
conjugated to glutamic acids, suggesting that the macrodomain is either
removing or selecting against these distinct protein attachments.
Ultimately, the enrichment pipeline presented here offers a universal
approach for characterizing the mono- and poly(ADP-ribosyl)ated proteome.
Collapse
Affiliation(s)
- Casey M Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|
211
|
Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 2014; 10:e1004403. [PMID: 24875882 PMCID: PMC4038475 DOI: 10.1371/journal.pgen.1004403] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/09/2014] [Indexed: 01/23/2023] Open
Abstract
Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts. The outcome of viral infections is determined by the repertoire and specificity of the antiviral genes in a particular animal species. The identification of candidate immunity genes and mechanisms is a key step in describing this repertoire. Despite advances in genome sequencing, identification of antiviral genes has largely remained dependent on demonstration of their activity against candidate viruses. However, antiviral proteins that directly interact with viral targets or antagonists also bear signatures of recurrent evolutionary adaptation, which can be used to identify candidate antivirals. Here, we find that five out of seventeen genes that contain a domain that can catalyze the post-translational addition ADP-ribose to proteins bear such signatures of recurrent genetic innovation. In particular, we find that all the genes that encode both ADP-ribose addition (via PARP domains) as well as recognition and/or removal (via macro domains) activities have evolved under extremely strong diversifying selection in mammals. Furthermore, such genes have undergone multiple episodes of gene duplications and losses throughout mammalian evolution. Combined with the knowledge that some viruses also encode macro domains to counteract host immunity, our evolutionary analyses therefore implicate ADP-ribosylation as an underappreciated key step in antiviral defense in mammalian genomes.
Collapse
|
212
|
MacPherson L, Ahmed S, Tamblyn L, Krutmann J, Förster I, Weighardt H, Matthews J. Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int J Mol Sci 2014; 15:7939-57. [PMID: 24806346 PMCID: PMC4057711 DOI: 10.3390/ijms15057939] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.
Collapse
Affiliation(s)
- Laura MacPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany.
| | - Heike Weighardt
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
213
|
Kim E, Yang KS, Giedt RJ, Weissleder R. Red Si-rhodamine drug conjugates enable imaging in GFP cells. Chem Commun (Camb) 2014; 50:4504-7. [PMID: 24663433 PMCID: PMC4028821 DOI: 10.1039/c4cc00144c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here we evaluated a series of Si-derivatized rhodamine (SiR) dyes for their ability to visualize a model drug in live cells. We show that a charge neutral SiR derivative (but not others) can indeed be used to follow the intracellular location of the model therapeutic drug in GFP cells.
Collapse
Affiliation(s)
- Eunha Kim
- Center for Systems Biology, Massachusettes General Hospital/Harvard Medical School, 185 Cambridge St, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
214
|
Comparative structural analysis of the putative mono-ADP-ribosyltransferases of the ARTD/PARP family. Curr Top Microbiol Immunol 2014; 384:153-66. [PMID: 25015788 DOI: 10.1007/82_2014_417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The existence and significance of endogenous cytosolic and nuclear mono-ADP-ribosylation has been a matter of debate. Today, evidence suggests that the human enzymes that catalyze the reaction have been rounded up. Moreover, substrate proteins and specific functions for mono-ADP-ribosyltransferases are beginning to be defined. Reader domains that specifically recognize mono-ADP-ribosylated target proteins and erasers that remove the mono-ADP-ribosyl mark have been identified. Here, we review the contribution of crystal structures to our understanding of the putative mono-ADP-ribosyltransferases with Diphtheria toxin and ARTD1/PARP1 homology.
Collapse
|
215
|
Function and Regulation of the Mono-ADP-Ribosyltransferase ARTD10. Curr Top Microbiol Immunol 2014; 384:167-88. [DOI: 10.1007/82_2014_379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|