201
|
Ruat M. [Pharmacology of the extracellular calcium ion receptor]. Therapie 2003; 58:395-401. [PMID: 14682186 DOI: 10.2515/therapie:2003064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The calcium sensing receptor (CaSR) belongs to family 3 of G-protein coupled receptors. The CaSR, expressed at the surface of the parathyroid cells, controls parathyroid hormone (PTH) secretion and is the main regulator of calcium homeostasis. Its activity is regulated by small changes in the physiological concentrations of calcium and magnesium ions present in the serum and extracellular fluids, leading to the stimulation of the phospholipases C and A2. Molecules that potentiate the effect of extracellular calcium are called calcimimetics. They reduce the PTH level in vivo and have been proposed to be of therapeutic benefit for the treatment of both primary and secondary hyperparathyroidism. The blocking of CaSR by a calcilytic molecule results in the increase in serum PTH and might be of interest in the treatment of osteoporosis. The CaSR is also expressed in the thyroid, kidney, bone and in neuronal and glial cell populations, where it should be involved in the complex responses associated with calcium and magnesium ions present in the extracellular fluids.
Collapse
Affiliation(s)
- Martial Ruat
- Institut de Neurobiologie Alfred Fessard, IFR 2118 CNRS, Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR 9040, Gif-sur-Yvette, France.
| |
Collapse
|
202
|
Carmeliet G, Van Cromphaut S, Daci E, Maes C, Bouillon R. Disorders of calcium homeostasis. Best Pract Res Clin Endocrinol Metab 2003; 17:529-46. [PMID: 14687587 DOI: 10.1016/j.beem.2003.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To ensure a multitude of essential cellular functions, the extracellular concentration of calcium is maintained within a narrow physiological range. This depends on integrated regulation of calcium fluxes with respect to the intestine, kidneys and bone. The precise regulation of serum calcium is controlled by calcium itself, through a calcium receptor and several hormones, the most important of which are parathyroid hormone and 1,25(OH)(2) vitamin D. This balance can be disturbed by mutations in the calcium-sensing receptor, inappropriately high or low levels of parathyroid hormone, resistance to parathyroid hormone effects, insufficient intake or production of 1,25(OH)(2) vitamin D and inactivation of the vitamin D receptor. Mineral homeostasis is moreover influenced by many other systemic factors (e.g. sex steroid, thyroid and glucocorticoid hormones) or humoral factors (e.g. cytokines and growth factors). A specific example is the major abnormalities of mineral homeostasis in case of malignancy by excessive production of parathyroid hormone-related peptide resulting in hypercalcaemia. Several new drugs have been developed based on factors in this axis, including calcimimetics, calcilytics, vitamin D analogues and parathyroid hormone-related peptide inhibitors.
Collapse
Affiliation(s)
- Geert Carmeliet
- Laboratory for Experimental Medicine and Endocrinology, K.U. Leuven, Gasthuisberg, Herestraat 49, Leuven B-3000, Belgium
| | | | | | | | | |
Collapse
|
203
|
Sayer JA, Pearce SHS. Extracellular calcium-sensing receptor dysfunction is associated with two new phenotypes. Clin Endocrinol (Oxf) 2003; 59:419-21. [PMID: 14510901 DOI: 10.1046/j.1365-2265.2003.01869.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- John A Sayer
- School of Clinical Medical Sciences, University of Newcastle Upon Tyne, Newcastle, UK.
| | | |
Collapse
|
204
|
Hendy GN, Minutti C, Canaff L, Pidasheva S, Yang B, Nouhi Z, Zimmerman D, Wei C, Cole DEC. Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene. J Clin Endocrinol Metab 2003; 88:3674-81. [PMID: 12915654 DOI: 10.1210/jc.2003-030409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
De novo activating mutations in the calcium-sensing receptor (CASR) gene are a common cause of sporadic isolated hypoparathyroidism. Here, we describe a family in which two affected siblings were found to be heterozygous for a novel F788L mutation in the fifth transmembrane domain encoded by exon 7 of the CASR. Both parents and the third sibling were clinically unaffected and genotypically normal by direct sequencing of their leukocyte exon 7 PCR amplicons. However, the mother was revealed to be a mosaic for the mutation by sequence analysis of multiple subclones as well as denaturing HPLC of the CASR exon 7 leukocyte PCR product. A functional analysis of the mutation was performed by transiently transfecting wild-type and mutant CASRs tagged with a c-Myc epitope in human embryonic kidney (HEK293) cells. The mutant CASR was expressed at a similar level as the wild type. The F788L mutant produced a significant shift to the left relative to the wild-type CASR in the MAPK response to increasing extracellular calcium concentrations. This is the first report of mosaicism for an activating CASR mutation and suggests that care should be exercised in counseling for risks of recurrence in a situation where a de novo mutation appears likely.
Collapse
Affiliation(s)
- Geoffrey N Hendy
- Department of Medicine, McGill University and Calcium Research Laboratory, Royal Victoria Hospital, Montréal, Québec, Canada H3A 1A1.
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Simonds WF. G Protein-Regulated Signaling Dysfunction in Human Disease. J Investig Med 2003. [DOI: 10.1177/108155890305100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland
| |
Collapse
|
206
|
Abstract
Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- West Roxbury Veterans Affairs Medical Center and Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Room 2B111, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA.
| | | |
Collapse
|
207
|
Pin JP, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003; 98:325-54. [PMID: 12782243 DOI: 10.1016/s0163-7258(03)00038-x] [Citation(s) in RCA: 471] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the animal genome. These receptors can be classified into several groups based on the sequence similarity of their common heptahelical domain. The family 3 (or C) GPCRs are receptors for the main neurotransmitters glutamate and gamma-aminobutyric acid, for Ca(2+), for sweet and amino acid taste compounds, and for some pheromone molecules, as well as for odorants in fish. Although none of these family 3 receptors have been found in plants, members have been identified in ancient organisms, such as slime molds (Dictyostelium) and sponges. Like any other GPCRs, family 3 receptors possess a transmembrane heptahelical domain responsible for G-protein activation. However, most of these identified receptors also possess a large extracellular domain that is responsible for ligand recognition, is structurally similar to bacterial periplasmic proteins involved in the transport of small molecules, and is called a Venus Flytrap module. The recent resolution of the structure of this binding domain in one of these receptors, the metabotropic glutamate 1 receptor, together with the recent demonstration that these receptors are dimers, revealed a unique mechanism of activation for these GPCRs. Such data open new possibilities in the development of drugs aimed at modulating these receptors, and raise a number of interesting questions on the activation mechanism of the other GPCRs.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Department of Molecular Pharmacology, CCIPE, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
208
|
Kos CH, Karaplis AC, Peng JB, Hediger MA, Goltzman D, Mohammad KS, Guise TA, Pollak MR. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 2003; 111:1021-8. [PMID: 12671051 PMCID: PMC152589 DOI: 10.1172/jci17416] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR; alternate gene names, CaR or Casr) is a membrane-spanning G protein-coupled receptor. CaR is highly expressed in the parathyroid gland, and is activated by extracellular calcium (Ca(2+)(o)). Mice homozygous for null mutations in the CaR gene (CaR(-/-)) die shortly after birth because of the effects of severe hyperparathyroidism and hypercalcemia. A wide variety of functions have been attributed to CaR. However, the lethal CaR-deficient phenotype has made it difficult to dissect the direct effect of CaR deficiency from the secondary effects of hyperparathyroidism and hypercalcemia. We therefore generated parathyroid hormone-deficient (PTH-deficient) CaR(-/-) mice (Pth(-/-)CaR(-/-)) by intercrossing mice heterozygous for the null CaR allele with mice heterozygous for a null Pth allele. We show that genetic ablation of PTH is sufficient to rescue the lethal CaR(-/-) phenotype. Pth(-/-)CaR(-/-) mice survive to adulthood with no obvious difference in size or appearance relative to control Pth(-/-) littermates. Histologic examination of most organs did not reveal abnormalities. These Pth(-/-)CaR(-/-) mice exhibit a much wider range of values for serum calcium and renal excretion of calcium than we observe in control littermates, despite the absence of any circulating PTH. Thus, CaR is necessary for the fine regulation of serum calcium levels and renal calcium excretion independent of its effect on PTH secretion.
Collapse
Affiliation(s)
- Claudine H Kos
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Hobson SA, Wright J, Lee F, McNeil SE, Bilderback T, Rodland KD. Activation of the MAP kinase cascade by exogenous calcium-sensing receptor. Mol Cell Endocrinol 2003; 200:189-98. [PMID: 12644311 DOI: 10.1016/s0303-7207(01)00749-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled calcium-sensing receptor (CaR), as expression of the nonfunctional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.
Collapse
Affiliation(s)
- Susan A Hobson
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
210
|
Cetani F, Pardi E, Borsari S, Tonacchera M, Morabito E, Pinchera A, Marcocci C, Dipollina G. Two Italian kindreds with familial hypocalciuric hypercalcaemia caused by loss-of-function mutations in the calcium-sensing receptor (CaR) gene: functional characterization of a novel CaR missense mutation. Clin Endocrinol (Oxf) 2003; 58:199-206. [PMID: 12580936 DOI: 10.1046/j.1365-2265.2003.01696.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Description of two unrelated Italian kindreds with familial hypocalciuric hypercalcaemia (FHH), an autosomal dominant disease mostly caused by heterozygous inactivating mutations of the Ca2+ sensing receptor (CaR). PATIENTS AND DESIGN We studied 11 members of the two families. Genomic DNA was isolated from peripheral blood leucocytes in all family members and in 50 unrelated Italian controls. Total serum and ionized calcium, PTH, creatinine, phosphate, magnesium, and urinary calcium clearance to creatinine clearance ratio were measured. Direct sequencing of the entire coding region of the CaR was performed in the probands. Functional studies were performed in COS-7 cells transiently expressing the mutated CaR. RESULTS In the proband of family A direct sequencing revealed a novel heterozygous Y218C missense mutation in exon 4. The same mutation was identified in the affected but not in the unaffected family members or in any of the 50 unrelated Italian controls. Transient expression of the Y218C CaR in COS-7 cells revealed a blunted Ca2+-evoked accumulation of inositol trisphosphates, indicating that the Y218C is a loss-of-function mutation. Cotransfection experiments showed that the mutant receptor had no impact on the function of the wild-type receptor, suggesting that a reduced expression of the normal CaR, rather than a dominant-negative effect, accounted for the functional impairment. In the proband of family B an already described heterozygous P55L missense mutation in exon 2 of the CaR gene was found. The same mutation was identified in the affected family members. CONCLUSIONS We described two familial hypocalciuric hypercalcaemia kindreds with loss-of-function mutations of the Ca2+ receptor gene and identified a novel heterozygous mutation (Y218C) characterized by a blunted response to Ca2+ stimulation compared to the wild-type receptor and no interference with the function of the wild-type Ca2+ receptor.
Collapse
Affiliation(s)
- Filomena Cetani
- Dipartimento di Endocrinologia e Metabolismo, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Chikatsu N, Watanabe S, Takeuchi Y, Muraosa Y, Sasaki S, Oka Y, Fukumoto S, Fujita T. A family of autosomal dominant hypocalcemia with an activating mutation of calcium-sensing receptor gene. Endocr J 2003; 50:91-6. [PMID: 12733714 DOI: 10.1507/endocrj.50.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autosomal dominant hypocalcemia (ADH) caused by activating mutations of calcium-sensing receptor (CaSR) is characterized by hypocalcemia with inappropriately low concentration of PTH and relative hypercalciuria. Active vitamin D treatment often leads to nephrolithiasis and renal impairment in patients with ADH. However, differential diagnosis between ADH and idiopathic hypoparathyroidism is sometimes very difficult. Here, we report a mutation of CaSR and its functional property found in three generations of a Japanese family. The proband developed seizures at 7 days of age. His mother and elder sister were discovered to have hypoparathyroidism by family survey, but his father was normocalcemic. His grandfather developed heart failure and was found to have hypoparathyroidism. All affected members had been treated with active vitamin D3 and bilateral nephrolithiasis were detected in three of them. DNA sequencing revealed that all affected patients had a heterozygous mutation in CaSR gene that causes proline to leucine substitution at codon 221 (P221L). In vitro functional analysis of the mutant CaSR by measuring inositol 1,4,5-trisphosphate production in response to changes of extracellular Ca indicated that this mutation is an activating one and responsible for ADH in this family. Therefore, careful monitoring of urinary Ca excretion before and during treatment of PTH-deficient hypoparathyroidism is very important, and screening of CaSR mutation should be considered in patients with relative hypercalciuria or with a family history of hypocalcemia.
Collapse
Affiliation(s)
- Noriko Chikatsu
- Department of Internal Medicine and Pediatrics, Hitachi General Hospital, Jyonancho, Hitachi 317-0077, Japan
| | | | | | | | | | | | | | | |
Collapse
|
212
|
|
213
|
|
214
|
Konrad M, Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol 2003; 14:249-60. [PMID: 12506158 DOI: 10.1097/01.asn.0000049161.60740.ce] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in molecular genetics in hereditary hypomagnesemia substantiated the role of a variety of genes and their encoded proteins in human magnesium transport mechanisms. This knowledge on underlying genetic defects helps to distinguish different clinical subtypes and gives first insight into molecular components involved in magnesium transport. By mutation analysis and functional protein studies, novel pathophysiologic aspects were elucidated. For some of these disorders, transgenic animal models were generated to study genotype-phenotype relations and disease pathology. This review will discuss genetic and clinical aspects of familial disorders associated with magnesium wasting and focuses on the recent progress that has been made in molecular genetics. Besides isolated renal forms of hereditary hypomagnesemia, the following disorders will also be presented: familial hypomagnesemia with hypercalciuria and nephrocalcinosis, hypomagnesemia with secondary hypocalcemia, Ca2+/Mg2+-sensing receptor-associated disorders, and disorders associated with renal salt-wasting and hypokalemic metabolic alkalosis, comprising the Gitelman syndrome and the Bartter-like syndromes.
Collapse
|
215
|
Yamaguchi T, Yamauchi M, Sugimoto T, Chauhan D, Anderson KC, Brown EM, Chihara K. The extracellular calcium Ca2+o-sensing receptor is expressed in myeloma cells and modulates cell proliferation. Biochem Biophys Res Commun 2002; 299:532-8. [PMID: 12459170 DOI: 10.1016/s0006-291x(02)02690-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca(2+)(o)) homeostasis by enabling parathyroid, kidney, and other cells to directly "sense" changes in Ca(2+)(o). In multiple myeloma-associated bone disease, myeloma cells could raise the level of Ca(2+)(o) within their immediate vicinity in the bone marrow microenvironment, through their known capacity to cause bone destruction by stimulating osteoclastic bone resorption. Thus if myeloma cells expressed the CaR, they might sense these locally elevated levels of Ca(2+)(o), which could, in turn, potentially modify their function(s) in ways that could contribute to myeloma bone disease or other aspects of the pathophysiology of this disabling hematological malignancy. In this study, we examined the expression of the CaR in three myeloma cell lines, human U266, IM-9, and RPMI8226 cells. CaR protein was present in all three cell lines as assessed by immunocytochemistry and Western blot analysis using a monoclonal antibody specific for the CaR. Moreover, the use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in the three cell lines. Exposure to known polycationic agonists of the CaR, including high Ca(2+)(o) (2.5mM), neomycin, and gadolinium (Gd(3+)) as well as a specific CaR activator, NPS R467, augmented cell proliferation in all three cell lines. RT-PCR revealed that U266 cells, but not IM-9 cells or RPMI8226 cells, expressed interleukin-6 (IL-6), the expression of which was not enhanced by treatments with CaR agonists. Therefore, taken together, our data first document the fact that the myeloma cell lines, U266, IM-9, and RPMI8226, all express CaR protein and mRNA. Moreover, the CaR expressed on myeloma cells could sense the locally high levels of Ca(2+)(o) in the vicinity of sites of osteoclastic bone resorption and stimulate their proliferation in an IL-6-independent manner. These processes may result in promoting further growth of the tumor and aggravating the associated bone disease.
Collapse
Affiliation(s)
- Toru Yamaguchi
- Department of Internal Medicine, Takatsuki General Hospital, 1-3-13 Kosobe-cho, Takatsuki 569-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
216
|
Yamauchi M, Sugimoto T, Yamaguchi T, Yano S, Wang J, Bai M, Brown EM, Chihara K. Familial hypocalciuric hypercalcemia caused by an R648stop mutation in the calcium-sensing receptor gene. J Bone Miner Res 2002; 17:2174-82. [PMID: 12469911 DOI: 10.1359/jbmr.2002.17.12.2174] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we report an 84-year-old female proband in a Japanese family with familial hypocalciuric hypercalcemia (FHH) caused by an R648stop mutation in the extracellular calcium-sensing receptor (CaR) gene. At the age of 71 years, she presented with hypercalcemia (11.4 mg/dl), hypocalciuria (Cca/Ccr = 0.003), hypermagnesemia (2.9 mg/dl), and a high-serum parathyroid hormone (PTH) level (midregion PTH, 3225 [160-520] pg/ml). At the age of 74 years, a family screening was carried out and revealed a total of 9 hypercalcemic individuals (all intact PTH values <62 pg/dl) among 17 family members tested, thus, being diagnosed as FHH. Two and one-half of three clearly enlarged parathyroid glands were resected, because persistently high PTH levels (intact PTH, 292 pg/ml; midregion PTH, 5225 pg/ml) and the presence of a markedly enlarged parathyroid gland by several imaging modalities (ultrasonography, computed tomography [CT], magnetic resonance imaging [MRI], and subtraction scintigraphy) suggested coexistent primary hyperparathyroidism (pHPT); however, hypercalcemia persisted postoperatively. Histological and immunohistochemical examination revealed that the resected parathyroid glands showed lipohyperplasia as well as normally expressed Ki67, vitamin D receptor (VDR), and the CaR. Sequence analysis disclosed that the proband and all affected family members had a heterozygous nonsense (R648stop) mutation in the CaR gene. This mutation is located in the first intracellular loop; thus, it would be predicted to produce a truncated CaR having only one transmembrane domain (TMD) and lacking its remaining TMDs, intracellular loops, and C-terminal tail. Western analysis of biotinylated HEK293 cells transiently transfected with this mutant receptor showed cell surface expression of the truncated protein at a level comparable with that of the wild-type CaR. The mutant receptor, however, exhibited no increase in intracellular free calcium concentration (Ca2+i) when exposed to high extracellular calcium concentrations (Ca2+o). The proband's clinical course was complicated because of associated renal tubular acidosis (RTA) and nephrotic syndrome. However, it was unclear whether their association affected the development of elevated serum PTH and parathyroid gland enlargement. This report is the first to show that an R648stop CaR mutation yields a truncated receptor that is expressed on the cell surface but is devoid of biological activity, resulting in FHH.
Collapse
Affiliation(s)
- Mika Yamauchi
- Division of Endocrinology/Metabolism, Neurology, and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaître X, Paillard M, Planelles G, Déchaux M, Miller RT, Antignac C. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 2002; 13:2259-66. [PMID: 12191970 DOI: 10.1097/01.asn.0000025781.16723.68] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The extracellular Ca(2+)-sensing receptor (CaSR) plays an essential role in extracellular Ca(2+) homeostasis by regulating the rate of parathyroid hormone (PTH) secretion and the rate of calcium reabsorption by the kidney. Activation of the renal CaSR is thought to inhibit paracellular divalent cation reabsorption in the cortical ascending limb (cTAL) both directly and indirectly via a decrease in NaCl transport. However, in patients with autosomal dominant hypocalcemia (ADH), caused by CaSR gain-of-function mutations, a defect in tubular NaCl reabsorption with renal loss of NaCl has not been described so far. This article describes a patient with ADH due to a gain-of-function mutation in the CaSR, L125P, associated with a Bartter-like syndrome that is characterized by a decrease in distal tubular fractional chloride reabsorption rate and negative NaCl balance with secondary hyperaldosteronism and hypokalemia. The kinetics of activation of the L125P mutant receptor expressed in HEK-293 cells, assessed by measuring CaSR-stimulated changes in intracellular Ca(2+) and ERK activity, showed a dramatic reduction in the EC(50) for extracellular Ca(2+) compared with the wild-type and a loss-of-function mutant CaSR (I40F). This study describes the first case of ADH associated with a Bartter-like syndrome. It is herein proposed that the L125P mutation of the CaSR, which represents the most potent gain-of-function mutation reported so far, may reduce NaCl reabsorption in the cTAL sufficiently to result in renal loss of NaCl with secondary hyperaldosteronism and hypokalemia.
Collapse
Affiliation(s)
- Rosa Vargas-Poussou
- Inserm U423, Department of Physiology, Université René Descartes, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Hu J, Mora S, Colussi G, Proverbio MC, Jones KA, Bolzoni L, De Ferrari ME, Civati G, Spiegel AM. Autosomal dominant hypocalcemia caused by a novel mutation in the loop 2 region of the human calcium receptor extracellular domain. J Bone Miner Res 2002; 17:1461-9. [PMID: 12162500 DOI: 10.1359/jbmr.2002.17.8.1461] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a novel missense mutation N124K in the extracellular calcium receptor (CaR) identified in two related subjects with the phenotypic features of autosomal dominant hypocalcemia (ADH). Expression of the N124K mutant receptor created by site-directed mutagenesis and transfected into HEK-293 cells was comparable with that of the wild-type (WT) receptor and two other mutant receptors N118K and L125P identified in subjects with ADH. Functional characterization by the extracellular Ca2+ ion ([Ca2+]0)-stimulated phosphoinositide (PI) hydrolysis in transfected HEK-293 cells showed that the N124K mutant receptor was left-shifted in Ca2+ sensitivity. This biochemical gain-of-function is comparable with that seen in other missense mutations of the CaR identified in subjects with ADH. We tested a series of missense substitutions (R, Q, E, and G) in addition to K for N124 and found that only the N124K mutation and to a much lesser extent N124R caused a left shift in Ca2+ sensitivity. Thus, a specific substitution, not merely a mutation of the N124 residue, is required for receptor activation. The N124K mutation is one of eight naturally occurring mutations in subjects with ADH identified in a short segment A116-C129 of the CaR extracellular domain (ECD). We present a hypothesis to explain receptor activation by mutations in this region based on the recently described three-dimensional structure of the related metabotropic glutamate type 1 receptor (mGluR1).
Collapse
Affiliation(s)
- Jianxin Hu
- Molecular Pathophysiology Section, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
Changes in extracellular calcium (Ca(2+)o) concentration ([Ca2+]o) affect kidney function both under basal and hormone-stimulated conditions. The molecular identification of an extracellular Ca(2+)-sensing receptor (CaR) has confirmed a direct role of Ca(2+)o on parathyroid and kidney function (i.e. independent of calciotropic hormones) as a modulator of Ca2+ homeostasis. In addition, evidence accumulated over the last 10 years has shown that CaR is also expressed in regions outside the calcium homeostatic system where its role is largely undefined but seems to be linked to regulation of local ionic homeostasis. The parathyroid and kidney CaRs are 1081 and 1079 amino acids long, respectively, and belong to the type III family of G protein-coupled receptors (GPCRs), which includes other CaRs, metabotropic glutamate receptors and putative vomeronasal organ receptors. For the CaR, its low (millimolar) affinity for Ca2+, its positive cooperativity and its large ion-sensing extracellular domain, indicate that the receptor is more sensitive to changes in net cationic charge rather than to a specific ligand. Mg2+, trivalent cations of the lanthanide series and polyvalent cations such as spermine and aminoglycoside antibiotics can all activate the receptor in vitro with EC50 values in the micromolar range for trivalent and polyvalent cations or in the millimolar range for Ca2+ and Mg2+. In addition to true CaR agonists, CaR sensitivity to Ca(2+)o is also susceptible to allosteric modulation by ionic strength, L-amino acids and by pharmacological agents. This review will address endogenous and exogenous CaR agonists, the role of the receptor in the calcium homeostatic system and some speculation on possible role(s) of the CaR in regions not involved in mineral ion homeostasis.
Collapse
|
220
|
Sato K, Hasegawa Y, Nakae J, Nanao K, Takahashi I, Tajima T, Shinohara N, Fujieda K. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene. J Clin Endocrinol Metab 2002; 87:3068-73. [PMID: 12107202 DOI: 10.1210/jcem.87.7.8639] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Gain-of-function mutations of the calcium-sensing receptor (CaR) gene cause autosomal dominant and/or sporadic hypocalcemia with hypercalciuria. Because treatment of the hypocalcemia with vitamin D and/or calcium in patients with such mutations results in increased hypercalciuria, nephrocalcinosis, and renal impairment, its use should be limited to alleviating the symptoms of symptomatic patients. Because thiazide diuretics have been successfully used to treat patients with hypercalciuria and hypoparathyroidism, they are theoretically useful in reducing urine calcium excretion and maintaining serum calcium levels in patients with gain-of-function mutations of the CaR gene. In this study, we report on the clinical course, molecular analysis, and effects of hydrochlorothiazide therapy in two Japanese patients with gain-of-function mutations of the CaR gene. Within a few weeks after birth, they developed generalized tonic seizures due to hypocalcemia (serum calcium values: 1.1 mmol/liter and 1.3 mmol/liter, respectively). Despite treatment with the standard dose of 1,25-dihydroxyvitamin D(3) in one patient and 1alpha-hydroxyvitamin D(3) in the other, acceptable serum calcium levels near the lower limit of normal were not established, and their urinary calcium excretion inappropriately increased. Addition of hydrochlorothiazide (1 mg/kg) reduced their urinary calcium excretion and maintained their serum calcium concentrations near the lower limit of normal, allowing the 1,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(3) doses to be reduced, and it alleviated their symptoms. A heterozygous missense mutation was identified in both patients. In one patient, the mutation was A843E in the seventh transmembrane domain of the CaR, and in the other it was L125P in the N-terminal extracellular domain. In vitro transient transfection of their mutant CaR cDNAs into HEK293 cells shifted the concentration-response curve of Ca(2+) to the left. In conclusion, two sporadic cases of hypercalciuric hypocalcemia were due to de novo gain-of-function mutations of the CaR gene. Hydrochlorothiazide with vitamin D(3) successfully reduced the patients' urinary calcium excretion and controlled their serum calcium concentrations and symptoms. Thiazide diuretics are effective in patients with gain-of function mutations of the CaR gene.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo 060-0835, Japan
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Cetani F, Borsari S, Vignali E, Pardi E, Picone A, Cianferotti L, Rossi G, Miccoli P, Pinchera A, Marcocci C. Calcium-sensing receptor gene polymorphisms in primary hyperparathyroidism. J Endocrinol Invest 2002; 25:614-9. [PMID: 12150336 DOI: 10.1007/bf03345085] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The calcium-sensing receptor (CaR) polymorphism A986S has been found to be associated with higher serum calcium levels in normal subjects, suggesting that this amino acid change might decrease the inhibitory activity of the mutated receptor, render the parathyroid cells more prone to proliferate, and eventually increase the risk of developing primary hyperparathyroidism (PHPT). The aim of the present study was to investigate the frequency of this and other 2 known CaR polymorphisms (R990G and Q1011 E) in patients with PHPT and their effect on its phenotype. We studied 103 Italian patients with PHPT and 148 healthy Italian subjects and we compared the results in 50 pairs matched for sex, age and geographic provenience. A fragment of exon 7 of the CaR gene, containing the 3 polymorphic loci of interest (A986S, R990G, and Q1011E), was amplified by PCR and sequenced. Serum calcium and PTH levels, BMD and other biochemical and clinical parameters were evaluated. The frequency distribution of the A9865, R990G, and Q1011 E polymorphisms in the 103 PHPT patients was 39.8%, 5.8%, and 2.0%, respectively. There was no difference in the frequency of the 3 CaR polymorphisms in the 50 matched pairs of patients and controls. We found no significant difference in several clinical and biochemical parameters between PHPT patients carrying or not the 986S allele. Finally, no relationship was observed between the 986S genotype and total and ionized serum calcium in control subjects. The A986S CaR polymorphism is the most common in Italian PHPT patients and the allotype AS does not appear to play a relevant role in the pathogenesis of PHPT and its severity. The A986S polymorphism does not correlate with serum calcium levels in normal Italian subjects.
Collapse
Affiliation(s)
- F Cetani
- Department of Endocrinology and Metabolism, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Huang C, Handlogten ME, Miller RT. Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J Biol Chem 2002; 277:20293-300. [PMID: 11907035 DOI: 10.1074/jbc.m200831200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca(2+) metabolism, Na(+), Cl(-), K(+), and H(2)0 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Galpha(q) and Galpha(i), not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaR(R796W) was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [(3)H]inositol trisphosphate (IP(3)), CaR stimulated the accumulation of [(3)H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [(3)H]PIP and inhibited [(3)H]IP(3) production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase beta can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca(2+)-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [(3)H]IP(3) or the rise in intracellular Ca(2+) (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem. 276, 13941-13948). RGS4, an accelerator of GTPase activity of members of the Galpha(i) and Galpha(q) families, attenuated the CaR-stimulated PLC activation and IP(3) accumulation, which is mediated by Galpha(q), but did not inhibit CaR-stimulated [(3)H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C(3) toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [(3)H]IP(3) production but did not lead to CaR-stimulated [(3)H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Galpha(q)- and Galpha(i)-independent pathways.
Collapse
Affiliation(s)
- Chunfa Huang
- Division of Nephrology, Department of Medicine, Case Western Reserve University, Louis Stokes Veteran Affairs Medical Center, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
223
|
Takács I, Speer G, Bajnok E, Tabák A, Nagy Z, Horváth C, Kovács K, Lakatos P. Lack of association between calcium-sensing receptor gene "A986S" polymorphism and bone mineral density in Hungarian postmenopausal women. Bone 2002; 30:849-52. [PMID: 12052452 DOI: 10.1016/s8756-3282(02)00741-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calcium-sensing receptor (CaSR) is an attractive candidate gene for osteoporosis susceptibility. The CaSR "A986S" genotype has been shown to have an effect on serum calcium. Recently, an association has been reported between the CaSR gene A986S polymorphism and bone mineral density in healthy white girls. In this study, we examined whether CaSR gene A986S polymorphism is associated with decreased bone mass in 230 Hungarian postmenopausal women. From this cohort, 108 osteoporotic patients were compared with 122 healthy control women. Bone mineral density (BMD) was measured at the lumbar spine (L2-4) and femoral neck using dual-energy X-ray absorptiometry. Allele-specific polymerase chain reaction was used to amplify A986S polymorphisms of the CaSR gene. We found no difference in the distribution of different alleles or genotypes between groups (p = 0.762). No significant effect of CaSR genotype on BMD was observed either in the whole population or in the subgroups. Our data do not support the idea that CaSR gene A986S polymorphism has an impact on bone mass.
Collapse
Affiliation(s)
- I Takács
- First Department of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Affiliation(s)
- Barbara K Kinder
- Department of Surgery, Surgical Oncology, and Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
225
|
Szabo E, Hellman P, Lundgren E, Carling T, Rastad J. Parathyroidectomy in familial hypercalcemia with clinical characteristics of primary hyperparathyroidism and familial hypocalciuric hypercalcemia. Surgery 2002; 131:257-63. [PMID: 11894029 DOI: 10.1067/msy.2002.120674] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Familial primary hyperparathyroidism is associated with tumor-susceptibility syndromes, which are unrelated to mutations in the calcium receptor gene. This study describes parathyroidectomy in a kindred with hypercalcemia due to a heterozygous point mutation in the calcium receptor gene. METHODS Seventeen family members were studied, and postoperative follow-up averaged 5.1 years. RESULTS Radical parathyroid resection with total parathyroid remnants of 10 to 20 mg or total parathyroidectomy with autotransplantation normalized the serum calcium and parathyroid hormone values in 12 family members. Persistent hypercalcemia was noted in 3 of 5 patients subjected to less radical procedures. Diffuse to nodular hyperplasia and microscopic findings, interpreted incorrectly as a single adenoma, were found. Weight of the parathyroid tissue increased with the age of the patients (P <.05), and almost one third of them (29%) had 1 to 3 atypically located glands. There were no patients with recurrent hypercalcemia during follow-up. CONCLUSIONS The heterozygous inactivating mutation of the calcium receptor gene of this family is accompanied by mild increases in parathyroid gland x weight and diffuse parathyroid hyperplasia with possibly secondary genetic events causing nodule formation. Radical parathyroid resection is advocated in this hypercalcemic disorder, which may represent an intermediary stage between primary hyperparathyroidism and familial hypocalciuric hypercalcemia.
Collapse
Affiliation(s)
- Eva Szabo
- Department of Surgical Sciences, Endocrine Unit, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
226
|
Fukumoto S, Chikatsu N, Okazaki R, Takeuchi Y, Tamura Y, Murakami T, Obara T, Fujita T. Inactivating mutations of calcium-sensing receptor results in parathyroid lipohyperplasia. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2001; 10:242-7. [PMID: 11763315 DOI: 10.1097/00019606-200112000-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Familial hypocalciuric hypercalcemia (FHH) is an autosomal dominant disease characterized by mild hypercalcemia, an inappropriately high parathyroid hormone level, and absence of hypercalciuria. Heterozygous inactivating mutations of calcium-sensing receptor (CaSR) are found in about two thirds of patients with FHH. Histologic examination of parathyroid glands in FHH is reported to show normal histology or chief cell hyperplasia. Thus, histologic features of the parathyroid glands in FHH vary, and there is no clear histologic criterion that indicates FHH. The authors have encountered three hypercalcemic patients with characteristic histologic features of enlarged parathyroid glands. Clusters of parenchymal cells were mixed with fat cells, and the area of fat cells was 33% to 49% of the total area. These features are similar to those described as parathyroid lipohyperplasia. Postoperative evaluation showed that fractional excretion of calcium was low in these patients. Direct sequencing of the polymerase chain reaction product showed that the first patient was heterozygous for an already reported inactivating mutation of CaSR (P55L). The second patient was also heterozygous for a novel inactivating mutation (R220W). The third was homozygous for an inactivating mutation (Q27R). These results indicate that histologic features of parathyroid lipohyperplasia suggest the presence of inactivating mutations of CaSR.
Collapse
Affiliation(s)
- S Fukumoto
- Department of Laboratory Medicine University of Tokyo Branch Hospital, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Yamauchi M, Sugimoto T, Yamaguchi T, Yano S, Kanzawa M, Kobayashi A, Chihara K. Association of polymorphic alleles of the calcium-sensing receptor gene with the clinical severity of primary hyperparathyroidism. Clin Endocrinol (Oxf) 2001; 55:373-9. [PMID: 11589681 DOI: 10.1046/j.1365-2265.2001.01318.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Primary hyperparathyroidism (pHPT) is a heterogeneous disease in its clinical course and severity. Previous studies have suggested an association between the clinical severity of pHPT and the genotypes of vitamin D receptor, oestrogen receptors and PTH molecules. The Ca-sensing receptor (CaR) is activated by an extracellular calcium ion and controls PTH secretion, and thus polymorphisms of CaR might be associated with the magnitude of PTH secretion and the clinical severity of pHPT. In this study, we examined the relationship between CaR polymorphisms and biochemical markers in pHPT patients. METHODS We analysed 105 Japanese pHPT patients (85 females and 20 males; mean age 55.6 +/- 14.0 years). We determined the CaR genotypes of G990R and intron 5 polymorphisms with genomic DNA extracted from peripheral lymphocytes. The intron 5 polymorphism was defined as T/T, T/C and C/C. RESULTS In the G990R polymorphism, serum levels of both intact PTH and alkaline phosphatase (ALP) were significantly higher and the serum level of phosphorus was significantly lower in the RR group than in the GG group. In the intron 5 polymorphism, the T/T group showed significantly lower serum levels of intact PTH and Ca. Furthermore, patients with both the codon 990 RR and the intron 5 C allele (the RRC(+) group) had significantly higher serum levels of intact PTH and ALP than did the other patients. CONCLUSIONS The present study is the first to show that CaR polymorphisms of G990R and intron 5 were closely associated with the magnitude of PTH secretion and/or PTH degradation as well as the clinical severity in pHPT patients.
Collapse
Affiliation(s)
- M Yamauchi
- Third Division, Department of Medicine, Kobe University School of Medicine, Chuo-ku, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
228
|
Sadee W, Hoeg E, Lucas J, Wang D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PHARMSCI 2001; 3:E22. [PMID: 11741273 PMCID: PMC2751017 DOI: 10.1208/ps030322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.
Collapse
Affiliation(s)
- W Sadee
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco CA 94143-0446, USA.
| | | | | | | |
Collapse
|
229
|
Abstract
The near constancy of extracellular calcium concentration is required for the numerous physiological functions of extra- and intracellular calcium. This implies that any change in extracellular calcium concentration must be detected in order to allow the appropriate correction by the homeostatic systems. The identification and cloning of a calcium-sensing receptor (CaR), which is expressed in the plasma membrane of parathyroid cells as well as many other cell types, has been a major advance in the understanding of the mechanisms involved in the control of extracellular calcium concentration. In addition, it demonstrated that extracellular calcium concentration itself is the first informative hormone-like messenger in this system. CaR belongs to the C subfamily of seven transmembrane-spanning G protein-coupled receptors. Several inherited disorders in extracellular calcium homeostasis are due to both activating or inactivating mutations in CaR gene, strengthening the essential role of CaR in the control of calcium metabolism.
Collapse
Affiliation(s)
- P Houillier
- Département de physiologie et radio-isotopes, hôpital européen Georges-Pompidou, 20-40, rue Leblanc, 75015 Paris, France.
| | | | | | | |
Collapse
|
230
|
Hauache OM. Extracellular calcium-sensing receptor: structural and functional features and association with diseases. Braz J Med Biol Res 2001; 34:577-84. [PMID: 11323743 DOI: 10.1590/s0100-879x2001000500004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recently cloned extracellular calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones) and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs) or antagonizing it (calcilytic drugs), and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.
Collapse
Affiliation(s)
- O M Hauache
- Laboratório de Endocrinologia Molecular, Disciplina de Endocrinologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
231
|
Buchan AM, Squires PE, Ring M, Meloche RM. Mechanism of action of the calcium-sensing receptor in human antral gastrin cells. Gastroenterology 2001; 120:1128-39. [PMID: 11266377 DOI: 10.1053/gast.2001.23246] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Human G cells express the calcium-sensing receptor and respond to extracellular calcium by releasing gastrin. However, the receptor on G cells is insensitive to serum calcium levels. We investigated whether this is a result of differential regulation of signaling pathways compared with parathyroid or calcitonin cells. METHODS Gastrin release from primary cultures of human antral epithelial cells enriched for G cells (35%) was measured by radioimmunoassay. G cells were stimulated by increasing extracellular calcium concentration for 1 hour in the presence or absence of antagonists of specific intracellular signaling pathways. Intracellular calcium levels were monitored to evaluate the effect of the antagonists on calcium influx. RESULTS Inhibition of phospholipase C decreased calcium-stimulated gastrin release, but blockers of adenylate cyclase, phospholipase A(2), or mitogen-activated protein kinase had no effect. Inhibition of protein kinase C, nonselective cation channels, and phosphodiesterase increased basal and calcium-stimulated gastrin release while decreasing calcium influx. These data were consistent with basally active phosphodiesterase. CONCLUSIONS The calcium-sensing receptor on the G cell activates phospholipase C and opens nonselective cation channels, resulting in an influx of extracellular calcium. Protein kinase C isozymes expressed by the G cells play multiple roles regulating both gastrin secretion and phosphodiesterase activity.
Collapse
Affiliation(s)
- A M Buchan
- Department of Physiology, Faculty of Medicine, 2146 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
232
|
Quitterer U, Hoffmann M, Freichel M, Lohse MJ. Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem 2001; 276:6763-9. [PMID: 11102444 DOI: 10.1074/jbc.m007727200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The paradox of blunted parathormone (PTH) secretion in patients with severe hypomagnesemia has been known for more than 20 years, but the underlying mechanism is not deciphered. We determined the effect of low magnesium on in vitro PTH release and on the signals triggered by activation of the calcium-sensing receptor (CaSR). Analogous to the in vivo situation, PTH release from dispersed parathyroid cells was suppressed under low magnesium. In parallel, the two major signaling pathways responsible for CaSR-triggered block of PTH secretion, the generation of inositol phosphates, and the inhibition of cAMP were enhanced. Desensitization or pertussis toxin-mediated inhibition of CaSR-stimulated signaling suppressed the effect of low magnesium, further confirming that magnesium acts within the axis CaSR-G-protein. However, the magnesium binding site responsible for inhibition of PTH secretion is not identical with the extracellular ion binding site of the CaSR, because the magnesium deficiency-dependent signal enhancement was not altered on CaSR receptor mutants with increased or decreased affinity for calcium and magnesium. By contrast, when the magnesium affinity of the G alpha subunit was decreased, CaSR activation was no longer affected by magnesium. Thus, the paradoxical block of PTH release under magnesium deficiency seems to be mediated through a novel mechanism involving an increase in the activity of G alpha subunits of heterotrimeric G-proteins.
Collapse
Affiliation(s)
- U Quitterer
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, 97078 Würzburg, Germany.
| | | | | | | |
Collapse
|
233
|
Canaff L, Petit JL, Kisiel M, Watson PH, Gascon-Barré M, Hendy GN. Extracellular calcium-sensing receptor is expressed in rat hepatocytes. coupling to intracellular calcium mobilization and stimulation of bile flow. J Biol Chem 2001; 276:4070-9. [PMID: 11071898 DOI: 10.1074/jbc.m009317200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver cells respond to changes in Ca(2+)(o). The hepatic functions affected include bile secretion, metabolic activity, liver regeneration, and the response to xenobiotics. In the present study, we demonstrate the presence, in the liver, of the extracellular calcium-sensing receptor (CASR), described previously in the parathyroid and thyroid glands and kidney. CASR mRNA was specifically expressed in hepatocytes and was absent in nonparenchymal liver cells (stellate, endothelial, and Kupffer cells). Western blot analysis using a specific CASR antibody showed staining in both whole liver and hepatocyte extracts. Immunohistochemistry and in situ hybridization of rat liver sections showed expression of CASR protein and mRNA by a subset of hepatocytes. The known agonists of the CASR, gadolinium (Gd(3+); 0.5-3.0 mm) and spermine (1.25-20 mm), in the absence of Ca(2+)(o), elicited dose-related increases in Ca(2+)(i) in isolated rat hepatocytes loaded with Fura-2/acetoxymethyl ester. There was a greatly attenuated response to a second challenge with either agonist. The response was also abrogated when inositol 1,4,5-trisphosphate (IP(3))-sensitive calcium pools had been depleted by pretreatment with either thapsigargin or phenylephrine, an alpha(1)-adrenergic receptor agonist known to mobilize Ca(2+)(i) from IP(3)-sensitive pools. Addition of the deschloro-phenylalkylamine compound, NPS R-467, but not the S enantiomer, NPS S-467, increased the sensitivity of the Ca(2+)(i) mobilization response to 1.25 mm spermine. Bile flow ceased after Ca(2+)(o) withdrawal, and its recovery was enhanced by spermine in isolated perfused liver preparations. The CASR agonists Ca(2+) and Gd(3+) increased bile flow, and the response to a submaximal Ca(2+) concentration was enhanced by NPS R-467 but not the S compound. Thus, the data indicate that rat hepatocytes harbor a CASR capable of mobilizing Ca(2+)(i) from IP(3)-sensitive stores and that activation of the CASR stimulates bile flow.
Collapse
Affiliation(s)
- L Canaff
- Departments of Medicine, Physiology and Human Genetics, McGill University and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
234
|
Abstract
The mechanism by which cortisol is produced in adrenal Cushing's syndrome, when ACTH is suppressed, was previously unknown and was referred to as being "autonomous." More recently, several investigators have shown that some cortisol and other steroid-producing adrenal tumors or hyperplasias are under the control of ectopic (or aberrant, illicit, inappropriate) membrane hormone receptors. These include ectopic receptors for gastric inhibitory polypeptide (GIP), beta-adrenergic agonists, or LH/hCG; a similar outcome can result from altered activity of eutopic receptors, such as those for vasopressin (V1-AVPR), serotonin (5-HT4), or possibly leptin. The presence of aberrant receptors places adrenal cells under stimulation by a trophic factor not negatively regulated by glucocorticoids, leading to increased steroidogenesis and possibly to the proliferative phenotype. The molecular mechanisms responsible for the abnormal expression and function of membrane hormone receptors are still largely unknown. Identification of the presence of these illicit receptors can eventually lead to new pharmacological therapies as alternatives to adrenalectomy, now demonstrated by the long-term control of ectopic P-AR- and LH/hCGR-dependent Cushing's syndrome by propanolol and leuprolide acetate. Further studies will potentially identify a larger diversity of hormone receptors capable of coupling to G proteins, adenylyl cyclase, and steroidogenesis in functional adrenal tumors and probably in other endocrine and nonendocrine tumors.
Collapse
Affiliation(s)
- A Lacroix
- Department of Medicine, Research Center, H tel du Centre Hospitalier de l'Université de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
235
|
|
236
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
237
|
Conley YP, Finegold DN, Peters DG, Cook JS, Oppenheim DS, Ferrell RE. Three novel activating mutations in the calcium-sensing receptor responsible for autosomal dominant hypocalcemia. Mol Genet Metab 2000; 71:591-8. [PMID: 11136551 DOI: 10.1006/mgme.2000.3096] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report three novel activating mutations in the calcium-sensing receptor (CASR) that are responsible for autosomal dominant hypocalcemia (ADH) in three unrelated families. Each mutation involves a missense substitution resulting in a nonconservative amino acid alteration, P221L, E228Q, and Q245R. These mutations were observed in affected family members, but not in unaffected family members or in unrelated control samples. All three mutations are clustered in the extracellular domain of the CASR in a region dominated by negatively charged amino acids. Each mutant and wild-type receptor was expressed in Cos-1 cells. A luciferase reporter gene assay was utilized to detect the level of receptor activity by utilizing a protein kinase C-activated promoter to drive the production of luciferin, the reporter gene product. All three mutant receptors exhibited an increased sensitivity to calcium at all concentrations tested when compared to the wild-type receptor, supporting the hypothesis that these are activating mutations and are responsible for the ADH phenotype in these families. The data presented in this study suggest the importance of this highly negatively charged region of the extracellular domain in normal CASR function.
Collapse
Affiliation(s)
- Y P Conley
- Department of Human Genetics, Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
238
|
Murphey ED, Chattopadhyay N, Bai M, Kifor O, Harper D, Traber DL, Hawkins HK, Brown EM, Klein GL. Up-regulation of the parathyroid calcium-sensing receptor after burn injury in sheep: a potential contributory factor to postburn hypocalcemia. Crit Care Med 2000; 28:3885-90. [PMID: 11153630 DOI: 10.1097/00003246-200012000-00024] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test the hypothesis that the hypocalcemia and hypoparathyroidism that follow severe burn injury are related to up-regulation of the parathyroid gland calcium-sensing receptor (CaR), which may reduce the set-point for suppression of circulating parathyroid hormone by blood calcium. DESIGN A controlled but unblinded study. SETTING An investigational intensive care unit. SUBJECTS Female range ewes. INTERVENTION Sheep were subjected to a 40% total body surface area burn under anesthesia (n = 9) or sham burn receiving anesthesia and fluid resuscitation only (n = 8) and were killed 48 hrs postburn. MEASUREMENTS AND RESULTS Blood ionized calcium, magnesium, and creatinine, and urinary calcium, magnesium, and creatinine were monitored for 48 hrs. After the sheep were killed, parathyroids (burn group, n = 3; sham group, n = 4) and kidneys (n = 4, each group) were harvested, snap frozen in liquid nitrogen, and analyzed for CaR messenger ribonucleic acid (mRNA) by Northern blot, and were analyzed for CaR cell-surface staining by immunocytochemistry with a polyclonal CaR-specific antiserum (parathyroids only). Bumed sheep were hypocalcemic and hypomagnesemic compared with sham-burned control sheep. CaR mRNA was increased by 50% (p < 0.005, analysis of variance) with a corresponding increase in the intensity of CaR immunoreactivity associated with the cell surface in parathyroids obtained from burned (n = 3) compared with sham-burned (n = 2) sheep. These findings are consistent with up-regulation of the parathyroid CaR and a related decrease in set-point for calcium suppression of parathyroid hormone secretion that may contribute to the previously reported postburn hypoparathyroidism and hypocalcemia.
Collapse
Affiliation(s)
- E D Murphey
- Department of Anesthesia, University of Texas Medical Branch and Shriners Burns Hospital, Galveston 77555-0362, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Jüppner H, Potts JT. Roles of Parathyroid Hormone and Parathyroid Hormone–Related Peptide in Calcium Metabolism and Bone Biology: Biological Actions and Receptors. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
240
|
Diaz R, Fuleihan GE, Brown EM. Parathyroid Hormone and Polyhormones: Production and Export. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
241
|
Abstract
The genetic basis and cellular defects of a number of primary magnesium wasting diseases have been elucidated over the past decade. This review correlates the clinical pathophysiology with the primary defect and secondary changes in cellular electrolyte transport. The described disorders include (1) hypomagnesemia with secondary hypocalcemia, an earlyonset, autosomal-recessive disease segregating with chromosome 9q12-22.2; (2) autosomal-dominant hypomagnesemia caused by isolated renal magnesium wasting, mapped to chromosome 11q23; (3) hypomagnesemia with hypercalciuria and nephrocalcinosis, a recessive condition caused by a mutation of the claudin 16 gene (3q27) coding for a tight junctional protein that regulates paracellular Mg(2+) transport in the loop of Henle; (4) autosomal-dominant hypoparathyroidism, a variably hypomagnesemic disorder caused by inactivating mutations of the extracellular Ca(2+)/Mg(2+)-sensing receptor, CASR: gene, at 3q13.3-21 (a significant association between common polymorphisms of the CASR: and extracellular Mg(2+) concentration has been demonstrated in a healthy adult population); and (5) Gitelman syndrome, a recessive form of hypomagnesemia caused by mutations in the distal tubular NaCl cotransporter gene, SLC12A3, at 16q13. The basis for renal magnesium wasting in this disease is not known. These inherited conditions affect different nephron segments and different cell types and lead to variable but increasingly distinguishable phenotypic presentations. No doubt, there are in the general population other disorders that have not yet been identified or characterized. The continued use of molecular techniques to probe the constitutive and congenital disturbances of magnesium metabolism will increase the understanding of cellular magnesium transport and provide new insights into the way these diseases are diagnosed and managed.
Collapse
Affiliation(s)
- David E C Cole
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, and Department of Medicine, University of British Columbia, Koerner Pavilion, University Hospital, Vancouver, British Columbia, Canada
| | - Gary A Quamme
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, and Department of Medicine, University of British Columbia, Koerner Pavilion, University Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
242
|
Hendy GN, D'Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 2000; 16:281-96. [PMID: 11013439 DOI: 10.1002/1098-1004(200010)16:4<281::aid-humu1>3.0.co;2-a] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The calcium-sensing receptor (CASR) is a plasma membrane G protein coupled receptor that is expressed in the parathyroid hormone (PTH) producing chief cells of the parathyroid gland and the cells lining the kidney tubule. By virtue of its ability to sense small changes in circulating calcium concentration ([Ca(2+)](o)) and to couple this information to intracellular signaling pathways that modify PTH secretion or renal cation handling, the CASR plays an essential role in maintaining mineral ion homeostasis. Inherited abnormalities of the CASR gene located on chromosome 3p13.3-21 can cause either hypercalcemia or hypocalcemia depending upon whether they are inactivating or activating, respectively. Heterozygous loss-of-function mutations give rise to familial (benign) hypocalciuric hypercalcemia (FHH) in which the lifelong hypercalcemia is asymptomatic. The homozygous condition manifests itself as neonatal severe hyperparathyroidism (NSHPT), a rare disorder characterized by extreme hypercalcemia and the bony changes of hyperparathyroidism which occur in infancy. The disorder autosomal dominant hypocalcemia (ADH) is due to gain-of-function mutations in the CASR gene. ADH may be asymptomatic or present with neonatal or childhood seizures. A common polymorphism in the intracellular tail of the CASR, Ala to Ser at position 986, has a modest effect on the serum calcium concentration in healthy individuals.
Collapse
Affiliation(s)
- G N Hendy
- Departments of Medicine, Physiology, and Human Genetics, McGill University, and Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
243
|
Conigrave AD, Quinn SJ, Brown EM. Cooperative multi-modal sensing and therapeutic implications of the extracellular Ca(2+) sensing receptor. Trends Pharmacol Sci 2000; 21:401-7. [PMID: 11050321 DOI: 10.1016/s0165-6147(00)01546-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extracellular Ca(2+)-sensing receptor (CaR) is an unusual member of the diverse superfamily of seven-transmembrane domain G-protein-coupled receptors. Originally identified as the receptor providing the calciostat for extracellular ionized Ca(2+) ¿[Ca(2+)](o)¿, the CaR corrects small changes in [Ca(2+)](o) by regulating the secretion of the hormone that controls Ca(2+) fluxes between the blood and Ca(2+) stores in bone, and between blood and the urine. Now, research is beginning to reveal the structure and function of its unusually large N-terminal head. In addition to its role as a divalent and polyvalent cation sensor, recent studies indicate that the receptor also responds sensitively to changes in ionic strength and pH. Furthermore, new work indicates that the CaR is subject to allosteric activation by L-amino acids.
Collapse
Affiliation(s)
- A D Conigrave
- Department of Biochemistry (G08), University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
244
|
Jensen AA, Spalding TA, Burstein ES, Sheppard PO, O'Hara PJ, Brann MR, Krogsgaard-Larsen P, Bräuner-Osborne H. Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor. J Biol Chem 2000; 275:29547-55. [PMID: 10835431 DOI: 10.1074/jbc.m910023199] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-sensing receptor (CaR) belongs to family C of the G-protein-coupled receptor superfamily. To date 14 activating mutations in CaR showing increased sensitivity to Ca(2+) have been identified in humans with autosomal dominant hypocalcemia. Four of these activating mutations are found in the Ala(116)-Pro(136) region of CaR, indicating that this part of the receptor is particularly sensitive to mutation-induced activation. This region was subjected to random saturation mutagenesis, and 219 mutant receptor clones were isolated and screened pharmacologically in a high throughput screening assay. Selected mutants were characterized further in an inositol phosphate assay. The vast majority of the mutants tested displayed an increased affinity for Ca(2+). Furthermore, 21 of the mutants showed increased basal activity in the absence of agonist. This constitutive activity was not diminished when the mutations were transferred to a chimeric receptor Ca/1a consisting of the amino-terminal domain of the CaR and the 7 transmembrane and intracellular domains of the metabotropic glutamate receptor mGluR1a. CPCCOEt, a noncompetitive antagonist acting at the 7 transmembrane domain of mGluR1a, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR.
Collapse
Affiliation(s)
- A A Jensen
- NeuroScience PharmaBiotec Research Centre, Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Dauban P, Ferry S, Faure H, Ruat M, Dodd RH. N1-Arylsulfonyl-N2-(1-aryl)ethyl-3-phenylpropane-1,2-diamines as novel calcimimetics acting on the calcium sensing receptor. Bioorg Med Chem Lett 2000; 10:2001-4. [PMID: 10987436 DOI: 10.1016/s0960-894x(00)00382-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synthesis and calcimimetic properties of N1-arylsulfonyl-N2-(1-aryl)ethyl-3-phenylpropane-1,2-diamines are described. The most active compound of the series (3n, used at 10 microM) produced 97+/-11% of the maximal stimulation of [3H]IP production obtained by 10 mM Ca2+ in CHO cells expressing the calcium sensing receptor (CaSR). This calcimimetic activity was due to a specific interaction of this compound with the CaSR.
Collapse
Affiliation(s)
- P Dauban
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
246
|
Abstract
JMC is a rare autosomal dominant form of short limb dwarfism characterized by asymptomatic hypercalcemia and skeletal deformities, despite low PTH and PTHrP levels. This rare disorder is likely to be caused by activating mutations in the PTH/PTHrP receptor leading to ligand-independent cAMP accumulation. The analysis of genetically altered mice which lack either PTHrP or the PTH/PTHrP receptor, as well as of transgenic mice in which the mutant receptor is targeted to the growth plate, has provided a molecular explanation for the severe skeletal abnormalities seen in JMC. In addition, the study of this rare human disorder has further elucidated the fundamental role played by the PTH/PTHrP receptor in mediating both the paracrine/autocrine actions of PTHrP in growth plate development and bone elongation, as well as the endocrine actions of PTH. The insight gained from the study of this human disease model is likely to continue to provide an important tool to define the cellular and molecular mechanisms that mediate the biological roles of the PTH, PTHrP and their receptor.
Collapse
Affiliation(s)
- L M Calvi
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
247
|
Brown EM. Familial hypocalciuric hypercalcemia and other disorders with resistance to extracellular calcium. Endocrinol Metab Clin North Am 2000; 29:503-22. [PMID: 11033758 DOI: 10.1016/s0889-8529(05)70148-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cloning of the CaR has increased understanding of the normal control of mineral ion homeostasis and has clarified the pathophysiology of PTH-dependent hypercalcemia. Cloning of the CaR has enabled identification of FHH and NSHPT as inherited conditions with generalized resistance to Ca2+o, which is caused in many cases by inactivating mutations in the CaR gene. In most kindreds with FHH, there is resetting of Ca2+o to a mildly elevated level that does not require an increase in the circulating level of PTH above the normal range to maintain it. FHH is not accompanied by the usual symptoms, signs, and complications of hypercalcemia. The kidney participates in the genesis of the hypercalcemia in FHH by avidly reabsorbing Ca2+; consequently, there is no increased risk of forming urinary calculi in most cases. Generally, there is no compelling rationale for attempting to lower the level of Ca2+o in these patients to a nominal normal level. In contrast, in primary hyperparathyroidism, the Ca2+o resistance is limited to the pathologic parathyroid glands, and the rest of the body suffers the consequences of high circulating levels of calcium, PTH, or both. In this condition, removal of the offending parathyroid glands is often the treatment of choice. Parathyroidectomy may also be appropriate in disorders with generalized resistance to Ca2+o owing to inactivating CaR mutations in the following special circumstances: in selected families with FHH in which there is unusually severe hypercalcemia, frankly elevated PTH levels, or atypical features such as hypercalciuria; in cases of NSHPT with severe hypercalcemia and hyperparathyroidism; and in the occasional mild case of homozygous FHH owing to CaR mutations that confer mild-to-moderate resistance to Ca2+o that escapes clinical detection in the neonatal period. As discussed elsewhere in this issue, selective calcimimetic CaR activators are being tested in clinical trials, which potentiate the activation of the CaR by Ca2+o, thereby resetting the elevated set point for Ca2+o-regulated PTH release in primary and secondary hyperparathyroidism toward normal. It is hoped that these agents may become an effective medical therapy for the acquired Ca2+o resistance in primary and secondary hyperparathyroidism and perhaps for that present in the unusual cases of FHH and NSHPT, resetting the "calciostat" downward and thereby reducing Ca2+o and PTH toward normal.
Collapse
Affiliation(s)
- E M Brown
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
248
|
Chattopadhyay N. Biochemistry, physiology and pathophysiology of the extracellular calcium-sensing receptor. Int J Biochem Cell Biol 2000; 32:789-804. [PMID: 10940638 DOI: 10.1016/s1357-2725(00)00031-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calcium (Ca(2+)) has long been recognized as a physiologically indispensable ion owing to its numerous intra- and extracellular roles. More recently, it has become apparent that extracellular calcium (Ca(2+)(o)) also serves as an extracellular first messenger following the cloning of a Ca(2+)(o)-sensing receptor (CaR) that belongs to the superfamily of G protein-coupled receptors (GPCR). The CaR probably functions as a dimer in performing its central role of "sensing" minute alterations in Ca(2+)(o) and adjusting the secretion of parathyroid hormone (PTH) so as to normalize Ca(2+)(o) through the actions of PTH on the effector elements of the mineral ion homeostatic system (e.g., kidney, bone and intestine). Several inherited human conditions are caused by inactivating or activating mutations of this receptor, and mice have been generated with targeted disruption of the CaR gene. Characteristic changes in the functions of parathyroid and kidney in patients with these conditions and in CaR-deficient mice have proven the physiological importance of the CaR in mineral ion homeostasis. An accumulating body of evidence, however, suggests that the CaR also plays numerous roles outside the realm of systemic mineral ion homeostasis. The receptor regulates processes such as cellular proliferation and differentiation, secretion, membrane polarization and apoptosis in a variety of tissues/cells. Finally, the availability of specific "calcimimetic", allosteric CaR activators - which are currently in clinical trials - will probably have therapeutic implications for diseases caused by malfunction of the CaR in tissues not only within, but also outside, the mineral ion homeostatic system.
Collapse
Affiliation(s)
- N Chattopadhyay
- Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
249
|
Brindzjuk M, Krupp G, Kettritz U, Luft FC. Physician-induced hypocalcaemia, nephrocalcinosis, and incomplete distal renal tubular acidosis. Nephrol Dial Transplant 2000; 15:1248-50. [PMID: 10910456 DOI: 10.1093/ndt/15.8.1248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M Brindzjuk
- Department of Medicine-Nephrology and Department of Radiology, Klinikum-Buch and the Franz Volhard Clinic, Medical Faculty of the Charité, Humboldt University of Berlin, Germany
| | | | | | | |
Collapse
|
250
|
Hobson SA, McNeil SE, Lee F, Rodland KD. Signal transduction mechanisms linking increased extracellular calcium to proliferation in ovarian surface epithelial cells. Exp Cell Res 2000; 258:1-11. [PMID: 10912782 DOI: 10.1006/excr.2000.4910] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although ovarian surface epithelial (OSE) cells are the cell type responsible for malignant ovarian carcinoma, relatively little is known about either the extracellular stimuli or the intracellular signaling mechanisms responsible for regulating proliferation in these cells. We have demonstrated that OSE cells proliferate in response to elevation of extracellular calcium and that OSE cells express functional calcium-sensing receptors (CaR). Here we show that agonists of the CaR increase the kinase activity of Src and ERKs (extracellular signal-regulated kinases) in rat OSE cells and promote association between tyrosine-phosphorylated Shc and p120rasGAP. Expression of an interfering mutant CaR inhibited the proliferative response to elevated extracellular calcium, as well as CaR agonist-induced tyrosine phosphorylation and ERK activation. Transfection with dominant negative mutants of Ras, Raf, and MKK1 also inhibited the increase in ERK activity in response to calcium, as did treatment with herbimycin, a selective inhibitor for Src family kinases. These results indicate that the ability of OSE cells to proliferate in response to increases in extracellular calcium involves cross-talk between the G-protein-coupled CaR and the activation of a tyrosine kinase-dependent Ras-Raf-ERK signaling pathway.
Collapse
Affiliation(s)
- S A Hobson
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|