201
|
Vital SO, Gaucher C, Bardet C, Rowe P, George A, Linglart A, Chaussain C. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 2012; 50:989-97. [PMID: 22296718 PMCID: PMC3345892 DOI: 10.1016/j.bone.2012.01.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/06/2012] [Accepted: 01/14/2012] [Indexed: 01/27/2023]
Abstract
Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization.
Collapse
Affiliation(s)
- S. Opsahl Vital
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau- Louis Mourier), F-75018, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Gaucher
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpital Albert Chennevier, Créteil, F-94010, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Bardet
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
| | - P.S. Rowe
- The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - A. George
- Department of Oral Biology, University of Illinois in Chicago, Illinois 60612, USA
| | - A. Linglart
- Inserm, U986 Hôpital St Vincent de Paul AP-HP, Paris, F-75014, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Chaussain
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau- Louis Mourier), F-75018, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
- Corresponding author at: Dental school University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, France 2120. Fax: +33 158076724. (C. Chaussain)
| |
Collapse
|
202
|
Neve A, Corrado A, Cantatore FP. Osteocytes: central conductors of bone biology in normal and pathological conditions. Acta Physiol (Oxf) 2012; 204:317-30. [PMID: 22099166 DOI: 10.1111/j.1748-1716.2011.02385.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osteocytes are the most abundant and longest-living cells in the adult skeleton. For a long time, osteocytes were considered static and inactive cells, but in recent years, it has been suggested that they represent the key responder to various stimuli that regulate bone formation and remodelling as well as one of the key endocrine regulators of bone metabolism. Osteocytes respond to mechanical stimuli by producing and secreting several signalling molecules, such as nitric oxide and prostaglandin E(2) , that initiate local bone remodelling. Moreover, they can control bone formation by modulating the WNT signalling pathway, an essential regulator of cell fate and commitment, as they represent the main source of sclerostin, a negative regulator of bone formation. Osteocytes can also act as an endocrine organ by releasing fibroblast growth factor 23 and several other proteins (DMP-1, MEPE, PHEX) that regulate phosphate metabolism. It has been demonstrated that various bone diseases are associated with osteocyte abnormalities, although it is not clear if these changes are the direct cause of the pathology or if they are secondary to the pathological changes in the bone microenvironment. Thus, a better understanding of these cells could offer exciting opportunities for new advances in the prevention and management of different bone diseases.
Collapse
Affiliation(s)
- A Neve
- Rheumatology Clinic, Department of Medical and Occupational Sciences, University of Foggia, Italy
| | | | | |
Collapse
|
203
|
Abstract
The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH), atrial natriuretic peptides (ANP), and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.
Collapse
Affiliation(s)
- Sukhminder Jit Singh Bajwa
- Department of Anaesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India
| | - Ishwardip Singh Kwatra
- Department of Nephrology, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India
| |
Collapse
|
204
|
|
205
|
Pavik I, Jaeger P, Ebner L, Poster D, Krauer F, Kistler AD, Rentsch K, Andreisek G, Wagner CA, Devuyst O, Wüthrich RP, Schmid C, Serra AL. Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2012; 7:248-57. [PMID: 22193235 PMCID: PMC3280025 DOI: 10.2215/cjn.09020911] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/04/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Fibroblast growth factor 23 (FGF23) levels are elevated in patients with autosomal dominant polycystic kidney disease (ADPKD) and X-linked hypophosphatemia (XLH), but only the latter is characterized by a renal phosphate wasting phenotype. This study explored potential mechanisms underlying resistance to FGF23 in ADPKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS FGF23 and klotho levels were measured, and renal phosphate transport was evaluated by calculating the ratio of the maximum rate of tubular phosphate reabsorption to GFR (TmP/GFR) in 99 ADPKD patients, 32 CKD patients, 12 XLH patients, and 20 healthy volunteers. ADPKD and CKD patients were classified by estimated GFR (CKD stage 1, ≥90 ml/min per 1.73 m(2); CKD stage 2, 60-89 ml/min per 1.73 m(2)). RESULTS ADPKD patients had 50% higher FGF23 levels than did XLH patients; TmP/GFR was near normal in most ADPKD patients and very low in XLH patients. Serum klotho levels were lowest in the ADPKD group, whereas the CKD and XLH groups and volunteers had similar levels. ADPKD patients with an apparent renal phosphate leak had two-fold higher klotho levels than those without. Serum klotho values correlated inversely with cyst volume and kidney growth. CONCLUSIONS Loss of klotho might be a consequence of cyst growth and constrain the phosphaturic effect of FGF23 in most patients with ADPKD. Normal serum klotho levels were associated with normal FGF23 biologic activity in all XLH patients and a minority of ADPKD patients. Loss of klotho and FGF23 increase appear to exceed and precede the changes that can be explained by loss of GFR in patients with ADPKD.
Collapse
Affiliation(s)
- Ivana Pavik
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Division of Nephrology
| | - Philippe Jaeger
- Center for Nephrology, Royal Free Hospital and University College of London, London, United Kingdom
| | - Lena Ebner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Division of Nephrology
| | | | | | | | | | | | - Carsten A. Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Rudolf P. Wüthrich
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Division of Nephrology
| | - Christoph Schmid
- Division of Endocrinology, University Hospital, Zurich, Switzerland; and
| | - Andreas L. Serra
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Division of Nephrology
| |
Collapse
|
206
|
Shimada T, Fukumoto S. FGF23 as a Novel Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:158-70. [DOI: 10.1007/978-1-4614-0887-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
207
|
Rowe PSN. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 2012; 22:61-86. [PMID: 22339660 PMCID: PMC3362997 DOI: 10.1615/critreveukargeneexpr.v22.i1.50] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
More than 300 million years ago, vertebrates emerged from the vast oceans to conquer gravity and the dry land. With this transition, new adaptations occurred that included ingenious changes in reproduction, waste secretion, and bone physiology. One new innovation, the egg shell, contained an ancestral protein (ovocleidin-116) that likely first appeared with the dinosaurs and was preserved through the theropod lineage in modern birds and reptiles. Ovocleidin-116 is an avian homolog of matrix extracellular phosphoglycoprotein (MEPE) and belongs to a group of proteins called short integrin-binding ligand-interacting glycoproteins (SIBLINGs). These proteins are all localized to a defined region on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of SIBLING proteins is an acidic serine aspartate-rich MEPE-associated motif (ASARM). Recent research has shown that the ASARM motif and the released ASARM peptide have regulatory roles in mineralization (bone and teeth), phosphate regulation, vascularization, soft-tissue calcification, osteoclastogenesis, mechanotransduction, and fat energy metabolism. The MEPE ASARM motif and peptide are physiological substrates for PHEX, a zinc metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets (HYP). There is evidence that PHEX interacts with another ASARM motif containing SIBLING protein, dentin matrix protein-1 (DMP1). DMP1 mutations cause bone and renal defects that are identical with the defects caused by a loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both HYP and ARHR, increased FGF23 expression plays a major role in the disease and in autosomal dominant hypophosphatemic rickets (ADHR), FGF23 half-life is increased by activating mutations. ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. FGF23 is a member of the fibroblast growth factor (FGF) family of cytokines, which surfaced 500 million years ago with the boney fish (i.e., teleosts) that do not contain SIBLING proteins. In terrestrial vertebrates, FGF23, like SIBLING proteins, is expressed in the osteocyte. The boney fish, however, are an-osteocytic, so a physiological bone-renal link with FGF23 and the SIBLINGs was cemented when life ventured from the oceans to the land during the Triassic period, approximately 300 million years ago. This link has been revealed by recent research that indicates a competitive displacement of a PHEX-DMP1 interaction by an ASARM peptide that leads to increased FGF23 expression. This review discusses the new discoveries that reveal a novel PHEX, DMP1, MEPE, ASARM peptide, and FGF23 bone-renal pathway. This pathway impacts not only bone formation, bone-renal mineralization, and renal phosphate homeostasis but also energy metabolism. The study of this new pathway is relevant for developing therapies for several diseases: bone-teeth mineral loss disorders, renal osteodystrophy, chronic kidney disease and bone mineralization disorders (CKD-MBD), end-stage renal diseases, ectopic arterial-calcification, cardiovascular disease renal calcification, diabetes, and obesity.
Collapse
Affiliation(s)
- Peter S N Rowe
- Department of Internal Medicine, The Kidney Institute and Division of Nephrology-Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
208
|
Martin A, Quarles LD. Evidence for FGF23 involvement in a bone-kidney axis regulating bone mineralization and systemic phosphate and vitamin D homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:65-83. [PMID: 22396162 PMCID: PMC6350529 DOI: 10.1007/978-1-4614-0887-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone is involved in the maintenance of phosphate and vitamin D homeostasis via its production and secretion of FGF23 and serves as a reservoir for the storage and release of calcium and phosphate into the circulation. Alterations in mineralization of extracellular matrix and the remodeling activities of the skeleton are coupled to the kidney conservation of phosphate and production of 1,25(OH)2D via the regulation of FGF23 production by osteocytes through yet-to-be defined locally derived factors. In addition, FGF23 production is regulated by 1,25(OH)2D in a feedback loop where FGF23 stimulate Cyp24 mediated degradation of 1,25(OH)2D that serves to protect the organism from the toxic effects of vitamin D excess. In this chapter, we will review the regulation and function of FGF23.
Collapse
Affiliation(s)
- Aline Martin
- University of Tennessee Health Science Center, Department of Medicine, Memphis, Tennessee, USA
| | - L. Darryl Quarles
- University of Tennessee Health Science Center, Department of Medicine, Memphis, Tennessee, USA
| |
Collapse
|
209
|
Abstract
Calcium (Ca(2+)) and phosphate (PO(4)(3-)) homeostasis are coordinated by systemic and local factors that regulate intestinal absorption, influx and efflux from bone, and kidney excretion and reabsorption of these ions through a complex hormonal network. Traditionally, the parathyroid hormone (PTH)/vitamin D axis provided the conceptual framework to understand mineral metabolism. PTH secreted by the parathyroid gland in response to hypocalcemia functions to maintain serum Ca(2+) levels by increasing Ca(2+) reabsorption and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production by the kidney, enhancing Ca(2+) and PO(4)(3-) intestinal absorption and increasing Ca(2+) and PO(4)(3-) efflux from bone, while maintaining neutral phosphate balance through phosphaturic effects. FGF23 is a recently discovered hormone, predominately produced by osteoblasts/osteocytes, whose major functions are to inhibit renal tubular phosphate reabsorption and suppress circulating 1,25(OH)(2)D levels by decreasing Cyp27b1-mediated formation and stimulating Cyp24-mediated catabolism of 1,25(OH)(2)D. FGF23 participates in a new bone/kidney axis that protects the organism from excess vitamin D and coordinates renal PO(4)(3-) handling with bone mineralization/turnover. Abnormalities of FGF23 production underlie many inherited and acquired disorders of phosphate homeostasis. This review discusses the known and emerging functions of FGF23, its regulation in response to systemic and local signals, as well as the implications of FGF23 in different pathological and physiological contexts.
Collapse
Affiliation(s)
- Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | |
Collapse
|
210
|
Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 2012; 30:1-9. [PMID: 22167381 DOI: 10.1007/s00774-011-0340-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/21/2011] [Indexed: 01/07/2023]
Abstract
Investigation of X-linked hypophosphatemia (XLH) has led to the identification of a novel phosphate-regulating homeostatic system. Initially considered vitamin D-refractory rickets, renal phosphate wasting was identified as the cardinal biochemical feature of XLH and several related disorders. Current therapy employs calcitriol and phosphate, which usually improves, but does not completely heal deformities and short stature. Later complications of XLH include development of osteophytes, entheses, and osteoarthritis. The mutated gene in XLH, PHEX, is expressed in osteocytes, but its role in the pathogenesis of phosphate wasting is poorly understood. Many hypophosphatemic disorders are mediated by FGF23, a unique fibroblast growth factor with endocrine properties. Renal action of FGF23 leads to reduced expression of type II sodium-phosphate co-transporters, as well as reduced expression of CYP27B1, which encodes vitamin D 1α-hydroxylase. FGF23-mediated hypophosphatemia is characterized by inappropriately normal circulating 1,25-dihydroxyvitamin D together with renal phosphate wasting. The FGF23 system serves as a novel mechanism by which the mineralizing skeleton can communicate phosphate supply to the kidney and thereby mediate excretion or conservation of this important skeletal component. Other forms of FGF23-mediated hypophosphatemia represent various aberrations in this axis. Secretion of excess FGF23 (as in tumor-induced osteomalacia), and mutations preventing proteolytic cleavage of FGF23 result in similar clinical features. Other hypophosphatemic disorders are discussed.
Collapse
Affiliation(s)
- Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT 06520-8064, USA.
| |
Collapse
|
211
|
Abstract
Rickets is disorder of a growing child arising from disorders that result in impaired apoptosis of hypertrophic cells and mineralization of the growth plate. Rickets due to nutritional causes remains an important global problem. The factors responsible for resurgence of rickets among dark-skinned infants living in developed countries include the following: residence in northern or southern latitudes, voluntary avoidance of exposure to solar ultraviolet B radiation, maternal vitamin D deficiency during pregnancy, and prolonged breastfeeding without provision of vitamin D supplements. Fibroblast growth factor 23 (FGF23), secreted by osteocytes, is an important regulator of serum phosphate and 1,25(OH)(2)D(3) levels. Hypophosphatemic rickets resulting from increased synthesis or under-catabolism of FGF23 is reviewed.
Collapse
Affiliation(s)
- M Zulf Mughal
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
212
|
Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A 2011; 108:E1146-55. [PMID: 22006328 DOI: 10.1073/pnas.1110905108] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Autosomal dominant hypophosphatemic rickets (ADHR) is unique among the disorders involving Fibroblast growth factor 23 (FGF23) because individuals with R176Q/W and R179Q/W mutations in the FGF23 (176)RXXR(179)/S(180) proteolytic cleavage motif can cycle from unaffected status to delayed onset of disease. This onset may occur in physiological states associated with iron deficiency, including puberty and pregnancy. To test the role of iron status in development of the ADHR phenotype, WT and R176Q-Fgf23 knock-in (ADHR) mice were placed on control or low-iron diets. Both the WT and ADHR mice receiving low-iron diet had significantly elevated bone Fgf23 mRNA. WT mice on a low-iron diet maintained normal serum intact Fgf23 and phosphate metabolism, with elevated serum C-terminal Fgf23 fragments. In contrast, the ADHR mice on the low-iron diet had elevated intact and C-terminal Fgf23 with hypophosphatemic osteomalacia. We used in vitro iron chelation to isolate the effects of iron deficiency on Fgf23 expression. We found that iron chelation in vitro resulted in a significant increase in Fgf23 mRNA that was dependent upon Mapk. Thus, unlike other syndromes of elevated FGF23, our findings support the concept that late-onset ADHR is the product of gene-environment interactions whereby the combined presence of an Fgf23-stabilizing mutation and iron deficiency can lead to ADHR.
Collapse
|
213
|
Farrow EG, Imel EA, White KE. Miscellaneous non-inflammatory musculoskeletal conditions. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho). Best Pract Res Clin Rheumatol 2011; 25:735-47. [PMID: 22142751 PMCID: PMC3233725 DOI: 10.1016/j.berh.2011.10.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022]
Abstract
Familial tumoral calcinosis (TC) is a rare disorder distinguished by the development of ectopic and vascular calcified masses that occur in settings of hyperphosphatemia (hFTC) and normophosphatemia (nFTC). Serum phosphorus concentrations are relatively tightly controlled by interconnected endocrine activity at the level of the intestine, kidney, and skeleton. Discovering the molecular causes for heritable forms of hFTC has shed new light on the regulation of serum phosphate balance. This review will focus upon the genetic basis and clinical approaches for hFTC, due to genes that are related to the phosphaturic hormone fibroblast growth factor-23 (FGF23). These include FGF23 itself, an FGF23-glycosylating enzyme (GALNT3), and the FGF23 co-receptor α-Klotho (αKL). Our understanding of the molecular basis of hFTC will, in the short term, aid in understanding normal phosphate balance, and in the future, provide potential insight into the design of novel therapeutic strategies for both rare and common disorders of phosphate metabolism.
Collapse
Affiliation(s)
- Emily G. Farrow
- Departments of Medical and Molecular Genetics, IN, 46202 USA
| | - Erik A. Imel
- Medicine Indiana University School of Medicine Indianapolis, IN, 46202 USA
| | | |
Collapse
|
214
|
Wöhrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M, Müller M, Kinzel B, Thuery A, Brueggen J, Hynes NE, Sellers WR, Hofmann F, Graus-Porta D. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res 2011; 26:2486-97. [PMID: 21812026 DOI: 10.1002/jbmr.478] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.
Collapse
Affiliation(s)
- Simon Wöhrle
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, Fujitab T. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone 2011; 49:913-6. [PMID: 21745613 DOI: 10.1016/j.bone.2011.06.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
X-linked hypophosphatemic rickets/osteomalacia (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and autosomal recessive hypophosphatemic rickets/osteomalacia (ARHR1 or ARHR2) are hereditary fibroblast growth factor 23 (FGF23)-related hypophosphatemic rickets showing similar clinical features. We here show a patient with hypophosphatemic rickets and widespread ossification of posterior longitudinal ligament (OPLL). The proband is a 62-year-old female. Her parents are first cousins and showed no signs of rickets or osteomalacia. She showed hypophosphatemic rickets with elevated FGF23 level and had been clinically considered to be suffering from XLH. However, direct sequencing of all coding exons and exon-intron junctions of phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX), FGF23 and dentin matrix protein 1 (DMP1) genes, responsible genes for XLH, ADHR and ARHR1, respectively, showed no mutation. A novel homozygous splice donor site mutation was found at the exon-intron junction of exon 21 of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene responsible for ARHR2 (IVS21+1_3(GTA>CACC)). Subsequent analysis of mRNA revealed that this mutation caused skipping of exon 21 which created a premature stop codon in exon 22. These results indicate that genetic analysis is mandatory for the correct diagnosis of hereditary FGF23-related hypophosphatemic rickets. Because Enpp1 knockout mouse is a model of OPLL, this case also suggests that OPLL is associated with ARHR2.
Collapse
Affiliation(s)
- Tasuku Saito
- Division of Pediatrics, University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
216
|
Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC MEDICAL GENETICS 2011; 12:116. [PMID: 21902834 PMCID: PMC3189111 DOI: 10.1186/1471-2350-12-116] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 09/08/2011] [Indexed: 12/16/2022]
Abstract
Background Genetic Hypophosphatemic Rickets (HR) is a group of diseases characterized by renal phosphate wasting with inappropriately low or normal 1,25-dihydroxyvitamin D3 (1,25(OH)2D) serum levels. The most common form of HR is X-linked dominant HR (XLHR) which is caused by inactivating mutations in the PHEX gene. The purpose of this study was to perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR, to perform genotype-phenotype correlations of those patients and to compare our data with other HR cohort studies. Methods Forty three affected individuals from 36 non related families were analyzed. For the genetic analysis, the PHEX gene was sequenced in all of the patients and in 13 cases the study was complemented by mRNA sequencing and Multiple Ligation Probe Assay. For the genotype-phenotype correlation study, the clinical and biochemical phenotype of the patients was compared with the type of mutation, which was grouped into clearly deleterious or likely causative, using the Mann-Whitney and Fisher's exact test. Results Mutations in the PHEX gene were identified in all the patients thus confirming an XLHR. Thirty four different mutations were found distributed throughout the gene with higher density at the 3' end. The majority of the mutations were novel (69.4%), most of them resulted in a truncated PHEX protein (83.3%) and were family specific (88.9%). Tubular reabsorption of phosphate (TRP) and 1,25(OH)2D serum levels were significantly lower in patients carrying clearly deleterious mutations than in patients carrying likely causative ones (61.39 ± 19.76 vs. 80.14 ± 8.80%, p = 0.028 and 40.93 ± 30.73 vs. 78.46 ± 36.27 pg/ml, p = 0.013). Conclusions PHEX gene mutations were found in all the HR cases analyzed, which was in contrast with other cohort studies. Patients with clearly deleterious PHEX mutations had lower TRP and 1,25(OH)2D levels suggesting that the PHEX type of mutation might predict the XLHR phenotype severity.
Collapse
|
217
|
Fukumoto S, Shimizu Y. Fibroblast growth factor 23 as a phosphotropic hormone and beyond. J Bone Miner Metab 2011; 29:507-14. [PMID: 21822586 DOI: 10.1007/s00774-011-0298-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 01/16/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is produced by bone and reduces serum phosphate by inhibiting proximal tubular phosphate reabsorption and intestinal phosphate absorption. Excess actions of FGF23 cause several kinds of hypophosphatemic rickets/osteomalacia while deficient actions of FGF23 result in hyperphosphatemic tumoral calcinosis. In addition, FGF23 has been shown to prevent the development of hyperphosphatemia during the progression of chronic kidney disease-mineral and bone disorder. Epidemiological studies have indicated that high FGF23 levels are associated with unfavorable events including higher mortality, cardiovascular events, progression of CKD and fracture; however, these associations are not observed unequivocally and it is not evident why they are present. While FGF23 has been shown to be a hormone that regulates phosphate metabolism, it remains to be established whether FGF23 has roles other than regulating mineral homeostasis.
Collapse
Affiliation(s)
- Seiji Fukumoto
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
218
|
Masi L. Phosphatonins: new hormones involved in numerous inherited bone disorders. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2011; 8:9-13. [PMID: 22461821 PMCID: PMC3279060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphate (Pi) homeostasis is under control of several endocrine factors that play effects on bone, kidney and intestine. The control of Pi homeostasis has a significant biological importance, as it relates to numerous cellular mechanisms involved in energy metabolism, cell signaling, nucleic acid synthesis, membrane function, as well as skeletal health and integrity. Pi is essential for diverse biological processes, and negative Pi balance resulting from improperly regulated intestinal absorption, systemic utilization, and renal excretion. As results of these functions, chronic Pi deprivation causes several biological alterations, such as bone demineralization with unmineralized osateoid typical of osteomalacia in adults and rickets in developing animals and humans (1). Phosphatonins are new hormones playing an important role in the control of Pi homeostasis together with parathyroid hormone (PTH) and 1,25-dihydroxy vitamin D(3). Most insight into the underlying mechanisms was established by defining the molecular basis of different inherited disorders that are characterized by an abnormal regulation of Pi homeostasis.
Collapse
Affiliation(s)
- Laura Masi
- Department of Internal Medicine, Bone Metabolic Diseases Unit, University of Florence, Florence, Italy
| |
Collapse
|
219
|
Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol 2011; 301:F371-7. [PMID: 21561999 PMCID: PMC3154596 DOI: 10.1152/ajprenal.00740.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 05/08/2011] [Indexed: 12/29/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone implicated in the pathogenesis of several hypophosphatemic disorders. FGF23 causes hypophosphatemia by decreasing the expression of sodium phosphate cotransporters (NaPi-2a and NaPi-2c) and decreasing serum 1,25(OH)(2)Vitamin D(3) levels. We previously showed that FGFR1 is the predominant receptor for the hypophosphatemic actions of FGF23 by decreasing renal NaPi-2a and 2c expression while the receptors regulating 1,25(OH)(2)Vitamin D(3) levels remained elusive. To determine the FGFRs regulating 1,25(OH)(2)Vitamin D(3) levels, we studied FGFR3(-/-)FGFR4(-/-) mice as these mice have shortened life span and are growth retarded similar to FGF23(-/-) and Klotho(-/-) mice. Baseline serum 1,25(OH)(2)Vitamin D(3) levels were elevated in the FGFR3(-/-)FGFR4(-/-) mice compared with wild-type mice (102.2 ± 14.8 vs. 266.0 ± 34.0 pmol/l; P = 0.001) as were the serum levels of FGF23. Administration of recombinant FGF23 had no effect on serum 1,25(OH)(2)Vitamin D(3) in the FGFR3(-/-)FGFR4(-/-) mice (173.4 ± 32.7 vs. 219.7 ± 56.5 pmol/l; vehicle vs. FGF23) while it reduced serum 1,25(OH)(2)Vitamin D(3) levels in wild-type mice. Administration of FGF23 to FGFR3(-/-)FGFR4(-/-) mice resulted in a decrease in serum parathyroid hormone (PTH) levels and an increase in serum phosphorus levels mediated by increased renal phosphate reabsorption. These data indicate that FGFR3 and 4 are the receptors that regulate serum 1,25(OH)(2)Vitamin D(3) levels in response to FGF23. In addition, when 1,25(OH)(2)Vitamin D(3) levels are not affected by FGF23, as in FGFR3(-/-)FGFR4(-/-) mice, a reduction in PTH can override the effects of FGF23 on renal phosphate transport.
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Dept. of Pediatrics, U.T. Southwestern Medical Center, Dallas, TX 75390-9063, USA.
| | | | | | | | | |
Collapse
|
220
|
Zhao X, Dittmer KE, Blair HT, Thompson KG, Rothschild MF, Garrick DJ. A novel nonsense mutation in the DMP1 gene identified by a genome-wide association study is responsible for inherited rickets in Corriedale sheep. PLoS One 2011; 6:e21739. [PMID: 21747952 PMCID: PMC3128599 DOI: 10.1371/journal.pone.0021739] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/09/2011] [Indexed: 01/22/2023] Open
Abstract
Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP) loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1) was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were "T T" genotypes; the 3 carriers were "C T"; 24 phenotypically normal related sheep were either "C T" or "C C"; and 46 unrelated normal control sheep from other breeds were all "C C". The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective "T" allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Keren E. Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Hugh T. Blair
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Keith G. Thompson
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Max F. Rothschild
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dorian J. Garrick
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
221
|
Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res 2011; 26:1381-8. [PMID: 21538511 PMCID: PMC3157040 DOI: 10.1002/jbmr.340] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/28/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022]
Abstract
X-linked hypophosphatemia (XLH) is the prototypic disorder of renal phosphate wasting, and the most common form of heritable rickets. Physicians, patients, and support groups have all expressed concerns about the dearth of information about this disease and the lack of treatment guidelines, which frequently lead to missed diagnoses or mismanagement. This perspective addresses the recommendation by conferees for the dissemination of concise and accessible treatment guidelines for clinicians arising from the Advances in Rare Bone Diseases Scientific Conference held at the NIH in October 2008. We briefly review the clinical and pathophysiologic features of the disorder and offer this guide in response to the conference recommendation, based on our collective accumulated experience in the management of this complex disorder.
Collapse
Affiliation(s)
| | - Erik A. Imel
- Indiana University School of Medicine, Indianapolis IN
| | - Ingrid A. Holm
- Division of Genetics, Program in Genomics, and the Manton Center for Orphan Disease Research, Children's Hospital Boston and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
222
|
Abstract
Tumor-induced osteomalacia (TIO) is a rare and fascinating paraneoplastic syndrome in which patients present with bone pain, fractures, and muscle weakness. The cause is high blood levels of the recently identified phosphate and vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23). In TIO, FGF23 is secreted by mesenchymal tumors that are usually benign, but are typically very small and difficult to locate. FGF23 acts primarily at the renal tubule and impairs phosphate reabsorption and 1α-hydroxylation of 25-hydroxyvitamin D, leading to hypophosphatemia and low levels of 1,25-dihydroxy vitamin D. A step-wise approach utilizing functional imaging (F-18 fluorodeoxyglucose positron emission tomography and octreotide scintigraphy) followed by anatomical imaging (computed tomography and/or magnetic resonance imaging), and, if needed, selective venous sampling with measurement of FGF23 is usually successful in locating the tumors. For tumors that cannot be located, medical treatment with phosphate supplements and active vitamin D (calcitriol or alphacalcidiol) is usually successful; however, the medical regimen can be cumbersome and associated with complications. This review summarizes the current understanding of the pathophysiology of the disease and provides guidance in evaluating and treating these patients. Novel imaging modalities and medical treatments, which hold promise for the future, are also reviewed.
Collapse
Affiliation(s)
- William H Chong
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
223
|
Abstract
Fibroblast growth factor 23 (FGF23), a hormone primarily produced in bone cells, targets the kidney to accelerate phosphate excretion into the urine and suppresses vitamin D synthesis, thereby inducing a negative phosphate balance. Excessive serum FGF23 due to hereditary disorders such as hypophosphatemic rickets leads to phosphate wasting and impaired bone mineralization. In contrast, deficiencies in FGF23 are associated with hyperphosphatemia, elevated 1,25(OH)(2)D(3), ectopic ossification in soft tissues, and defects in skeletal mineralization. Recent studies of human genetic disorders and genetically engineered mice, as well as the in vitro approaches, have clarified some mysteries in FGF23 regulation and its potential roles in bone modeling and remodeling, which are summarized in this review article.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A & M University Health Science Center, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | |
Collapse
|
224
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
225
|
Chen L, Liu H, Sun W, Bai X, Karaplis AC, Goltzman D, Miao D. Fibroblast growth factor 23 overexpression impacts negatively on dentin mineralization and dentinogenesis in mice. Clin Exp Pharmacol Physiol 2011; 38:395-402. [DOI: 10.1111/j.1440-1681.2011.05526.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
226
|
Case report: hypophosphatemic rickets and aggressive periodontitis: a review of the role of dentine matrix protein 1 in the pathogenesis. Eur Arch Paediatr Dent 2011; 12:46-50. [PMID: 21299946 DOI: 10.1007/bf03262779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The association between hypophosphatemic rickets (HR) and excessive periodontal breakdown was reported in mice models of HR. In humans, this is the first report of a possible association between HR and periodontal breakdown. CASE REPORT The following presents a report of a case of a 15 yearold child diagnosed with HR at age 9 years, with atypical premature spontaneous loss of teeth due to periodontal defects in the absence of dental abscesses, dental caries, or trauma. The case is discussed in the context of relevant literature; the possible role of dentine matrix protein 1 in the aetiology of such periodontal defects in patients with HR is also discussed. CONCLUSION Spontaneous loss of teeth in the absence of abscess formation is not one of the reported features of HR, however, this report may alert clinicians of the possibility of such association especially in the autosomal recessive type. Further case reports and more elaborate genetic and molecular testing is needed to verify this especially in late diagnosis cases.
Collapse
|
227
|
Jap TS, Chiu CY, Niu DM, Levine MA. Three novel mutations in the PHEX gene in Chinese subjects with hypophosphatemic rickets extends genotypic variability. Calcif Tissue Int 2011; 88:370-7. [PMID: 21293852 PMCID: PMC3075400 DOI: 10.1007/s00223-011-9465-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/11/2011] [Indexed: 01/06/2023]
Abstract
Mutations in the phosphate-regulating endopeptidase homolog, X-linked, gene (PHEX), which encodes a zinc-dependent endopeptidase that is involved in bone mineralization and renal phosphate reabsorption, cause the most common form of hypophosphatemic rickets, X-linked hypophosphatemic rickets (XLH). The distribution of PHEX mutations is extensive, but few mutations have been identified in Chinese with XLH. We extracted genomic DNA and total RNA from leukocytes obtained from nine unrelated Chinese subjects (three males and six females, age range 11-36 years) who were living in Taiwan. The PHEX gene was amplified from DNA by PCR, and the amplicons were directly sequenced. Expression studies were performed by reverse-transcription PCR of leukocyte RNA. Serum levels of FGF23 were significantly greater in the patients than in normal subjects (mean 69.4 ± 18.8 vs. 27.2 ± 8.4 pg/mL, P < 0.005), and eight of the nine patients had elevated levels of FGF23. Germline mutations in the PHEX gene were identified in five of 9 patients, including novel c.1843 delA, donor splice site mutations c.663+2delT and c.1899+2T>A, and two previously reported missense mutations, p.C733Y and p.G579R. These data extend the spectrum of mutations in the PHEX gene in Han Chinese and confirm variability for XLH in Taiwan.
Collapse
Affiliation(s)
- Tjin-Shing Jap
- Section of Biochemistry, Department of Pathology and Laboratory Medicine; Division of Metabolism, Department of Medicine; Section of Molecular Genetics, Department of Pediatrics, Taipei Veterans General Hospital, Taiwan, 112 Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taiwan, 112 Taiwan, ROC
| | - Chih-Yang Chiu
- Section of Biochemistry, Department of Pathology and Laboratory Medicine; Division of Metabolism, Department of Medicine; Section of Molecular Genetics, Department of Pediatrics, Taipei Veterans General Hospital, Taiwan, 112 Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taiwan, 112 Taiwan, ROC
| | - Dau-Ming Niu
- Section of Biochemistry, Department of Pathology and Laboratory Medicine; Division of Metabolism, Department of Medicine; Section of Molecular Genetics, Department of Pediatrics, Taipei Veterans General Hospital, Taiwan, 112 Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taiwan, 112 Taiwan, ROC
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| |
Collapse
|
228
|
Alon US. Clinical practice. Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr 2011; 170:545-54. [PMID: 21193927 DOI: 10.1007/s00431-010-1382-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/14/2010] [Indexed: 12/13/2022]
Abstract
Until a decade ago, two main hormones were recognized as directly affecting phosphate homeostasis and, with that, bone metabolism: parathyroid hormone and 1,25(OH)(2) vitamin D (calcitriol). It was only a decade ago that the third major player hormone was found, linking gut, bone, and kidney. The physiologic role of fibrinogen growth factor (FGF)23 is to maintain serum phosphate concentration within a narrow range. Secreted from osteocytes, it modulates kidney handling of phosphate reabsorption and calcitriol production. Genetic and acquired abnormalities in FGF23 structure and metabolism cause conditions of either hyper-FGF23-manifested by hypophosphatemia, low serum calcitriol, and rickets/osteomalacia-or hypo-FGF23, expressed by hyperphosphatemia, high serum calcitriol, and extra-skeletal calcifications. In patients with chronic renal failure, FGF23 levels increase as kidney functions deteriorate and are under investigation to learn if the hormone actually participates in the pathophysiology of the deranged bone and mineral metabolism typical for these patients and, if so, whether it might serve as a therapeutic target. This review addresses the physiology and pathophysiology of FGF23 and its clinical applications.
Collapse
Affiliation(s)
- Uri S Alon
- Bone and Mineral Disorders Clinic, Section of Pediatric Nephrology, Children's Mercy Hospitals and Clinics, University of Missouri at Kansas City School of Medicine, 2401 Gillham Road, Kansas City, MO 64108, USA.
| |
Collapse
|
229
|
Zhang R, Lu Y, Ye L, Yuan B, Yu S, Qin C, Xie Y, Gao T, Drezner MK, Bonewald LF, Feng JQ. Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J Bone Miner Res 2011; 26:1047-56. [PMID: 21542006 PMCID: PMC3179305 DOI: 10.1002/jbmr.294] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms by which inorganic phosphate (P(i)) homeostasis controls bone biology are poorly understood. Here we used Dmp1 null mice, a hypophosphatemic rickets/osteomalacia model, combined with a metatarsal organ culture and an application of neutralizing fibroblast growth factor 23 (FGF-23) antibodies to gain insight into the roles of P(i) in bone biology. We showed (1) that abnormal bone remodeling in Dmp1 null mice is due to reduced osteoclast number, which is secondary to a reduced ratio of RANKL/OPG expressed by osteoclast supporting cells and (2) that osteoblast extracellular matrix mineralization, growth plate maturation, secondary ossification center formation, and osteoblast differentiation are phosphate-dependent. Finally, a working hypothesis is proposed to explain how phosphate and DMP1 control osteocyte maturation.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Aono Y, Hasegawa H, Yamazaki Y, Shimada T, Fujita T, Yamashita T, Fukumoto S. Anti-FGF-23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice. J Bone Miner Res 2011; 26:803-10. [PMID: 20939065 DOI: 10.1002/jbmr.275] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor 23 (FGF-23) plays causative roles in the development of several hypophosphatemic rickets/osteomalacia such as X-linked hypophosphatemic rickets/osteomalacia (XLH) and tumor-induced rickets/osteomalacia. Patients with hypophosphatemic rickets/osteomalacia often complain of muscle weakness and bone pain that severely affect daily activities of these patients. The purpose of this study was to examine whether anti-FGF-23 antibodies, which have been shown to improve hypophosphatemia and rachitic changes of juvenile Hyp mice in a murine model of XLH, also ameliorate hypophosphatemic osteomalacia and affect muscle force and spontaneous motor activity in adult Hyp mice. Repeated injections of anti-FGF-23 antibodies increased serum phosphate and 1,25-dihydroxyvitmain D levels and enhanced mineralization of osteoid in adult Hyp mice, whereas bone length did not change. We found that grip strength was weaker and that spontaneous movement was less in adult Hyp mice than in wild-type mice. In addition, FGF-23 antibodies increased grip strength and spontaneous movement. These results suggest that the inhibition of excess FGF-23 action not only ameliorates hypophosphatemia and impaired mineralization of bone but also improves muscle weakness and daily activities of patients with FGF-23-related hypophosphatemic rickets/osteomalacia.
Collapse
Affiliation(s)
- Yukiko Aono
- Pharmacological Research Laboratories, Kyowa Hakko Kirin Company, Ltd., Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
231
|
Powell WF, Barry KJ, Tulum I, Kobayashi T, Harris SE, Bringhurst FR, Pajevic PD. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol 2011; 209:21-32. [PMID: 21220409 PMCID: PMC3783949 DOI: 10.1530/joe-10-0308] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Parathyroid hormone (PTH) is a major physiologic regulator of calcium, phosphorous, and skeletal homeostasis. Cells of the osteoblastic lineage are key targets of PTH action in bone, and recent evidence suggests that osteocytes might be important in the anabolic effects of PTH. To understand the role of PTH signaling through the PTH/PTHrP receptors (PPR) in osteocytes and to determine the role(s) of these cells in mediating the effects of the hormone, we have generated mice in which PPR expression is specifically ablated in osteocytes. Transgenic mice in which the 10 kb-Dmp1 promoter drives a tamoxifen-inducible Cre-recombinase were mated with animals in which exon 1 of PPR is flanked by lox-P sites. In these animals, osteocyte-selective PPR knockout (Ocy-PPR(cKO) mice) could be induced by administration of tamoxifen. Histological analysis revealed a reduction in trabecular bone and mild osteopenia in Ocy-PPR(cKO) mice. Reduction of trabeculae number and thickness was also detected by micro-computed tomography analysis whereas bone volume fraction (BV/TV%) was unchanged. These findings were associated with an increase in Sost and sclerostin expression. When Ocy-PPR(cKO) mice were subjected to a low-calcium diet to induce secondary hyperparathyroidism, their blood calcium levels were significantly lower than littermate controls. Moreover, PTH was unable to suppress Sost and sclerostin expression in the Ocy-PPR(cKO) animals, suggesting an important role of PTH signaling in osteocytes for proper bone remodeling and calcium homeostasis.
Collapse
Affiliation(s)
- William F. Powell
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Kevin J. Barry
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Irena Tulum
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Stephen E. Harris
- Department of Periodontics, University of Texas Health Science Center School of Dentistry, San Antonio, TX
| | - F. Richard Bringhurst
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Paola Divieti Pajevic
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA
- Corresponding Author: Paola Divieti Pajevic Endocrine Unit, Thier 1101, Massachusetts General Hospital, 50 Blossom Street, Boston MA 02114, USA. Phone :(617)726-6184; Fax:(617)726-7543;
| |
Collapse
|
232
|
Mirza MA, Karlsson MK, Mellström D, Orwoll E, Ohlsson C, Ljunggren O, Larsson TE. Serum fibroblast growth factor-23 (FGF-23) and fracture risk in elderly men. J Bone Miner Res 2011; 26:857-64. [PMID: 20928885 DOI: 10.1002/jbmr.263] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A normal mineral metabolism is integral for skeletal development and preservation of bone integrity. Fibroblast growth factor 23 (FGF-23) is a bone-derived circulating factor that decreases serum concentrations of inorganic phosphorous (P(i)) and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Increased FGF-23 expression is a direct or indirect culprit in several skeletal disorders; however, the relation between FGF-23 and fracture risk remains undetermined. We evaluated the prospective relation between serum intact FGF-23 (measured by a two-site monoclonal antibody ELISA) and fracture risk employing the Swedish part of the population-based Osteoporotic Fractures in Men Study (MrOS; n = 2868; mean age 75.4 ± 3.2 years; median follow-up period 3.35 years). The incidence of at least one validated fracture after baseline was 20.4 per 1000 person-years. FGF-23 was directly related to the overall fracture risk [age-adjusted hazard ratio (HR) per SD increase = 1.20, 95% confidence interval (CI) 1.03-1.40] and vertebral fracture risk (HR = 1.33, 95% CI 1.02-1.75). Spline models revealed a nonlinear relation between FGF-23 and fracture risk, with the strongest relation at FGF-23 levels above 55.7 pg/mL. FGF-23 levels above 55.7 pg/mL also were associated with an increased risk for hip and nonvertebral fractures (HR = 2.30, 95% CI 1.16-4.58, and HR = 1.63, 95% CI 1.01-2.63, respectively). These relations remained essentially unaltered after adjustment for bodymass index (BMI), bone mineral density (BMD), glomerular filtration rate, 25(OH)(2)D(3), parathyroid hormone (PTH), and other fracture risk factors. In conclusion, FGF-23 is a novel predictor of fracture risk in elderly men.
Collapse
Affiliation(s)
- Majd Ai Mirza
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
233
|
Razzaque MS. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life 2011; 63:240-7. [PMID: 21438115 DOI: 10.1002/iub.437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/29/2011] [Indexed: 01/29/2023]
Abstract
Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries.
Collapse
Affiliation(s)
- Mohammed Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
234
|
Ye L, Liu R, White N, Alon US, Cobb CM. Periodontal status of patients with hypophosphatemic rickets: a case series. J Periodontol 2011; 82:1530-5. [PMID: 21417586 DOI: 10.1902/jop.2011.100736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND It was previously reported that dentin matrix protein 1-null mice, which are the hypophosphatemic rickets animal model, postnatally developed severe periodontal defects. However, to the best of our knowledge, it was not documented whether similar periodontal defects were present in human patients with hypophosphatemic rickets. The aim of this study is to evaluate the periodontal status of adult patients with hypophosphatemic rickets. METHODS This case-series study evaluates the periodontal condition of adults with genetic hypophosphatemic rickets and compared their periodontal status with similar data from several cycles of the National Health and Nutrition Examination Survey (NHANES). Information regarding medical histories, dental histories, intraoral photos, probing depths (PD), calculated clinical attachment loss (AL), the presence of gingival recession, bleeding on probing, and full-mouth radiographic surveys were acquired. Descriptive statistics were used for comparison to NHANES data. RESULTS A total of 10 adult patients with hypophosphatemic rickets (two males and eight females) were evaluated. The definition of periodontitis used in this study is as follows: "A periodontitis case was defined as a person who had ≥ 3 sites with clinical AL ≥ 4 mm and ≥ 2 sites with PD ≥ 3 mm." According to this definition, the patients exhibited periodontal bone loss at a much higher prevalence (60%) compared to the reported national periodontitis prevalence (3.6% to 7.3%). CONCLUSION The preliminary data from our study suggests that patients with hypophosphatemic rickets are more prone to periodontal bone loss than the general population and may require a more careful examination by dental care providers.
Collapse
Affiliation(s)
- Ling Ye
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| | | | | | | | | |
Collapse
|
235
|
David V, Martin A, Hedge AM, Drezner MK, Rowe PSN. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol 2011; 300:F783-91. [PMID: 21177780 PMCID: PMC3064126 DOI: 10.1152/ajprenal.00304.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/18/2010] [Indexed: 12/21/2022] Open
Abstract
Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and are a physiological substrate for this bone-expressed, phosphate-regulating enzyme. We therefore tested the hypothesis that circulating ASARM peptides also "indirectly" contribute to a bone-renal PHEX-dependent hypophosphatemia in normal mice. Male mice (n = 5; 12 wk) were fed for 8 wk with a normal phosphorus and vitamin D(3) diet (1% P(i) diet) or a reduced phosphorus and vitamin D(3) diet (0.1% P(i) diet). For the final 4 wk, transplantation of mini-osmotic pumps supplied a continuous infusion of either ASARM peptide (5 mg·day(-1)·kg(-1)) or vehicle. HYP, autosomal recessive hypophosphatemic rickets (ARHR), and normal mice (no pumps or ASARM infusion; 0.4% P(i) diet) were used in a separate experiment designed to measure and compare circulating ASARM peptides in disease and health. ASARM treatment decreased serum phosphate concentration and renal phosphate cotransporter (NPT2A) mRNA with the 1% P(i) diet. This was accompanied by a twofold increase in serum ASARM and 1,25-dihydroxy vitamin D(3) [1,25 (OH)(2)D(3)] levels without changes in parathyroid hormone. For both diets, ASARM-treated mice showed significant increases in serum fibroblast growth factor 23 (FGF23; +50%) and reduced serum osteocalcin (-30%) and osteopontin (-25%). Circulating ASARM peptides showed a significant inverse correlation with serum P(i) and a significant positive correlation with fractional excretion of phosphate. We conclude that constitutive overexpression of ASARM peptides plays a "component" PHEX-independent part in the HYP and ARHR hypophosphatemia. In contrast, with wild-type mice, ASARM peptides likely play a bone PHEX-dependent role in renal phosphate regulation and FGF23 expression. They may also coordinate FGF23 expression by competitively modulating PHEX/DMP1 interactions and thus bone-renal mineral regulation.
Collapse
Affiliation(s)
- Valentin David
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
236
|
Cheng CY, Kuro-o M, Razzaque MS. Molecular regulation of phosphate metabolism by fibroblast growth factor-23-klotho system. Adv Chronic Kidney Dis 2011; 18:91-7. [PMID: 21406293 DOI: 10.1053/j.ackd.2010.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/11/2010] [Accepted: 11/30/2010] [Indexed: 11/11/2022]
Abstract
Phosphorus is an essential nutrient and is routinely assimilated through consumption of food. The body's need of phosphate is usually fulfilled by intestinal absorption of this element from the consumed food, whereas its serum level is tightly regulated by renal excretion or reabsorption. Sodium-dependent phosphate transporters, located in the luminal side of the proximal tubular epithelial cells, have a molecular control on renal phosphate excretion and reabsorption. The systemic regulation of phosphate metabolism is a complex multiorgan process, and the identification of fibroblast growth factor-23 (FGF23)-Klotho system as a potent phosphatonin has provided new mechanistic insights into the homeostatic control of phosphate. Hypophosphatemia as a result of an increase in urinary phosphate wasting after activation of the FGF23-Klotho system is a common phenomenon, observed in both animal and human studies, whereas suppression of the FGF23-Klotho system leads to the development of hyperphosphatemia. This article will briefly summarize how delicate interactions of the FGF23-klotho system can regulate systemic phosphate homeostasis.
Collapse
|
237
|
Ruppe MD, Brosnan PG, Au KS, Tran PX, Dominguez BW, Northrup H. Mutational analysis of PHEX, FGF23 and DMP1 in a cohort of patients with hypophosphatemic rickets. Clin Endocrinol (Oxf) 2011; 74:312-8. [PMID: 21050253 PMCID: PMC3035757 DOI: 10.1111/j.1365-2265.2010.03919.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND X-linked hypophosphatemic rickets, autosomal dominant hypophosphatemic rickets and autosomal recessive hypophosphatemic rickets make up a group of renal phosphate wasting disorders with common clinical and biochemical characteristics. These three types of rickets are related to mutations in PHEX, FGF23 and dentin matrix protein 1 (DMP1), respectively. OBJECTIVE The objective of the study was to evaluate the frequency of mutations that occur in these three genes associated with hypophosphatemic rickets. PATIENTS AND METHODS In this study, we sequenced these genes in 76 members of 46 kindreds from a large hypophosphatemic rickets cohort. RESULTS Forty-two individuals from 27 kindreds were found to have mutations in PHEX; 16 of which were novel. One subject had an FGF23 mutation. No individuals were found to have mutations in DMP1 consistent with the presence of recessive hypophosphatemic rickets. CONCLUSIONS Our data highlight the wide spectrum of genetic variation that can be seen in PHEX, FGF23 and DMP1 when screening a large cohort with hypophosphatemic rickets.
Collapse
Affiliation(s)
- Mary D Ruppe
- Department of Medicine, University of Texas Health Science Center at Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
238
|
Bergwitz C, Jüppner H. Phosphate sensing. Adv Chronic Kidney Dis 2011; 18:132-44. [PMID: 21406298 PMCID: PMC3059779 DOI: 10.1053/j.ackd.2011.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/07/2023]
Abstract
Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion, and involves the actions of parathyroid hormone, 1,25-dihydroxy-vitamin D, and fibroblast growth factor 23 to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast "sense" ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus, little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism ("metabolic" sensing) or to regulate the levels of extracellular phosphate through feedback system(s) ("endocrine" sensing). Whether the "metabolic" and the "endocrine" sensor use the same or different signal transduction cascades is unknown. This article will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and human beings.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
239
|
Phulwani P, Bergwitz C, Jaureguiberry G, Rasoulpour M, Estrada E. Hereditary hypophosphatemic rickets with hypercalciuria and nephrolithiasis-identification of a novel SLC34A3/NaPi-IIc mutation. Am J Med Genet A 2011; 155A:626-33. [PMID: 21344632 DOI: 10.1002/ajmg.a.33832] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/02/2010] [Indexed: 11/09/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is characterized by rickets, hyperphosphaturia, hypophosphatemia, elevated 1,25-dihydroxyvitamin-D, increased gastrointestinal calcium absorption and hypercalciuria. Serum calcium, 25-hydroxyvitamin-D and PTH levels are normal. Here we describe a boy with HHRH, nephrolithiasis, and compound heterozygosity for one previously described mutation (g.4225_50del) and a novel splice mutation (g.1226G>A) in SLC34A3, the gene encoding the renal sodium-phosphate co-transporter NaPi-IIc. The patient's mother and grandmother are carriers of g.4225_50del, and both have a history of nephrolithiasis associated with hypercalciuria and elevated 1,25-dihydroxyvitamin-D. His three siblings (2-6 years old), who are also carriers of g.4225_50del, have hypercalciuria but so far their renal ultrasounds are normal. Thus, SLC34A3/NaPi-IIc mutations appear to be associated with variable phenotypic changes at presentation, which can include recurrent nephrolithiasis.
Collapse
Affiliation(s)
- Priya Phulwani
- Department of Pediatric Endocrinology and Diabetes, Connecticut Children's Medical Center, Hartford, USA.
| | | | | | | | | |
Collapse
|
240
|
Lu Y, Yuan B, Qin C, Cao Z, Xie Y, Dallas SL, McKee MD, Drezner MK, Bonewald LF, Feng JQ. The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment. J Bone Miner Res 2011; 26:331-40. [PMID: 20734454 PMCID: PMC3179348 DOI: 10.1002/jbmr.226] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dentin matrix protein 1 (DMP-1) is a key molecule in controlling osteocyte formation and phosphate homeostasis. Based on observations that full-length DMP-1 is not found in bone, but only cleaved fragments of 37 and 57 kDa are present, and in view of the finding that mutations in the 57-kDa fragment result in disease, we hypothesized that the 57-kDa C-terminal fragment is the functional domain of DMP-1. To test this hypothesis, a 3.6-kb type I collagen promoter was used to express this 57-kDa C-terminal fragment for comparison with full-length DMP-1 in Dmp1 null osteoblasts/osteocytes. Not only did expression of the full-length DMP-1 in bone cells fully rescue the skeletal abnormalities of Dmp1 null mice, but the 57-kDa fragment also had similar results. This included rescue of growth plate defects, osteomalacia, abnormal osteocyte maturation, and the abnormal osteocyte lacunocanalicular system. In addition, the abnormal fibroblast growth factor 23 (FGF-23) expression in osteocytes, elevated circulating FGF-23 levels, and hypophosphatemia were rescued. These results show that the 57-kDa C-terminal fragment is the functional domain of DMP-1 that controls osteocyte maturation and phosphate metabolism.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
242
|
Igaki JM, Yamada M, Yamazaki Y, Koto S, Izawa M, Ariyasu D, Suzuki E, Hasegawa H, Hasegawa Y. High iFGF23 level despite hypophosphatemia is one of the clinical indicators to make diagnosis of XLH. Endocr J 2011; 58:647-55. [PMID: 21597229 DOI: 10.1507/endocrj.k10e-257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
X-linked hypophosphatemic rickets (XLH) is caused by inactivating mutations in the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) gene. Deletion of Phex leads to increased serum fibroblast growth factor23 (FGF23) levels in mouse. The aim is to assure the clinical usefulness of FGF23 determination in the diagnosis of XLH. Participants were 21 patients with XLH having abnormalities in PHEX from 13 kindred (PtPHEX: 1 to 42 years old; 10 males, 11 females) and 55 healthy controls (1 month to 18 years old; 27 males, 28 females). Temporal changes in FGF23 were determined by a single oral phosphate administration in PtPHEX and an ad lib diet in controls. Reference ranges of intact FGF23 (iFGF23) for children were determined. iFGF23 level which distinguish between controls and PtPHEX were validated. Correlations between iFGF23 and the severity of XLH (gender, age of onset, bone deformity, The ratio of maximum rate of renal tubular reabsorption of phosphate to glomerular filtration rate (TmPO(4)/GFR), inorganic phosphate (IP), Alkaline Phosphatase (ALP), therapeutic dose) were investigated. Increasing tendency after phosphate administration and no general tendency after breakfast in iFGF23 were observed. Reference range (5(th) and 95(th) percentiles) of iFGF23 for children (12.9 and 51.2 pg/mL) was similar to that for adults. iFGF23 were above the reference range in 19 of 21 PtPHEX (40 to 4710 pg/mL). iFGF23 did not correlate with any index of severity of XLH. Relatively high iFGF23 despite hypophosphatemia is one of the clinical indicators to diagnose XLH.
Collapse
Affiliation(s)
- Junko Miyamoto Igaki
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Hospital, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Hori M, Shimizu Y, Fukumoto S. Minireview: fibroblast growth factor 23 in phosphate homeostasis and bone metabolism. Endocrinology 2011; 152:4-10. [PMID: 21084445 DOI: 10.1210/en.2010-0800] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 23 (FGF23) was identified in 2000. Since then, FGF23 has been found to physiologically regulate phosphate metabolism and aberrant actions of FGF23 results in several disorders of phosphate and bone metabolism. In addition, FGF23 plays an important role in the development of chronic kidney disease-mineral and bone disorder. However, further investigations are necessary, especially with regard to the regulation of FGF23 expression. In this minireview, we focus on the physiological and pathophysiological significance of FGF23 in phosphate and bone metabolism.
Collapse
Affiliation(s)
- Michiko Hori
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
244
|
Beniash E, Deshpande AS, Fang PA, Lieb NS, Zhang X, Sfeir CS. Possible role of DMP1 in dentin mineralization. J Struct Biol 2010; 174:100-6. [PMID: 21081166 DOI: 10.1016/j.jsb.2010.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/05/2023]
Abstract
Dentin Matrix Protein 1 (DMP1), the essential noncollagenous proteins in dentin and bone, is believed to play an important role in the mineralization of these tissues, although the mechanisms of its action are not fully understood. To gain insight into DMP1 functions in dentin mineralization we have performed immunomapping of DMP1 in fully mineralized rat incisors and in vitro calcium phosphate mineralization experiments in the presence of DMP1. DMP1 immunofluorescene was localized in peritubular dentin (PTD) and along the dentin-enamel boundary. In vitro phosphorylated DMP1 induced the formation of parallel arrays of crystallites with their c-axes co-aligned. Such crystalline arrangement is a hallmark of mineralized collagen fibrils of bone and dentin. Interestingly, in DMP1-rich PTD, which lacks collagen fibrils, the crystals are organized in a similar manner. Based on our findings we hypothesize, that in vivo DMP1 controls the mineral organization outside of the collagen fibrils and plays a major role in the mineralization of PTD.
Collapse
Affiliation(s)
- Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
245
|
Gorski JP, Huffman NT, Chittur S, Midura RJ, Black C, Oxford J, Seidah NG. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J Biol Chem 2010; 286:1836-49. [PMID: 21075843 DOI: 10.1074/jbc.m110.151647] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mineralization, a characteristic phenotypic property of osteoblastic lineage cells, was blocked by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and decanoyl-Arg-Arg-Leu-Leu-chloromethyl ketone (dec-RRLL-cmk), inhibitors of SKI-1 (site 1; subtilisin kexin like-1) protease. Because SKI-1 is required for activation of SREBP and CREB (cAMP-response element-binding protein)/ATF family transcription factors, we tested the effect of these inhibitors on gene expression. AEBSF decreased expression of 140 genes by 1.5-3.0-fold including Phex, Dmp1, COL1A1, COL11A1, and fibronectin. Direct comparison of AEBSF and dec-RRLL-cmk, a more specific SKI-1 inhibitor, demonstrated that expression of Phex, Dmp1, COL11A1, and fibronectin was reduced by both, whereas COL1A2 and HMGCS1 were reduced only by AEBSF. AEBSF and dec-RRLL-cmk decreased the nuclear content of SKI-1-activated forms of transcription factors SREBP-1, SREBP-2, and OASIS. In contrast to AEBSF, the actions of dec-RRLL-cmk represent the sum of its direct actions on SKI-1 and indirect actions on caspase-3. Specifically, dec-RRLL-cmk reduced intracellular caspase-3 activity by blocking the formation of activated 19-kDa caspase-3. Conversely, overexpression of SKI-1-activated SREBP-1a and CREB-H in UMR106-01 osteoblastic cells increased the number of mineralized foci and altered their morphology to yield mineralization nodules, respectively. In summary, SKI-1 regulates the activation of transmembrane transcription factor precursors required for expression of key genes required for mineralization of osteoblastic cultures in vitro and bone formation in vivo. Our results indicate that the differentiated phenotype of osteoblastic cells and possibly osteocytes depends upon the non-apoptotic actions of SKI-1.
Collapse
Affiliation(s)
- Jeff P Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
246
|
|
247
|
Chu EY, Fong H, Blethen FA, Tompkins KA, Foster BL, Yeh KD, Nagatomo KJ, Matsa-Dunn D, Sitara D, Lanske B, Rutherford RB, Somerman MJ. Ablation of systemic phosphate-regulating gene fibroblast growth factor 23 (Fgf23) compromises the dentoalveolar complex. Anat Rec (Hoboken) 2010; 293:1214-26. [PMID: 20583265 DOI: 10.1002/ar.21152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a hormone that modulates circulating phosphate (P(i)) levels by controlling P(i) reabsorption from the kidneys. When FGF23 levels are deficient, as in tumoral calcinosis patients, hyperphosphatemia ensues. We show here in a murine model that Fgf23 ablation disrupted morphology and protein expression within the dentoalveolar complex. Ectopic matrix formation in pulp chambers, odontoblast layer disruption, narrowing of periodontal ligament space, and alteration of cementum structure were observed in histological and electron microscopy sections. Because serum P(i) levels are dramatically elevated in Fgf23(-/-), we assayed for apoptosis and expression of members from the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, both of which are sensitive to elevated P(i) in vitro. Unlike X-linked hypophosphatemic (Hyp) and wild-type (WT) specimens, numerous apoptotic osteocytes and osteoblasts were detected in Fgf23(-/-) specimens. Further, in comparison to Hyp and WT samples, decreased bone sialoprotein and elevated dentin matrix protein-1 protein levels were observed in cementum of Fgf23(-/-) mice. Additional dentin-associated proteins, such as dentin sialoprotein and dentin phosphoprotein, exhibited altered localization in both Fgf23(-/-) and Hyp samples. Based on these results, we propose that FGF23 and (P(i)) homeostasis play a significant role in maintenance of the dentoalveolar complex.
Collapse
Affiliation(s)
- E Y Chu
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Inherited diseases of renal phosphate handling lead to urinary phosphate wasting and depletion of total body phosphorus stores. Clinical sequelae of inherited disorders that are associated with increased urinary phosphate excretion are deleterious and can lead to abnormal skeletal growth and deformities. This Review describes hereditary disorders of renal phosphate wasting taking into account developments in our understanding of renal phosphate handling from the last decade. The cloning of genes involved in these disorders and further studies on their pathophysiological mechanisms have given important insights in to how phosphatonins, such as FGF-23, regulate renal phosphate reabsorption in health and disease. X-linked dominant hypophosphatemic rickets results from mutation of a metalloprotease (PHEX) that has an unidentified role in FGF-23 degradation. Mutation of an RXXR proteolytic cleavage site in FGF-23 prevents degradation and increases circulating levels of FGF-23 in autosomal dominant hypophosphatemic rickets. FGF-23 acts to remove sodium phosphate co-transporters from the luminal membrane of proximal tubular cells with resultant renal phosphate wasting. Loss of function mutations in genes encoding the transporters NaPi-IIc and NaPi-IIa also result in renal phosphate wasting and rickets.
Collapse
|
249
|
Mäkitie O, Pereira RC, Kaitila I, Turan S, Bastepe M, Laine T, Kröger H, Cole WG, Jüppner H. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Miner Res 2010; 25:2165-74. [PMID: 20499351 PMCID: PMC3153319 DOI: 10.1002/jbmr.105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous inactivating mutations in DMP1 (dentin matrix protein 1), the gene encoding a noncollagenous bone matrix protein expressed in osteoblasts and osteocytes, cause autosomal recessive hypophosphatemia (ARHP). Herein we describe a family with ARHP owing to a novel homozygous DMP1 mutation and provide a detailed description of the associated skeletal dysplasia and carrier phenotype. The two adult patients with ARHP, a 78-year-old man and his 66-year-old sister, have suffered from bone pain and lower extremity varus deformities since early childhood. With increasing age, both patients developed severe joint pain, contractures, and complete immobilization of the spine. Radiographs showed short and deformed long bones, significant cranial hyperostosis, enthesopathies, and calcifications of the paraspinal ligaments. Biochemistries were consistent with hypophosphatemia owing to renal phosphate wasting; markers of bone turnover and serum fibroblast growth factor 23 (FGF-23) levels were increased significantly. Nucleotide sequence analysis of DMP1 revealed a novel homozygous mutation at the splice acceptor junction of exon 6 (IVS5-1G > A). Two heterozygous carriers of the mutation also showed mild hypophosphatemia, and bone biopsy in one of these individuals showed focal areas of osteomalacia. In bone, DMP1 expression was absent in the homozygote but normal in the heterozygote, whereas FGF-23 expression was increased in both subjects but higher in the ARHP patient. The clinical and laboratory observations in this family confirm that DMP1 has an important role in normal skeletal development and mineral homeostasis. The skeletal phenotype in ARHP may be significantly more severe than in other forms of hypophosphatemic rickets.
Collapse
Affiliation(s)
- Outi Mäkitie
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Fibroblast growth factor 23 (FGF-23) is likely to be the most important regulator of phosphate homeostasis, which mediates its functions through FGF receptors and the coreceptor Klotho. Besides reducing expression of the sodium-phosphate cotransporters NPT2a and NPT2c in the proximal tubules, FGF-23 inhibits the renal 1α-hydroxylase and stimulates the 24-hydroxylase, and it appears to reduce parathyroid hormone (PTH) secretion in short-term studies. FGF-23 synthesis and secretion by osteocytes and osteoblasts is upregulated through 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and through an increased dietary phosphate intake. FGF-23 levels are elevated or inappropriately normal in patients with tumor-induced osteomalacia and several inherited hypophosphatemic disorders, but the most significant increases are found in patients with chronic kidney disease (CKD). During the early stages of CKD, increased FGF-23 production enhances urinary phosphate excretion and thus prevents the development of hyperphosphatemia, reduces the circulating levels of 1,25(OH)(2)D(3), and therefore contributes to the development of secondary hyperparathyroidism. In patients with end-stage renal disease (ESRD), FGF-23 levels can be extremely high and were shown to be predictors of bone mineralization, left ventricular hypertrophy, vascular calcification, and mortality. It remains to be determined, however, whether FGF-23 represents simply a sensitive biomarker of an abnormal phosphate homeostasis or has, independent of serum phosphate levels, potentially negative "off-target" effects. Nonetheless, reducing the production and/or the biologic activity of FGF-23 may be an important therapeutic goal for this patient population.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|