201
|
Pu X, Gu Z, Gu Z. ALKBH5 regulates IGF1R expression to promote the Proliferation and Tumorigenicity of Endometrial Cancer. J Cancer 2020; 11:5612-5622. [PMID: 32913456 PMCID: PMC7477457 DOI: 10.7150/jca.46097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
N6-methyladenosine (m6A) messenger RNA methylation play important role in cell proliferation and tumorigenicity of endometrial cancer, but the key mechanism is not fully clear. Here, we found that RNA demethylase ALKBH5 expression was significantly upregulated in endometrial cancer, ALKBH5 was then identified to positively regulate proliferation and invasion of endometrial cancer. Mechanistically, the m6A eraser ALKBH5 demethylated target transcripts IGF1R and enhanced IGF1R mRNA stability, consequently promoting IGF1R translation and activating IGF1R signaling pathway. Thus, we demonstrated that ALKBH5 promoted proliferation and invasion of endometrial cancer via erasing IGF1R m6A-modifications, which suggests a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Xiaowen Pu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Zhuowei Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhengrong Gu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
202
|
Wang Y, Wang Y, Luo W, Song X, Huang L, Xiao J, Jin F, Ren Z, Wang Y. Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Am J Cancer Res 2020; 10:9407-9424. [PMID: 32802200 PMCID: PMC7415804 DOI: 10.7150/thno.48520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
The diseases caused by viruses posed a great challenge to human health, the development of which was driven by the imbalanced host immune response. Host innate immunity is an evolutionary old defense system that is critical for the elimination of the virus. The overactive innate immune response also leads to inflammatory autoimmune diseases, which require precise control of innate antiviral response for maintaining immune homeostasis. Mounting long non-coding RNAs (lncRNAs) transcribed from the mammalian genome are key regulators of innate antiviral response, functions of which greatly depend on their protein interactors, including classical RNA-binding proteins (RBPs) and the unconventional proteins without classical RNA binding domains. In particular, several emerging RBPs, such as m6A machinery components, TRIM family members, and even the DNA binding factors recognized traditionally, function in innate antiviral response. In this review, we highlight recent progress in the regulation of type I interferon signaling-based antiviral responses by lncRNAs and emerging RBPs as well as their mechanism of actions. We then posed the future perspective toward the role of lncRNA-RBP interaction networks in innate antiviral response and discussed the promising and challenges of lncRNA-based drug development as well as the technical bottleneck in studying lncRNA-protein interactions. Our review provides a comprehensive understanding of lncRNA and emerging RBPs in the innate antiviral immune response.
Collapse
|
203
|
Wang J, Liu J, Ye M, Liu F, Wu S, Huang J, Shi G. Ddx56 maintains proliferation of mouse embryonic stem cells via ribosome assembly and interaction with the Oct4/Sox2 complex. Stem Cell Res Ther 2020; 11:314. [PMID: 32703285 PMCID: PMC7376950 DOI: 10.1186/s13287-020-01800-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Embryonic stem cells (ESCs) are important source of clinical stem cells for therapy, so dissecting the functional gene regulatory network involved in their self-renewal and proliferation is an urgent task. We previously reported that Ddx56 interacts with the core transcriptional factor Oct4 by mass spectrometry analysis in ESCs. However, the exact function of Ddx56 in ESCs remains unclear. Methods We investigated the role of Ddx56 in mouse ESCs (mESCs) through both gain- and loss-of-function strategies. The effect of Ddx56 on mESCs was determined based on morphological changes, involvement in the network of pluripotency markers (Nanog, Oct4, Sox2), and altered lineage marker expression. In addition, the role of Ddx56 in mESCs was evaluated by polysome fractionation, qRT-PCR, and co-immunoprecipitation (co-IP). Finally, RNA sequencing was applied to explore potential network regulation by Ddx56 in mESCs. Result We found that Ddx56 participated in ribosome assembly, as knockout or RNAi knockdown of Ddx56 led to ribosome dysfunction and cell lethality. Surprisingly, exogenous expression of C-terminal domain truncated Ddx56 (Ddx56 ΔC-ter) did not affect ribosome assembly, but decreased mESC proliferation by downregulation of proliferation-related genes and cell cycle changing. In terms of mechanism, Ddx56 interacted with the Oct4 and Sox2 complex by binding to Sox2, whereas Ddx56 ΔC-ter showed weaker interaction with Sox2 and led to retardation of mESC proliferation. Conclusions Ddx56 maintains ESC proliferation by conventional regulation of ribosome assembly and interaction with the Oct4 and Sox2 complex.
Collapse
Affiliation(s)
- Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Su Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
204
|
Chen Z, Li Z, Hu X, Xie F, Kuang S, Zhan B, Gao W, Chen X, Gao S, Li Y, Wang Y, Qian F, Ding C, Gan J, Ji C, Xu X, Zhou Z, Huang J, He HH, Li J. Structural Basis of Human Helicase DDX21 in RNA Binding, Unwinding, and Antiviral Signal Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000532. [PMID: 32714761 PMCID: PMC7375243 DOI: 10.1002/advs.202000532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Indexed: 05/20/2023]
Abstract
RNA helicase DDX21 plays vital roles in ribosomal RNA biogenesis, transcription, and the regulation of host innate immunity during virus infection. How DDX21 recognizes and unwinds RNA and how DDX21 interacts with virus remain poorly understood. Here, crystal structures of human DDX21 determined in three distinct states are reported, including the apo-state, the AMPPNP plus single-stranded RNA (ssRNA) bound pre-hydrolysis state, and the ADP-bound post-hydrolysis state, revealing an open to closed conformational change upon RNA binding and unwinding. The core of the RNA unwinding machinery of DDX21 includes one wedge helix, one sensor motif V and the DEVD box, which links the binding pockets of ATP and ssRNA. The mutant D339H/E340G dramatically increases RNA binding activity. Moreover, Hill coefficient analysis reveals that DDX21 unwinds double-stranded RNA (dsRNA) in a cooperative manner. Besides, the nonstructural (NS1) protein of influenza A inhibits the ATPase and unwinding activity of DDX21 via small RNAs, which cooperatively assemble with DDX21 and NS1. The structures illustrate the dynamic process of ATP hydrolysis and RNA unwinding for RNA helicases, and the RNA modulated interaction between NS1 and DDX21 generates a fresh perspective toward the virus-host interface. It would benefit in developing therapeutics to combat the influenza virus infection.
Collapse
Affiliation(s)
- Zijun Chen
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Zhengyang Li
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Xiaojian Hu
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Feiyan Xie
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Siyun Kuang
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Bowen Zhan
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Wenqing Gao
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Xiangjun Chen
- Department of NeurologyHuashan HospitalFudan UniversityShanghai200040China
| | - Siqi Gao
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yang Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yongming Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Feng Qian
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Jianhua Gan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Chaoneng Ji
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Xue‐Wei Xu
- Key Laboratory of Marine Ecosystem DynamicsMinistry of Natural Resources & Second Institute of OceanographyMinistry of Natural ResourcesHangzhou310012China
| | - Zheng Zhou
- China Novartis Institutes for Biomedical Research Co. LtdShanghai201203China
| | - Jinqing Huang
- Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina
| | - Housheng Hansen He
- Department of Medical BiophysicsUniversity of Toronto, and Princess Margaret Cancer CenterUniversity Health NetworkTorontoM5G 1L7, OntarioCanada
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| |
Collapse
|
205
|
Luo Q, Rao J, Zhang L, Fu B, Guo Y, Huang Z, Li J. The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus. Mol Genet Genomic Med 2020; 8:e1298. [PMID: 32583611 PMCID: PMC7507441 DOI: 10.1002/mgg3.1298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background This study was aimed to explore the mRNA expression of m6A “writers” (METTL3, MTEEL14, and WTAP), “erasers” (FTO and ALKBH5), and “readers” (YTHDF2) in peripheral blood mononuclear cells (PBMCs) from systemic lupus erythematosus (SLE) patients and investigate the relation between their expressions with clinical features. Methods In all, 54 SLE patients and 42 healthy controls (HC) were included in the current study. Quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) was used to investigate the mRNA expression of m6A “writers,” “erasers,” and “readers” in PBMCs from SLE patients and HC. Results Decreased mRNA expression of MTEEL14, ALKBH5, and YTHDF2 was observed in SLE patients compared with those in HC (p < .001). The decreased mRNA expression of METTL14 was associated with white blood cell count (WBC) and monocyte count (M), this decreased mRNA expression of ALKBH5 was associated with C‐reactive protein (CRP), neutrophil percentage (N%), lymphocyte percentage (L%), neutrophil–lymphocyte ratio (NLR), complement 3 (C3), and fever, and the decreased mRNA expression of YTHDF2 was associated with L%, NLR, C3, and fever. In addition, there was a positive correlation between mRNA expression of METTL14, ALKBH5, and YTHDF2 in PBMCs from SLE patients. Importantly, logistic regression analysis revealed that decreased mRNA expression of YTHDF2 was a risk factor for SLE. Conclusion Taken all together, our findings suggested decreased YTHDF2 that was associated with disease activity may play an important role in the pathogenesis of SLE, METTL14 and ALKBH5 may be concomitantly decreased.
Collapse
Affiliation(s)
- Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiayue Rao
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Biqi Fu
- Department of rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yang Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
206
|
Decreased Peripheral Blood ALKBH5 Correlates with Markers of Autoimmune Response in Systemic Lupus Erythematosus. DISEASE MARKERS 2020; 2020:8193895. [PMID: 32685056 PMCID: PMC7334764 DOI: 10.1155/2020/8193895] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Although it has been proved that the epigenetic modification of DNA and histones is involved in the pathogenesis of systemic lupus erythematosus (SLE), there is no study to explore whether the modification of N6-methyladenosine (m6A) in RNA is involved. In this study, the mRNA levels of m6A "writers" (METTL3, MTEEL14, and WTAP), "erasers" (FTO and ALKBH5), and "readers" (YTHDF2) in peripheral blood were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The results demonstrated that the mRNA levels of METTL3, WTAP, FTO, ALKBH5, and YTHDF2 in peripheral blood from SLE patients were significantly decreased. The levels of ALKBH5 mRNA in SLE patients were associated with anti-dsDNA, antinucleosome, rash, and ulceration. Multivariate logistic regression analysis showed that the level of ALKBH5 mRNA in peripheral blood is a risk factor of SLE (P < 0.001). Moreover, our results suggested that there was a positive correlation between m6A"writers" (METTL3 and WTAP), "erasers" (FTO and ALKBH5), and "readers" (YTHDF2) in SLE patients. This study suggests that the mRNA level of ALKBH5 in peripheral blood may be involved in the pathogenesis of SLE.
Collapse
|
207
|
Xiao X, Zhang W, Hua D, Zhang L, Meng W, Huang J, Zhang L. Cold-inducible RNA-binding protein (CIRBP) promotes porcine reproductive and respiratory syndrome virus (PRRSV)-induced inflammatory response. Int Immunopharmacol 2020; 86:106728. [PMID: 32593159 DOI: 10.1016/j.intimp.2020.106728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe systemic inflammation. Based on transcriptome sequencing data, a new cold-inducible RNA-binding protein (CIRBP) was identified, and its upregulated expression was detected in PRRSV-infected porcine alveolar macrophages (PAMs). However, the immunoregulatoryeffect of CIRBP in PRRSV infection remains unclear. In this study, we found that CIRBP, as an RNA-binging protein, migrates to the cytoplasm from the nucleus and exists in cytoplasmic stress granules under PRRSV infection. In addition, as a new pro-inflammatory factor, the overexpression of CIRBP promotes the expression of inflammatory cytokines and oxidative stress as showing the production of iNOS and ROS in PRRSV-infected cells, which contributes to the inflammatory response via the NF-κB pathway. Our findings suggested that CIRBP is involved in the regulation of PRRSV-induced inflammatory response.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Wentao Zhang
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Wei Meng
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China.
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China.
| |
Collapse
|
208
|
You X, Cui H, Yu N, Li Q. Knockdown of DDX46 inhibits trophoblast cell proliferation and migration through the PI3K/Akt/mTOR signaling pathway in preeclampsia. Open Life Sci 2020; 15:400-408. [PMID: 33817228 PMCID: PMC7874595 DOI: 10.1515/biol-2020-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Preeclampsia (PE) is a serious disease during pregnancy associated with the dysfunction of trophoblast cell invasion. DDX46 is a kind of RNA helicase that has been found to regulate cancer cell metastasis. However, the role of DDX46 in PE remains unclear. Our results showed that the mRNA levels of DDX46 in placental tissues of pregnant women with PE were markedly lower than those in normal pregnancies. Loss-of-function assays showed that knockdown of DDX46 significantly suppressed cell proliferation of trophoblast cells. Besides, DDX46 knockdown decreased trophoblast cell migration and invasion capacity. In contrast, the overexpression of DDX46 promoted the migration and invasion of trophoblast cells. Furthermore, knockdown of DDX46 caused significant decrease in the levels of p-PI3K, p-Akt, and p-mTOR in HTR-8/SVneo cells. In addition, treatment with IGF-1 reversed the inhibitory effects of DDX46 knockdown on proliferation, migration, and invasion of HTR-8/SVneo cells. In conclusion, these data suggest that DDX46 might be involved in the progression of PE, which might be attributed to the regulation of PI3K/Akt/mTOR signaling pathway. Thus, DDX46 might serve as a therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Xin You
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Hongyan Cui
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Ning Yu
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Qiuli Li
- Department of Laboratory, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| |
Collapse
|
209
|
Hao J, Li C, Lin C, Hao Y, Yu X, Xia Y, Gao F, Jiang Z, Wang D. Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Biosci Rep 2020; 40:BSR20192933. [PMID: 32323721 PMCID: PMC7201566 DOI: 10.1042/bsr20192933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Methylation of the adenine base at the nitrogen 6 position (m6A) is the most common post-transcriptional epigenetic modification of RNA, and it plays a very important role in regulating gene expression. To investigate the role of m6A methylation in the expression of non-coding RNA and miRNA, we used a system of adenine base editors (ABEs). Here, we mutated regions up- and downstream of miRNA 675 m6A modification sites in the H19 locus using HEK293T, L02, MHCC97L, MHCC97H, A549, and SGC-7901 cells. Our results showed that a T-A base transversion had occurred in all cell lines. Moreover, mutation of the regions upstream of the miRNA 675 m6A modification site led to reduced expression of H19 and the induction of cell apoptosis in HEK293T cells. To further confirm our results, L02 and MHCC97L cells were detected using ABEs system. The results indicated increased cell apoptosis and reduced expression of miR675 as well as H19. To confirm the relationship between H19 and miR675 expression, overexpression and knockdown studies were performed. The results showed that reduced HI9 expression induced cell apoptosis through miR675. Taken together, these results indicate that m6A modification can regulate the expression of H19 and miR675 which induce cell apoptosis.
Collapse
Affiliation(s)
- Jindong Hao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- Department of Animal Science, Jilin Business and Technology College, Changchun, China
| | - Yang Hao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xianfeng Yu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Fei Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
210
|
Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol 2020; 11:1030. [PMID: 32536927 PMCID: PMC7267026 DOI: 10.3389/fimmu.2020.01030] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
211
|
Yao M, Dong Y, Wang Y, Liu H, Ma H, Zhang H, Zhang L, Cheng L, Lv X, Xu Z, Zhang F, Lei Y, Ye W. N 6-methyladenosine modifications enhance enterovirus 71 ORF translation through METTL3 cytoplasmic distribution. Biochem Biophys Res Commun 2020; 527:297-304. [PMID: 32446384 DOI: 10.1016/j.bbrc.2020.04.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 01/10/2023]
Abstract
During replication, numerous viral RNAs are modified by N6-methyladenosine (m6A), the most abundant internal RNA modification. m6A is believed to regulate elements of RNA metabolism, such as splicing, stability, translation, secondary structure formation, and viral replication. In this study, we assessed the occurrence of m6A modification of the EV71 genome in human cells and revealed a preferred, conserved modification site across diverse viral strains. A single m6A modification at the 5' UTR-VP4 junction was shown to perform a protranslational function. Depletion of the METTL3 methyltransferase or treatment with 3-deazaadenosine significantly reduced EV71 replication. Specifically, METTL3 colocalized with the viral dsRNA replication intermediate in the cytoplasm during EV71 infection. As a nuclear resident protein, METTL3 relies on the binding of the nuclear import protein karyopherin to its nuclear localization signal (NLS) for nuclear translocation. We observed that EV71 2A and METTL3 share nuclear import proteins. The results of this study revealed an inner mechanism by which EV71 2A regulates the subcellular location of METTL3 to amplify its own gene expression, providing an increased understanding of RNA epitranscriptomics during the EV71 replication cycle.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
212
|
Shi P, Guo Y, Su Y, Zhu M, Fu Y, Chi H, Wu J, Huang J. SUMOylation of DDX39A Alters Binding and Export of Antiviral Transcripts to Control Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:168-180. [DOI: 10.4049/jimmunol.2000053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
|
213
|
Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF, Zhang A, Chen S, Dai Q, Wang J. N 6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis 2020; 11:2040622320916024. [PMID: 32426101 PMCID: PMC7222229 DOI: 10.1177/2040622320916024] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background Although N6-methyladenosine (m6A) plays a very important role in different biological processes, its function in the brain has not been fully explored. Thus, we investigated the roles of the RNA demethylases Alkbh5/Fto in cerebral ischemia-reperfusion injury. Methods We used a rat model and primary neuronal cell culture to study the role of m6A and Alkbh5/Fto in the cerebral cortex ischemic penumbra after cerebral ischemia-reperfusion injury. We used Alkbh5-shRNA and Lv-Fto (in vitro) to regulate the expression of Alkbh5/Fto to study their regulation of m6A in the cerebral cortex and to study brain function after ischemia-reperfusion injury. Results We found that RNA m6A levels increased consecutive to the increase of Alkbh5 expression in both the cerebral cortex of rats after middle cerebral artery occlusion, and in primary neurons after oxygen deprivation/reoxygenation. In contrast, Fto expression decreased after these perturbations. Our results suggest that knocking down Alkbh5 can aggravate neuronal damage. This is due to the demethylation of Alkbh5 and Fto, which selectively demethylate the Bcl2 transcript, preventing Bcl2 transcript degradation and enhancing Bcl2 protein expression. Conclusion Collectively, our results demonstrate that the demethylases Alkbh5/Fto co-regulate m6A demethylation, which plays a crucial role in cerebral ischemia-reperfusion injury. The results provide novel insights into potential therapeutic mechanisms for stroke.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qimin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Kong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meita Felicia Balelang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China Wencheng County People's Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
214
|
Galardi S, Michienzi A, Ciafrè SA. Insights into the Regulatory Role of m 6A Epitranscriptome in Glioblastoma. Int J Mol Sci 2020; 21:E2816. [PMID: 32316617 PMCID: PMC7215676 DOI: 10.3390/ijms21082816] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the most widespread and abundant internal messenger RNA modifications found in eukaryotes. Emerging evidence suggests that this modification is strongly linked to the activation and inhibition of cancer pathways and is associated with prognostically significant tumour subtypes. The present review describes the dynamic nature of m6A regulator enzymes, as methyltransferases, demethylases and m6A binding proteins, and points out thevalue of the balance among these proteins in regulating gene expression, cell metabolism and cancer development. The main focus of this review is on the roles of m6A modification in glioblastoma, the most aggressive and invariably lethal brain tumour. Although the study of m6A in glioblastoma is a young one, and papers in this field can yield divergent conclusions, the results collected so far clearly demonstrate that modulation of mRNA m6A levels impacts multiple aspects of this tumour, including growth, glioma stem cells self-renewal, and tumorigenesis, suggesting that mRNA m6A modification may serve as a promising target for glioblastoma therapy. We also present recent data about another type of epitranscriptomic modification, the methylation of cytosine at a specific site of 28S rRNA, as it was recently shown to affect the biology of glioma cells, with high potential of clinical implications.
Collapse
Affiliation(s)
- Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1 00133 Rome, Italy;
| | | | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1 00133 Rome, Italy;
| |
Collapse
|
215
|
Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification. Int J Biol Sci 2020; 16:1929-1940. [PMID: 32398960 PMCID: PMC7211178 DOI: 10.7150/ijbs.45231] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is identified as the most prevalent and abundant internal RNA modification, especially within eukaryotic mRNAs, which has attracted much attention in recent years since its importance for regulating gene expression and deciding cell fate. m6A modification is installed by RNA methyltransferases METTL3, METTL14 and WTAP (Writers), removed by the demethylases FTO and ALKBH5 (Erasers) and recognized by m6A binding proteins, such as YT521-B homology YTH domain-containing proteins (Readers). Accumulating evidence shows that m6A RNA methylation participates in almost all aspects of RNA processing, implying an association with important bioprocesses. In this review, we mainly summarize and discuss the functional relevance and importance of m6A modification in cellular processes.
Collapse
Affiliation(s)
- Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
216
|
The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21:501-512. [DOI: 10.1038/s41590-020-0650-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
|
217
|
Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, Liang X, Gao TZ, Xu Y, Zhou J, Feng Z, Niewiesk S, Peeples ME, He C, Li J. N 6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020; 5:584-598. [PMID: 32015498 PMCID: PMC7137398 DOI: 10.1038/s41564-019-0653-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.
Collapse
Affiliation(s)
- Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Zijie Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Miaoge Xue
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Z Gao
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yunsheng Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiyong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zongdi Feng
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
218
|
An S, Huang W, Huang X, Cun Y, Cheng W, Sun X, Ren Z, Chen Y, Chen W, Wang J. Integrative network analysis identifies cell-specific trans regulators of m6A. Nucleic Acids Res 2020; 48:1715-1729. [PMID: 31912146 PMCID: PMC7038928 DOI: 10.1093/nar/gkz1206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) is a reversible and dynamic RNA modification in eukaryotes. However, how cells establish cell-specific m6A methylomes is still poorly understood. Here, we developed a computational framework to systematically identify cell-specific trans regulators of m6A through integrating gene expressions, binding targets and binding motifs of large number of RNA binding proteins (RBPs) with a co-methylation network constructed using large-scale m6A methylomes across diverse cell states. We applied the framework and successfully identified 32 high-confidence m6A regulators that modulated the variable m6A sites away from stop codons in a cell-specific manner. To validate them, we knocked down three regulators respectively and found two of them (TRA2A and CAPRIN1) selectively promoted the methylations of the m6A sites co-localized with their binding targets on RNAs through physical interactions with the m6A writers. Knockdown of TRA2A increased the stabilities of the RNAs with TRA2A bound near the m6A sites and decreased the viability of cells. The successful identification of m6A regulators demonstrates a powerful and widely applicable strategy to elucidate the cell-specific m6A regulators. Additionally, our discovery of pervasive trans-acting regulating of m6A provides novel insights into the mechanisms by which spatial and temporal dynamics of m6A methylomes are established.
Collapse
Affiliation(s)
- Sanqi An
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanxu Huang
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Huang
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yixian Cun
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Weisheng Cheng
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Sun
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhijun Ren
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaxin Chen
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfang Chen
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinkai Wang
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
219
|
Zhuang Z, Chen L, Mao Y, Zheng Q, Li H, Huang Y, Hu Z, Jin Y. Diagnostic, progressive and prognostic performance of m 6A methylation RNA regulators in lung adenocarcinoma. Int J Biol Sci 2020; 16:1785-1797. [PMID: 32398949 PMCID: PMC7211177 DOI: 10.7150/ijbs.39046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background: N6-methyladenosine (m6A) RNA methylation is dynamically and reversibly regulated by methyl-transferases ("writers"), binding proteins ("readers"), and demethylases ("erasers"). The m6A is restored to adenosine and thus to achieve demethylation modification. The abnormality of m6A epigenetic modification in cancer has been increasingly attended. However, we are rarely aware of its diagnostic, progressive and prognostic performance in lung adenocarcinoma (LUAD). Methods and Results: The expression of 13 widely reported m6A RNA regulators in LUAD and normal samples were systematically analyzed. There were 12 m6A RNA methylation genes displaying aberrant expressions, and an 11-gene diagnostic score model was finally built (Diagnostic score =0.033*KIAA1429+0.116*HNRNPC+0.115*RBM15-0.067* METTL3-0.048*ZC3H13-0.221*WTAP+0.213*YTHDF1-0.132*YTHDC1-0.135* FTO+0.078*YTHDF2+0.014*ALKBH5). Receiver operating characteristic (ROC) analysis was performed to demonstrate superiority of the diagnostic score model (Area under the curve (AUC) was 0.996 of training cohort, P<0.0001; AUC was 0.971 of one validation cohort-GSE75037, P<0.0001; AUC was 0.878 of another validation cohort-GSE63459, P<0.0001). In both training and validation cohorts, YTHDC2 was associated with tumor stage (P<0.01), while HNRNPC was up expressed in progressed tumor (P<0.05). Besides, WTAP, RBM15, KIAA1429, YTHDF1, and YTHDF2 were all up expressed for TP53 mutation. Furthermore, using least absolute shrinkage and selection operator (lasso) regression analysis, a ten-gene risk score model was built. Risk score=0.169*ALKBH5-0.159*FTO+0.581*HNRNPC-0.348* YTHDF2-0.265*YTHDF1-0.123*YTHDC2+0.434*RBM15+0.143*KIAA1429-0.200*WTAP-0.310*METTL3. There existed correlation between the risk score and TNM stage (P<0.01), lymph node stage (P<0.05), gender (P<0.05), living status (P<0.001). Univariate and multivariate Cox regression analyses of relevant clinicopathological characters and the risk score revealed risk score was an independent risk factor of lung adenocarcinoma (HR: 2.181, 95%CI (1.594-2.984), P<0.001). Finally, a nomogram was built to facilitate clinicians to predict outcome. Conclusions: m6A epigenetic modification took part in the progression, and provided auxiliary diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Zhizhi Zhuang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Liping Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuting Mao
- Second clinical college of medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qun Zheng
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Huiying Li
- Department of Respiratory medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yueyue Huang
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zijing Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yi Jin
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
220
|
Zheng Q, Gan H, Yang F, Yao Y, Hao F, Hong L, Jin L. Cytoplasmic m 1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m 1A-methylated IGF1R. Cell Discov 2020; 6:12. [PMID: 32194978 PMCID: PMC7062805 DOI: 10.1038/s41421-020-0144-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
N1-methyladenosine (m1A) is one of the important post-transcriptional modifications in RNA and plays an important role in promoting translation or decay of m1A-methylated messenger RNA (mRNA), but the "reader" protein and the exact biological role of m1A remain to be determined. Here, we identified that nine potential m1A "reader" proteins including YTH domain family and heterogeneous nuclear ribonucleoprotein by mass spectrometry, and among them, YTH domain-containing protein 3 (YTHDF3), could bind directly to m1A-carrying RNA. YTHDF3 was then identified to negatively regulate invasion and migration of trophoblast. Mechanistically, we found that the m1A "reader" YTHDF3 bound to certain m1A-methylated transcripts, such as insulin-like growth factor 1 receptor (IGF1R), with the combination of iCLIP-seq (individual-nucleotide resolution ultraviolet crosslinking and immunoprecipitation high-throughput sequencing) and m1A-seq. Furthermore, YTHDF3 could promote IGF1R mRNA degradation and thus inhibit IGF1R protein expression along with its downstream matrix metallopeptidase 9 signaling pathway, consequently decreasing migration and invasion of trophoblast. Thus, we demonstrated that YTHDF3 as an m1A reader decreased invasion and migration of trophoblast by inhibiting IGF1R expression. Our study outlines a new m1A epigenetic way to regulate the trophoblast activity, which suggests a novel therapeutic target for trophoblast-associated pregnancy disorders.
Collapse
Affiliation(s)
- Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Haili Gan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Fenglian Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Yongli Yao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Fan Hao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Ling Hong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| |
Collapse
|
221
|
METTL3 Modulates Osteoclast Differentiation and Function by Controlling RNA Stability and Nuclear Export. Int J Mol Sci 2020; 21:ijms21051660. [PMID: 32121289 PMCID: PMC7084668 DOI: 10.3390/ijms21051660] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022] Open
Abstract
Osteoclast differentiation and function are crucial for maintaining bone homeostasis and preserving skeletal integrity. N6-methyladenosine (m6A) is an abundant mRNA modification that has recently been shown to be important in regulating cell lineage differentiation. Nevertheless, the effect of m6A on osteoclast differentiation remains unknown. In the present study, we observed that the m6A level and methyltransferase METTL3 expression increased during osteoclast differentiation. Mettl3 knockdown resulted in an increased size but a decreased bone-resorbing ability of osteoclasts. The expression of osteoclast-specific genes (Nfatc1, c-Fos, Ctsk, Acp5 and Dcstamp) was inhibited by Mettl3 depletion, while the expression of the cellular fusion-specific gene Atp6v0d2 was upregulated. Mechanistically, Mettl3 knockdown elevated the mRNA stability of Atp6v0d2 and the same result was obtained when the m6A-binding protein YTHDF2 was silenced. Moreover, the phosphorylation levels of key molecules in the MAPK, NF-κB and PI3K-AKT signaling pathways were reduced upon Mettl3 deficiency. Depletion of Mettl3 maintained the retention of Traf6 mRNA in the nucleus and reduced the protein levels of TRAF6. Taken together, our data suggest that METTL3 regulates osteoclast differentiation and function through different mechanisms involving Atp6v0d2 mRNA degradation mediated by YTHDF2 and Traf6 mRNA nuclear export. These findings elucidate the molecular basis of RNA epigenetic regulation in osteoclast development.
Collapse
|
222
|
Luo G, Xu W, Zhao Y, Jin S, Wang S, Liu Q, Chen X, Wang J, Dong F, Hu DN, Reinach PS, Yan D. RNA m 6 A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met. J Cell Physiol 2020; 235:7107-7119. [PMID: 32017066 DOI: 10.1002/jcp.29608] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
N6 -methyladenosine (m6 A) is a novel epitranscriptomic marker that contributes to regulating diverse biological processes through controlling messenger RNA metabolism. However, it is unknown if m6 A RNA methylation affects uveal melanoma (UM) development. To address this question, we probed its function and molecular mechanism in UM. Initially, we demonstrated that global RNA m6 A methylation levels were dramatically elevated in both UM cell lines and clinical specimens. Meanwhile, we found that METTL3, a main m6 A regulatory enzyme, was significantly increased in UM cells and specimens. Subsequently, cycloleucine (Cyc) or METTL3 targeted small interfering RNA was used to block m6 A methylation in UM cells. We found that Cyc or silencing METTL3 significantly suppressed UM cell proliferation and colony formation through cell cycle G1 arrest, as well as migration and invasion by functional analysis. On the other hand, overexpression of METTL3 had the opposite effects. Furthermore, bioinformatics and methylated RNA immunoprecipitation-quantitative polymerase chain reaction identified c-Met as a direct target of m6 A methylation in UM cells. In addition, western blot analysis showed that Cyc or knockdown of METTL3 downregulated c-Met, p-Akt, and cell cycle-related protein levels in UM cells. Taken together, our results demonstrate that METTL3-mediated m6 A RNA methylation modulates UM cell proliferation, migration, and invasion by targeting c-Met. Such a modification acts as a critical oncogenic regulator in UM development.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yunping Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shanshan Jin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Siqi Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Qi Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China.,Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
223
|
Song H, Wang Y, Wang R, Zhang X, Liu Y, Jia G, Chen PR. SFPQ Is an FTO-Binding Protein that Facilitates the Demethylation Substrate Preference. Cell Chem Biol 2020; 27:283-291.e6. [PMID: 31981477 DOI: 10.1016/j.chembiol.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is the first identified demethylase of the internal RNA modification N6-methyladenosine (m6A), which also exhibits demethylation activity toward N6,2'-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A). Demethylation of m6A at specific sites on target transcripts is a key enzymatic function of FTO that modulates diverse physiological and/or pathological processes. However, how FTO selects target RNA and whether additional interaction proteins facilitate this process remain elusive. Herein, via the genetically encoded and site-specific photocrosslinking strategy, we identified the major RNA-binding protein SFPQ as a direct interaction partner of FTO. Our study showed that FTO and SFPQ were located in close proximity throughout the transcriptome and that overexpression of SFPQ led to the demethylation of adjacent m6As, likely through recruiting FTO to these specific RNA sites. These results uncovered a new layer of regulation mechanism that may assist FTO to gain substrate specificity.
Collapse
Affiliation(s)
- Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruixiang Wang
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xiao Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaping Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
224
|
RNA N 6-Methyladenosine Modifications and the Immune Response. J Immunol Res 2020; 2020:6327614. [PMID: 32411802 PMCID: PMC7204177 DOI: 10.1155/2020/6327614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/13/2019] [Accepted: 12/24/2019] [Indexed: 01/09/2023] Open
Abstract
N6-methyladenosine (m6A) is the most important modification of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) in higher eukaryotes. Modulation of m6A modifications relies on methyltransferases and demethylases. The discovery of binding proteins confirms that the m6A modification has a wide range of biological effects and significance at the molecular, cellular, and physiological levels. In recent years, techniques for investigating m6A modifications of RNA have developed rapidly. This article reviews the biological significance of RNA m6A modifications in the innate immune response, adaptive immune response, and viral infection.
Collapse
|
225
|
Wang J, Gao F, Zhao X, Cai Y, Jin H. Integrated analysis of the transcriptome-wide m6A methylome in preeclampsia and healthy control placentas. PeerJ 2020; 8:e9880. [PMID: 32983644 PMCID: PMC7500358 DOI: 10.7717/peerj.9880] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic mRNA and potential regulatory functions of m6A have been shown by mapping the RNA m6A modification landscape. m6A modification in active gene regulation manifests itself as altered methylation profiles. The number of reports regarding to the profiling of m6A modification and its potential role in the placenta of preeclampsia (PE) is small. In this work, placental samples were collected from PE and control patients. Expression of m6A-related genes was investigated using quantitative real-time PCR. MeRIP-seq and RNA-seq were performed to detect m6A methylation and mRNA expression profiles. Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were also conducted to explore the modified genes and their clinical significance. Our findings show that METTL3 and METTL14 were up-regulated in PE. In total, 685 m6A peaks were differentially expressed as determined by MeRIP-seq. Altered peaks of m6A-modified transcripts were primarily associated with nitrogen compound metabolic process, positive regulation of vascular-associated smooth muscle cell migration, and endoplasmic reticulum organisation. The m6A hyper-methylated genes of Wnt/β-catenin signalling pathway, mTOR signalling pathway, and several cancer-related pathways may contribute to PE. We also verified that the significant increase of HSPA1A mRNA and protein expression was regulated by m6A modification, suggesting m6A plays a key role in the regulation of gene expression. Our data provide novel information regarding m6A modification alterations in PE and help our understanding of the pathogenesis of PE.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Fengchun Gao
- Obstetrical Department, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Xiaohan Zhao
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Yan Cai
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
226
|
Hu Y, Wang S, Liu J, Huang Y, Gong C, Liu J, Xiao Y, Yang S. New sights in cancer: Component and function of N6-methyladenosine modification. Biomed Pharmacother 2019; 122:109694. [PMID: 31918269 DOI: 10.1016/j.biopha.2019.109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
M6A is the most prevalent modification among epigenetics. M6A occurs on different sites of RNA and exerts important functions in specific circumstances, such as mRNA splicing, stability, nuclear export, translation or damage response. Different aspects of the concrete machinery of m6A modification have been studied, including its writing, erasing and reading capabilities. The molecular and biological functions of the m6A modification and enzymes, as well as their functions in different cancers have been substantially published. The present review summarizes these findings and provides clear description of the problems involved. The probable roles of m6A modification may acts on other cancers, suggesting that it may be a treatment target for these cancers.
Collapse
Affiliation(s)
- Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
227
|
Yu S, Li X, Liu S, Yang R, Liu X, Wu S. N 6-Methyladenosine: A Novel RNA Imprint in Human Cancer. Front Oncol 2019; 9:1407. [PMID: 31921664 PMCID: PMC6930912 DOI: 10.3389/fonc.2019.01407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
N6-Methyladenosine (m6A), a pervasive posttranscriptional modification which is reversible, has been among hotspot issues in the past several years. The balance of intracellular m6A levels is dynamically maintained by methyltransferase complex and demethylases. Meanwhile, m6A reader proteins specifically recognize modified residues and convey messages so as to set up an efficient and orderly network of m6A regulation. The m6A mark has proved to affect every step of RNA life cycle, from processing in nucleus to translation or degradation in cytoplasm. Subsequently, disorders in m6A methylation are directly related to aberrant RNA metabolism, which results in tumorigenesis and altered drug response. Therefore, uncovering the underlying mechanism of m6A in oncogenic transformation and tumor progression seeks opportunities for novel targets in cancer therapy. In this review, we conclude the extensive impact of m6A on RNA metabolism and highlight its relevance with human cancer, implicating the far-reaching value in clinical application.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyun Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangnan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
228
|
Hao J, Xianfeng Y, Gao W, Wei J, Qi M, Han L, Shi S, Lin C, Wang D. The perturbed expression of m6A in parthenogenetic mouse embryos. Genet Mol Biol 2019; 42:666-670. [PMID: 31188932 PMCID: PMC6905444 DOI: 10.1590/1678-4685-gmb-2018-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Parthenogenetically activated oocytes cannot develop to term in mammals owing to abnormal epigenetic modifications. Methylation of the N6 position of adenosine (m6A) is a post-transcriptional epigenetic modification of RNA. To investigate the role of m6A methylation in parthenogenetic (PA) embryonic development, we analyzed METTL3, METTL14, FTO, ALKBH5, YTHDF2, IGF2BP1, and IGF2BP2 expression by quantitative real-time PCR. These genes were found dynamically expressed during the 2-cell, 4-cell, 8-cell, and blastocyst stages of the embryo. Compared to normally fertilized embryos, the expression of these genes was perturbed in PA embryos, especially at the 8-cell stage. Furthermore, immunofluorescence was used to detect m6A expression. The results demonstrated that m6A expression decreased in the 2-cell stage, whereas it increased in the 8-cell stage of PA embryos. Taken together, these results suggest that the expression of RNA methylation-related genes was perturbed, leading to abnormal m6A modification during early development in PA embryos.
Collapse
Affiliation(s)
- Jindong Hao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yu Xianfeng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Wei Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Wei
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Minghui Qi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Liang Han
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuming Shi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- Department of Emergency, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
229
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
230
|
Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, Zhao G. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 2019; 18:142. [PMID: 31607270 PMCID: PMC6790244 DOI: 10.1186/s12943-019-1065-4] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. METHODS qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. RESULTS Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the "reader" protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. CONCLUSIONS Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.
Collapse
Affiliation(s)
- Ben Yue
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080 China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Ran Cui
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Xingwang Cheng
- Department of General Surgery, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508 China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
231
|
Ruan J, Cao Y, Ling T, Li P, Wu S, Peng D, Wang Y, Jia X, Chen S, Xu A, Yuan S. DDX23, an Evolutionary Conserved dsRNA Sensor, Participates in Innate Antiviral Responses by Pairing With TRIF or MAVS. Front Immunol 2019; 10:2202. [PMID: 31620127 PMCID: PMC6759578 DOI: 10.3389/fimmu.2019.02202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
DExD/H-box helicases play essential roles in RNA metabolism, and emerging data suggests that they have additional functions in antiviral immunity across species. However, little is known about this evolutionarily conserved family in antiviral responses in lower species. Here, through isolation of poly(I:C)-binding proteins in amphioxus, an extant basal chordate, we found that DExD/H-box helicases DHX9, DHX15, and DDX23 are responsible for cytoplasmic dsRNA detection in amphioxus. Since the antiviral roles of DDX23 have not been characterized in mammals, we performed further poly(I:C) pull-down assays and found that human DDX23 binds to LMW poly(I:C) through its N-terminal region, suggesting that DDX23 is an evolutionarily conserved dsRNA sensor. Knockdown of human DDX23 enhanced the replication of VSV and reduced the activation of the NF-κB and IRF3. Moreover, when stimulated with poly(I:C) or VSV, human DDX23 translocated from the nucleus to the cytoplasm and formed complexes with TRIF or MAVS to initiate downstream signaling. Collectively, this comparative immunological study not only defined DDX23 as an emerging nuclear pattern recognition receptor (PRR) for the innate sensing of an RNA virus, but also extended the essential role of the DExD/H helicase family in viral RNA sensing from mammals to basal chordates.
Collapse
Affiliation(s)
- Jie Ruan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yange Cao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Ling
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiyi Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shengpeng Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dezhi Peng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Jia
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
232
|
TSLP Exacerbates Septic Inflammation via Murine Double Minute 2 (MDM2) Signaling Pathway. J Clin Med 2019; 8:jcm8091350. [PMID: 31480519 PMCID: PMC6780965 DOI: 10.3390/jcm8091350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is crucial for Th2-mediated inflammation. Sepsis is a serious systemic inflammatory reaction with organ dysfunction by infection. However, the function of TSLP during sepsis is poorly understood. Thus, we investigated a role and regulatory mechanism of TSLP during sepsis. Sepsis was induced by lipopolysaccharides (LPS) or Escherichia coli DH5α injection in mice. TSLP levels were measured in human subjects, mice, and macrophages. TSLP deficiency or murine double minute 2 (MDM2) deficiency was induced using siRNA or an MDM2 inhibitor, nutlin-3a. We found that TSLP levels were elevated in serum of patients and mice with sepsis. TSLP deficiency lowered liver damage and inflammatory cytokine levels in mice with sepsis. TSLP was produced by the MDM2/NF-κB signaling pathway in LPS-stimulated macrophages. TSLP downregulation by an MDM2 inhibitor, nutlin-3a, alleviated clinical symptoms and septic inflammatory responses. Pharmacological inhibition of TSLP level by cisplatin reduced the septic inflammatory responses. Altogether, the present results show that TSLP exacerbates septic inflammation via the MDM2 signaling pathway, suggesting that TSLP may be a potential target for the treatment of sepsis.
Collapse
|
233
|
Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, Xu H, Niu Y, Cao X. N6-methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication. Science 2019; 365:1171-1176. [DOI: 10.1126/science.aax4468] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
Host cell metabolism can be modulated by viral infection, affecting viral survival or clearance. Yet the cellular metabolism rewiring mediated by the N6-methyladenosine (m6A) modification in interactions between virus and host remains largely unknown. Here we report that in response to viral infection, host cells impair the enzymatic activity of the RNA m6A demethylase ALKBH5. This behavior increases the m6A methylation on α-ketoglutarate dehydrogenase (OGDH) messenger RNA (mRNA) to reduce its mRNA stability and protein expression. Reduced OGDH decreases the production of the metabolite itaconate that is required for viral replication. With reduced OGDH and itaconate production in vivo, Alkbh5-deficient mice display innate immune response–independent resistance to viral exposure. Our findings reveal that m6A RNA modification–mediated down-regulation of the OGDH-itaconate pathway reprograms cellular metabolism to inhibit viral replication, proposing potential targets for controlling viral infection.
Collapse
|
234
|
Li D, Fu S, Wu Z, Yang W, Ru Y, Shu H, Liu X, Zheng H. DDX56 inhibits type I interferon by disrupting assembly of IRF3-IPO5 to inhibit IRF3 nucleus import. J Cell Sci 2019; 133:133/5/jcs230409. [PMID: 31340999 PMCID: PMC6899003 DOI: 10.1242/jcs.230409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Transcription factor IRF3-mediated type I interferon induction plays a role in antiviral innate immunity. However, mechanisms for the control and regulation of IRF3 nuclear import remain largely unknown. We have identified DEAD box polypeptide 56 (DDX56) as a negative regulator of virus-triggered IFN-β induction. Overexpression of DDX56 suppressed nuclear translocation of IRF3 via disrupting the IRF3–IOP5 interaction, whereas knockdown or knockout of DDX56 had the opposite effect. In addition, the interaction between DDX56 and IRF3 increased during viral infection. We further found that the D166 site of DDX56 was essential for inhibiting IRF3 import into the nucleus. Our findings suggest that DDX56 regulates antiviral innate immunity by inhibiting the nuclear translocation of IRF3, revealing a novel mechanism of the DDX56-mediated innate antiviral response. This article has an associated First Person interview with the first author of the paper. Summary: DDX56 is a negative regulator of virus-triggered IFN-β induction that acts by disruputing the IRF3–IOP5 interaction to inhibit the import of IRF3 into the nucleus.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Shaozu Fu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Zhengqian Wu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Hongbing Shu
- Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
235
|
McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, Henderson E, Arra M, Canki M, Fabris D, Pager CT. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 2019; 46:5776-5791. [PMID: 29373715 PMCID: PMC6009648 DOI: 10.1093/nar/gky029] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.
Collapse
Affiliation(s)
- Will McIntyre
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Netzband
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gaston Bonenfant
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Jason M Biegel
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Clare Miller
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gabriele Fuchs
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric Henderson
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Manoj Arra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Mario Canki
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Daniele Fabris
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T Pager
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
236
|
Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019; 365:science.aav0758. [PMID: 31320558 DOI: 10.1126/science.aav0758] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/29/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
DNA viruses typically eject genomic DNA into the nuclei of host cells after entry. It is unclear, however, how nuclear pathogen-derived DNA triggers innate immune responses. We report that heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) recognizes pathogenic DNA and amplifies interferon-α/β (IFN-α/β) production. Upon DNA virus infection, nuclear-localized hnRNPA2B1 senses viral DNA, homodimerizes, and is then demethylated at arginine-226 by the arginine demethylase JMJD6. This results in hnRNPA2B1 translocation to the cytoplasm where it activates the TANK-binding kinase 1-interferon regulatory factor 3 (TBK1-IRF3) pathway, leading to IFN-α/β production. Additionally, hnRNPA2B1 facilitates N 6-methyladenosine (m6A) modification and nucleocytoplasmic trafficking of CGAS, IFI16, and STING messenger RNAs. This, in turn, amplifies the activation of cytoplasmic TBK1-IRF3 mediated by these factors. Thus, hnRNPA2B1 plays important roles in initiating IFN-α/β production and enhancing stimulator of interferon genes (STING)-dependent cytoplasmic antiviral signaling.
Collapse
Affiliation(s)
- Lei Wang
- National Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China.,National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Mingyue Wen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China. .,National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China.,National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
237
|
Williams GD, Gokhale NS, Horner SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine. Annu Rev Virol 2019; 6:235-253. [PMID: 31283446 DOI: 10.1146/annurev-virology-092818-015559] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the RNA modification N6-methyladenosine (m6A) has been found to play a role in the life cycles of numerous viruses and also in the cellular response to viral infection. m6A has emerged as a regulator of many fundamental aspects of RNA biology. Here, we highlight recent advances in techniques for the study of m6A, as well as advances in our understanding of the cellular machinery that controls the addition, removal, recognition, and functions of m6A. We then summarize the many newly discovered roles of m6A during viral infection, including how it regulates innate and adaptive immune responses to infection. Overall, the goals of this review are to summarize the roles of m6A on both cellular and viral RNAs and to describe future directions for uncovering new functions of m6A during infection.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
238
|
Li Y, Wu K, Quan W, Yu L, Chen S, Cheng C, Wu Q, Zhao S, Zhang Y, Zhou L. The dynamics of FTO binding and demethylation from the m 6A motifs. RNA Biol 2019; 16:1179-1189. [PMID: 31149892 DOI: 10.1080/15476286.2019.1621120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
N6-methyladenosine (m6A) is considered as a reversible RNA modification occurring more frequently on the GAC than AAC context in vivo, which regulates post-transcriptional gene expression in mammalian cells. m6A 'writers' METTL3 and METTL14 demonstrate a strong preference for binding AC-containing motifs in living cells. However, this evidence is currently lacking for m6A erasers, leaving the dynamics of the internal m6A modification under debate recently. We analysed three recently published FTO CLIP-seq data sets and two generated in this study, one of the two known m6A 'erasers'. FTO binding peaks from all cell lines contain RRACH motifs. Only those from K562, 3T3-L1and HeLa cells were enriched in AC-containing motifs, while those from HEK293 were not. The exogenously overexpressed FTO effectively binds to m6A motif-containing RNA sites. FTO overexpression specifically removed m6A modification from GGACU and RRACU motifs in a concentration-dependent manner. These findings underline the dynamics of FTO in target selection, which is predicted to contribute to both the m6A dynamics and the FTO plasticity in biological functions and diseases.
Collapse
Affiliation(s)
- Yixing Li
- a State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University , Nanning , P.R. China
| | - Kejing Wu
- b Center for Genome Analysis, ABLife Inc ., Wuhan , Hubei , China
| | - Weili Quan
- b Center for Genome Analysis, ABLife Inc ., Wuhan , Hubei , China.,c Laboratory for Genome Regulation and Human Health, ABLife Inc ., Wuhan , Hubei , China
| | - Lin Yu
- a State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University , Nanning , P.R. China
| | - Shuang Chen
- c Laboratory for Genome Regulation and Human Health, ABLife Inc ., Wuhan , Hubei , China
| | - Chao Cheng
- b Center for Genome Analysis, ABLife Inc ., Wuhan , Hubei , China
| | - Qijia Wu
- c Laboratory for Genome Regulation and Human Health, ABLife Inc ., Wuhan , Hubei , China
| | - Shuhong Zhao
- d Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University , Wuhan , P. R. China
| | - Yi Zhang
- b Center for Genome Analysis, ABLife Inc ., Wuhan , Hubei , China.,c Laboratory for Genome Regulation and Human Health, ABLife Inc ., Wuhan , Hubei , China
| | - Lei Zhou
- a State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University , Nanning , P.R. China
| |
Collapse
|
239
|
Chen J, Fang X, Zhong P, Song Z, Hu X. N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biol 2019; 16:991-1000. [PMID: 31107151 DOI: 10.1080/15476286.2019.1620060] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA epigenetics has received a great deal of attention in recent years, and the reversible N6-methyladenosine (m6A) modification on messenger RNAs (mRNAs) has emerged as a widespread phenomenon. The vital roles of m6A in diverse biological processes are dependent on many RNA-binding proteins (RBPs) with 'reader' or 'nonreader' functions. Moreover, m6A effector proteins affect cellular processes, such as stem cell differentiation, tumor development and the immune response by controlling signal transduction. This review provides an overview of the interactions of m6A with various RBPs, including the 'reader' proteins (excluding the YT521-B homology (YTH) domain proteins and the heterogeneous nuclear ribonucleoproteins (hnRNPs)), and the functional 'nonreader' proteins, and this review focuses on their specific RNA-binding domains and their associations with other m6A effectors. Furthermore, we summarize key m6A-marked targets in distinct signaling pathways, leading to a better understanding of the cellular m6A machinery.
Collapse
Affiliation(s)
- Jiaxin Chen
- a Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China
| | - Xiao Fang
- b Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China
| | - Pengcheng Zhong
- a Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China
| | - Zhangfa Song
- c Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China
| | - Xiaotong Hu
- a Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China
| |
Collapse
|
240
|
Huan W, Zhang J, Li Y, Zhi K. Involvement of DHX9/YB-1 complex induced alternative splicing of Krüppel-like factor 5 mRNA in phenotypic transformation of vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 317:C262-C269. [PMID: 31116584 DOI: 10.1152/ajpcell.00067.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenotypic transformation of vascular smooth muscle cells is a key phenomenon in the development of aortic dissection disease. However, the molecular mechanisms underlying this phenomenon have not been fully understood. We used β-BAPN combined with ANG II treatment to establish a disease model of acute aortic dissection (AAD) in mice. We first examined the gene expression profile of aortic tissue in mice with AAD using a gene chip, followed by confirmation of DExH-box helicase 9 (DHX9) expression using RT-PCR, Western blot, and immunofluorescence analysis. We further developed vascular smooth muscle cell-specific DHX9 conditional knockout mice and conducted differential and functional analysis of gene expression and alternative splicing in mouse vascular smooth muscle cells. Finally, we examined the involvement of DHX9 in Krüppel-like factor 5 (KLF5) mRNA alternative splicing. Our study reported a significant decrease in the expression of DHX9 in the vascular smooth muscle cells (VSMCs) of mice with AAD. The smooth muscle cell-specific knockout of DHX9 exacerbated the development of AAD and altered the transcriptional level expression of many smooth muscle cell phenotype-related genes. Finally, we reported that DHX9 may induce alternative splicing of KLF5 mRNA by bridging YB-1. These results together suggested a new pathogenic mechanism underlying the development of AAD, and future research of this mechanism may help identify effective therapeutic intervention for AAD.
Collapse
Affiliation(s)
- Wei Huan
- Department of Vascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
241
|
Zhang C, Fu J, Zhou Y. A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Front Immunol 2019; 10:922. [PMID: 31080453 PMCID: PMC6497756 DOI: 10.3389/fimmu.2019.00922] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
Over 100 types of cellular RNA modifications have been identified in both coding and a variety of non-coding RNAs. N6-methyladenosine (m6A) is the most prevalent and abundant post-transcriptional RNA modification on eukaryote mRNA, and its biological functions are mediated by special binding proteins (i.e., methyltransferases, demethylases, and effectors) that recognize this modification. The presence of m6A on transcripts contributes to diverse fundamental cellular functions, such as pre-mRNA splicing, nuclear transport, stability, translation, and microRNA biogenesis, implying an association with numerous human diseases. This review principally summarizes recent progress in the study of m6A methylation mechanisms and relevant roles they play in immunoregulation.
Collapse
Affiliation(s)
- Caiyan Zhang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
242
|
Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao X. Mettl3-mediated mRNA m 6A methylation promotes dendritic cell activation. Nat Commun 2019; 10:1898. [PMID: 31015515 PMCID: PMC6478715 DOI: 10.1038/s41467-019-09903-6] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/02/2019] [Indexed: 01/20/2023] Open
Abstract
N6-methyladenosine (m6A) modification plays important roles in various cellular responses by regulating mRNA biology. However, how m6A modification is involved in innate immunity via affecting the translation of immune transcripts remains to be further investigated. Here we report that RNA methyltransferase Mettl3-mediated mRNA m6A methylation promotes dendritic cell (DC) activation and function. Specific depletion of Mettl3 in DC resulted in impaired phenotypic and functional maturation of DC, with decreased expression of co-stimulatory molecules CD40, CD80 and cytokine IL-12, and reduced ability to stimulate T cell responses both in vitro and in vivo. Mechanistically, Mettl3-mediated m6A of CD40, CD80 and TLR4 signaling adaptor Tirap transcripts enhanced their translation in DC for stimulating T cell activation, and strengthening TLR4/NF-κB signaling-induced cytokine production. Our findings identify a new role for Mettl3-mediated m6A modification in increasing translation of certain immune transcripts for physiological promotion of DC activation and DC-based T cell response. Here the authors examine how m6A modification is involved in innate immunity. They show that RNA methyltransferase Mettl3-mediated mRNA m6A methylation promotes dendritic cell (DC) activation and function, and in promoting DC-based T cells responses.
Collapse
Affiliation(s)
- Huamin Wang
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.,College of Life Science, Nankai University, 300071, Tianjin, China
| | - Xiang Hu
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.,Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Mingyan Huang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Lijia Ma
- Westlake Institute for Advanced Study, 321116, Hangzhou, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xuetao Cao
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China. .,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China. .,College of Life Science, Nankai University, 300071, Tianjin, China. .,Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
243
|
|
244
|
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The Critical Role of RNA m6A Methylation in Cancer. Cancer Res 2019; 79:1285-1292. [DOI: 10.1158/0008-5472.can-18-2965] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
|
245
|
Dang W, Xie Y, Cao P, Xin S, Wang J, Li S, Li Y, Lu J. N 6-Methyladenosine and Viral Infection. Front Microbiol 2019; 10:417. [PMID: 30891023 PMCID: PMC6413633 DOI: 10.3389/fmicb.2019.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A), as a dynamic posttranscriptional RNA modification, recently gave rise to the field of viral epitranscriptomics. The interaction between virus and host is affected by m6A. Multiple m6A-modified viral RNAs have been observed. The epitranscriptome of m6A in host cells are altered after viral infection. The expression of viral genes, the replication of virus and the generation of progeny virions are influenced by m6A modifications in viral RNAs during virus infection. Meanwhile, the decorations of m6A in host mRNAs can make viral infections more likely to happen or can enhance the resistance of host to virus infection. However, the mechanism of m6A regulation in viral infection and host immune response has not been thoroughly elucidated to date. With the development of sequencing-based biotechnologies, transcriptome-wide mapping of m6A in viruses has been achieved, laying the foundation for expanding its functions and corresponding mechanisms. In this report, we summarize the positive and negative effects of m6A in distinct viral infection. Given the increasingly important roles of m6A in diverse viruses, m6A represents a novel potential target for antiviral therapy.
Collapse
Affiliation(s)
- Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan Xie
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jia Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Shen Li
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yanling Li
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
246
|
CCR7 Chemokine Receptor-Inducible lnc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-1α-Mediated Glycolysis. Immunity 2019; 50:600-615.e15. [PMID: 30824325 DOI: 10.1016/j.immuni.2019.01.021] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/22/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
CCR7 chemokine receptor stimulation induces rapid but transient dendritic cell (DC) migration toward draining lymph nodes, which is critical for the initiation of protective immunity and maintenance of immune homeostasis. The mechanisms for terminating CCR7-mediated DC migration remain incompletely understood. Here we have identified a long non-coding RNA lnc-Dpf3 whose feedback restrained CCR7-mediated DC migration. CCR7 stimulation upregulated lnc-Dpf3 via removing N6-methyladenosine (m6A) modification to prevent RNA degradation. DC-specific lnc-Dpf3 deficiency increased CCR7-mediated DC migration, leading to exaggerated adaptive immune responses and inflammatory injuries. Mechanistically, CCR7 stimulation activated the HIF-1α transcription factor pathway in DCs, leading to metabolic reprogramming toward glycolysis for DC migration. lnc-Dpf3 directly bound to HIF-1α and suppressed HIF-1α-dependent transcription of the glycolytic gene Ldha, thus inhibiting DC glycolytic metabolism and migratory capacity. We demonstrate a critical role for CCR7-inducible lnc-Dpf3 in coupling epigenetic and metabolic pathways to feedback-control DC migration and inflammatory responses.
Collapse
|
247
|
Yang J, Wang H, Zhang W. Regulation of Virus Replication and T Cell Homeostasis by N 6-Methyladenosine. Virol Sin 2019; 34:22-29. [PMID: 30671921 DOI: 10.1007/s12250-018-0075-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023] Open
Abstract
RNA modifications are abundant in eukaryotes, bacteria, and archaea. N6-methyladenosine (m6A), a type of RNA modification mainly found in messenger RNA (mRNA), has significant effects on the metabolism and function of mRNAs. This modification is governed by three types of proteins, namely methyltransferases as "writers", demethylases as "erasers", and specific m6A-binding proteins (YTHDF1-3) as "readers". Further, it is important for the regulation of cell fate and has a critical function in many biological processes including virus replication, stem cell differentiation, and cancer development, and exerts its effect by controlling gene expression. Herein, we summarize recent advances in research on m6A in virus replication and T cell regulation, which is a rapidly emerging field that will facilitate the development of antiviral therapies and the study of innate immunity.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
248
|
The m 6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 2019; 38:3667-3680. [PMID: 30659266 DOI: 10.1038/s41388-019-0683-z] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in many bioprocesses. However, its functions in bladder cancer (BCa) remain elusive. Here, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human BCa. Knockdown of METTL3 drastically reduced BCa cell proliferation, invasion, and survival in vitro and tumorigenicity in vivo. On the other hand, overexpression of METTL3 significantly promoted BCa cell growth and invasion. Through transcriptome sequencing, m6A sequencing and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we revealed the profile of METTL3-mediated m6A modification in BCa cells for the first time. AF4/FMR2 family member 4 (AFF4), two key regulators of NF-κB pathway (IKBKB and RELA) and MYC were further identified as direct targets of METTL3-mediated m6A modification. In addition, we showed that besides NF-κB, AFF4 binds to the promoter of MYC and promotes its expression, implying a novel multilevel regulatory network downstream of METTL3. Our results uncovered an AFF4/NF-κB/MYC signaling network operated by METTL3-mediated m6A modification and provided insight into the mechanisms of BCa progression.
Collapse
|
249
|
Zhang K, Zhang Y, Xue J, Meng Q, Liu H, Bi C, Li C, Hu L, Yu H, Xiong T, Yang Y, Cui S, Bu Z, He X, Li J, Huang L, Weng C. DDX19 Inhibits Type I Interferon Production by Disrupting TBK1-IKKε-IRF3 Interactions and Promoting TBK1 and IKKε Degradation. Cell Rep 2019; 26:1258-1272.e4. [DOI: 10.1016/j.celrep.2019.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
|
250
|
Perčulija V, Ouyang S. Diverse Roles of DEAD/DEAH-Box Helicases in Innate Immunity and Diseases. HELICASES FROM ALL DOMAINS OF LIFE 2019. [PMCID: PMC7158350 DOI: 10.1016/b978-0-12-814685-9.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DEAD/DEAH-box helicases are enzymes that belong to the DEAD/H-box family of SF2 helicase superfamily. These enzymes are essential in RNA metabolism, where they are involved in a number of processes that require manipulation of RNA structure. Recent studies have found that some DEAD/DEAH-box helicases play important roles in innate immunity, where they act as sensors of cytosolic DNA/RNA, as adaptor proteins, or as regulators of signaling and gene expression. In spite of their function in immunity, DEAD/DEAH-box helicases can also be hijacked and exploited by viruses to circumvent detection and aid in viral replication. These findings not only imply that DEAD/DEAH-box helicases have a broader function than previously thought, but also give us a much better understanding of immune mechanisms and diseases that arise due to the dysregulation or evasion thereof. In this chapter, we demonstrate the known scope of activities of human DEAD/DEAH-box helicases in innate immunity and interaction with viruses or other pathogens. Additionally, we give an outline of diseases in which they are, or may be, involved in the context of immunity.
Collapse
|