201
|
Plowey ED, Chu CT. Synaptic dysfunction in genetic models of Parkinson's disease: a role for autophagy? Neurobiol Dis 2011; 43:60-7. [PMID: 20969957 PMCID: PMC3049988 DOI: 10.1016/j.nbd.2010.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 11/21/2022] Open
Abstract
The past decade in Parkinson's disease (PD) research has been punctuated by numerous advances in understanding genetic factors that contribute to the disease. Common to most of the genetic models of Parkinsonian neurodegeneration are pathologic mechanisms of mitochondrial dysfunction, secretory vesicle dysfunction and oxidative stress that likely trigger common cell death mechanisms. Whereas presynaptic function is implicated in the function/dysfunction of α-synuclein, the first gene shown to contribute to PD, synaptic function has not comprised a major focus in most other genetic models. However, recent advances in understanding the impact of mutations in parkin and LRRK2 have also yielded insights into synaptic dysfunction as a possible early pathogenic mechanism. Autophagy is a common neuronal response in each of these genetic models of PD, participating in the clearance of protein aggregates and injured mitochondria. However, the potential consequences of autophagy upregulation on synaptic structure and function remain unknown. In this review, we discuss the evidence that supports a role for synaptic dysfunction in the neurodegenerative cascade in PD, and highlight unresolved questions concerning a potential role for autophagy in either pathological or compensatory synaptic remodeling. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Edward D Plowey
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
202
|
Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B, Masliah E, Lipton SA, Gu Z. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 2011; 6:34. [PMID: 21595948 PMCID: PMC3120712 DOI: 10.1186/1750-1326-6-34] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulation of aberrant proteins to form Lewy bodies (LBs) is a hallmark of Parkinson's disease (PD). Ubiquitination-mediated degradation of aberrant, misfolded proteins is critical for maintaining normal cell function. Emerging evidence suggests that oxidative/nitrosative stress compromises the precisely-regulated network of ubiquitination in PD, particularly affecting parkin E3 ligase activity, and contributes to the accumulation of toxic proteins and neuronal cell death. RESULTS To gain insight into the mechanism whereby cell stress alters parkin-mediated ubiquitination and LB formation, we investigated the effect of oxidative stress. We found significant increases in oxidation (sulfonation) and subsequent aggregation of parkin in SH-SY5Y cells exposed to the mitochondrial complex I inhibitor 1-methyl-4-phenlypyridinium (MPP+), representing an in vitro cell-based PD model. Exposure of these cells to direct oxidation via pathological doses of H2O2 induced a vicious cycle of increased followed by decreased parkin E3 ligase activity, similar to that previously reported following S-nitrosylation of parkin. Pre-incubation with catalase attenuated H2O2 accumulation, parkin sulfonation, and parkin aggregation. Mass spectrometry (MS) analysis revealed that H2O2 reacted with specific cysteine residues of parkin, resulting in sulfination/sulfonation in regions of the protein similar to those affected by parkin mutations in hereditary forms of PD. Immunohistochemistry or gel electrophoresis revealed an increase in aggregated parkin in rats and primates exposed to mitochondrial complex I inhibitors, as well as in postmortem human brain from patients with PD with LBs. CONCLUSION These findings show that oxidative stress alters parkin E3 ligase activity, leading to dysfunction of the ubiquitin-proteasome system and potentially contributing to LB formation.
Collapse
Affiliation(s)
- Fanjun Meng
- Department of Pathology & Anatomical Sciences, Center for Translational Neuroscience, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Parelkar SS, Cadena JG, Kim C, Wang Z, Sugal R, Bentley B, Moral L, Ardley HC, Schwartz LM. The Parkin-Like Human Homolog of Drosophila Ariadne-1 (HHARI) Can Induce Aggresome Formation in Mammalian Cells and Is Immunologically Detectable in Lewy Bodies. J Mol Neurosci 2011; 46:109-21. [DOI: 10.1007/s12031-011-9535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/28/2011] [Indexed: 01/03/2023]
|
204
|
Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 2011; 14:1929-38. [PMID: 21194381 PMCID: PMC3078490 DOI: 10.1089/ars.2010.3799] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondria, which convert energy for the cell, accumulate damage with age, and the resulting mitochondrial dysfunction has been linked to the development of degenerative diseases and aging. To curb the accumulation of damaged mitochondria, the cell has elaborated a number of mitochondrial quality control processes. We describe recent work suggesting that Parkin and PTEN-induced putative kinase 1 (PINK1), two gene products linked to familial forms of parkinsonism, may constitute one of the cell's mitochondrial quality control pathways-identifying impaired mitochondria and selectively trimming them from the mitochondrial network by mitophagy. In particular, we discuss the regulation of PINK1 protein expression and Parkin localization by the bioenergetic status of individual mitochondria; the mechanism by which PINK1 recruits Parkin to the outer mitochondrial membrane; and Parkin's promotion of mitophagy through its ubiquitination of outer mitochondrial membrane proteins. This recent work suggests that Parkin and PINK1 may be among the first mammalian proteins identified with a direct role in regulating mitophagy, and implicate a failure of mitophagy in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Derek P Narendra
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
205
|
Calì T, Ottolini D, Brini M. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Biofactors 2011; 37:228-40. [PMID: 21674642 DOI: 10.1002/biof.159] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (α-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca(2+) homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration.
Collapse
Affiliation(s)
- Tito Calì
- Department of Biological Chemistry, University of Padova, Italy
| | | | | |
Collapse
|
206
|
Fernandes C, Rao Y. Genome-wide screen for modifiers of Parkinson's disease genes in Drosophila. Mol Brain 2011; 4:17. [PMID: 21504582 PMCID: PMC3094290 DOI: 10.1186/1756-6606-4-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/19/2011] [Indexed: 01/12/2023] Open
Abstract
Background Mutations in parkin and PTEN-induced kinase 1 (Pink1) lead to autosomal recessive forms of Parkinson's disease (PD). parkin and Pink1 encode a ubiquitin-protein ligase and a mitochondrially localized serine/threonine kinase, respectively. Recent studies have implicated Parkin and Pink1 in a common and evolutionarily conserved pathway for protecting mitochondrial integrity. Results To systematically identify novel components of the PD pathways, we generated a genetic background that allowed us to perform a genome-wide F1 screen for modifiers of Drosophila parkin (park) and Pink1 mutant phenotype. From screening ~80% of the fly genome, we identified a number of cytological regions that interact with park and/or Pink1. Among them, four cytological regions were selected for identifying corresponding PD-interacting genes. By analyzing smaller deficiency chromosomes, available transgenic RNAi lines, and P-element insertions, we identified five PD-interacting genes. Among them, opa1 and drp1 have been previously implicated in the PD pathways, whereas debra (dbr), Pi3K21B and β4GalNAcTA are novel PD-interacting genes. Conclusions We took an unbiased genetic approach to systematically isolate modifiers of PD genes in Drosophila. Further study of novel PD-interacting genes will shed new light on the function of PD genes and help in the development of new therapeutic strategies for treating Parkinson's disease.
Collapse
Affiliation(s)
- Caroline Fernandes
- Department of Biology, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
207
|
Rankin CA, Roy A, Zhang Y, Richter M. Parkin, A Top Level Manager in the Cell's Sanitation Department. Open Biochem J 2011; 5:9-26. [PMID: 21633666 PMCID: PMC3104551 DOI: 10.2174/1874091x01105010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 01/31/2023] Open
Abstract
Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to bind zinc ions. RING domains may interact with DNA or with other proteins and perform a wide range of functions. Some function as E3 ubiquitin ligases, participating in attachment of ubiquitin chains to signal proteasome degradation; however, ubiquitin may be attached for purposes other than proteasome degradation. It was determined that the C-terminal most RING, RING2, is essential for Parkin to function as an E3 ubiquitin ligase and a number of substrates have been identified. However, Parkin also participates in a number of other fiunctions, such as DNA repair, microtubule stabilization, and formation of aggresomes. Some functions, such as participation in a multi-protein complex implicated in NMDA activity at the post synaptic density, do not require ubiquitination of substrate molecules. Recent observations of RING proteins suggest their function may be regulated by zinc ion binding. We have modeled the three RING domains of Parkin and have identified a new set of RING2 ligands. This set allows for binding of two rather than just one zinc ion, opening the possibility that the number of zinc ions bound acts as a molecular switch to modulate Parkin function.
Collapse
Affiliation(s)
- Carolyn A Rankin
- Molecular Biosciences Department, University of Kansas, Lawrence KS 66045, USA
| | | | | | | |
Collapse
|
208
|
Safadi SS, Barber KR, Shaw GS. Impact of autosomal recessive juvenile Parkinson's disease mutations on the structure and interactions of the parkin ubiquitin-like domain. Biochemistry 2011; 50:2603-10. [PMID: 21348451 PMCID: PMC3065874 DOI: 10.1021/bi200065g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Autosomal recessive juvenile parkinsonism (ARJP) is an early onset familial form of Parkinson’s disease. Approximately 50% of all ARJP cases are attributed to mutations in the gene park2, coding for the protein parkin. Parkin is a multidomain E3 ubiquitin ligase with six distinct domains including an N-terminal ubiquitin-like (Ubl) domain. In this work we examined the structure, stability, and interactions of the parkin Ubl domain containing most ARJP causative mutations. Using NMR spectroscopy we show that the Ubl domain proteins containing the ARJP substitutions G12R, D18N, K32T, R33Q, P37L, and K48A retained a similar three-dimensional fold as the Ubl domain, while at least one other (V15M) had altered packing. Four substitutions (A31D, R42P, A46P, and V56E) result in poor folding of the domain, while one protein (T55I) showed evidence of heterogeneity and aggregation. Further, of the substitutions that maintained their three-dimensional fold, we found that four of these (V15M, K32T, R33Q, and P37L) lead to impaired function due to decreased ability to interact with the 19S regulatory subunit S5a. Three substitutions (G12R, D18N, and Q34R) with an uncertain role in the disease did not alter the three-dimensional fold or S5a interaction. This work provides the first extensive characterization of the structural effects of causative mutations within the ubiquitin-like domain in ARJP.
Collapse
Affiliation(s)
- Susan S Safadi
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
209
|
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 2011; 144:689-702. [PMID: 21376232 PMCID: PMC3063894 DOI: 10.1016/j.cell.2011.02.010] [Citation(s) in RCA: 772] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 02/04/2011] [Indexed: 01/08/2023]
Abstract
A hallmark of Parkinson's disease (PD) is the preferential loss of substantia nigra dopamine neurons. Here, we identify a new parkin interacting substrate, PARIS (ZNF746), whose levels are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that accumulates in models of parkin inactivation and in human PD brain. PARIS represses the expression of the transcriptional coactivator, PGC-1α and the PGC-1α target gene, NRF-1 by binding to insulin response sequences in the PGC-1α promoter. Conditional knockout of parkin in adult animals leads to progressive loss of dopamine (DA) neurons in a PARIS-dependent manner. Moreover, overexpression of PARIS leads to the selective loss of DA neurons in the substantia nigra, and this is reversed by either parkin or PGC-1α coexpression. The identification of PARIS provides a molecular mechanism for neurodegeneration due to parkin inactivation.
Collapse
Affiliation(s)
- Joo-Ho Shin
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Han Seok Ko
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hochul Kang
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yunjong Lee
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yun-Il Lee
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Pletinkova
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C. Troconso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
210
|
Abstract
Parkinson's disease (PD) is a primary neurodegenerative movement disorder. In most cases it occurs as a sporadic type of disease, but there are also rare familial forms. Pathologically Parkinson's disease is characterized by loss of dopaminergic neurons in the compact part of substantia nigra. As a part of the neurodegenerative process protein aggregates will accumulate as Lewy bodies in dopaminergic neurons (1). In addition, non-dopaminergic neurons are known to be affected in Parkinsons's disease, for example, in several brain stem nuclei and the olfactoric bulb (2-4). The pathogenic process underlying the death of dopaminergic neurons is far from fully understood. Along with mitochondrial dysfunction, excitotoxicity, neuroinflammation and oxidative stress (5-8), recent evidence indicates that accumulation of protein filaments in Lewy bodies actively takes part in the degeneration of neurons. This will be further discussed below.
Collapse
Affiliation(s)
- V Gundersen
- Department of Anatomy and the CMBN, University of Oslo, Oslo, Norway.
| |
Collapse
|
211
|
Identification of Parkinson’s disease candidate genes using CAESAR and screening of MAPT and SNCAIP in South African Parkinson’s disease patients. J Neural Transm (Vienna) 2011; 118:889-97. [DOI: 10.1007/s00702-011-0591-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/24/2011] [Indexed: 01/08/2023]
|
212
|
Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J Neurosci 2011; 31:157-63. [PMID: 21209200 PMCID: PMC3039694 DOI: 10.1523/jneurosci.1833-10.2011] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 08/30/2010] [Accepted: 10/23/2010] [Indexed: 11/21/2022] Open
Abstract
Mutations in parkin, an E3 ubiquitin ligase, are the most common cause of autosomal-recessive Parkinson's disease (PD). Here, we show that the stress-signaling non-receptor tyrosine kinase c-Abl links parkin to sporadic forms of PD via tyrosine phosphorylation. Under oxidative and dopaminergic stress, c-Abl was activated in cultured neuronal cells and in striatum of adult C57BL/6 mice. Activated c-Abl was found in the striatum of PD patients. Concomitantly, parkin was tyrosine-phosphorylated, causing loss of its ubiquitin ligase and cytoprotective activities, and the accumulation of parkin substrates, AIMP2 (aminoacyl tRNA synthetase complex-interacting multifunctional protein 2) (p38/JTV-1) and FBP-1.STI-571, a selective c-Abl inhibitor, prevented tyrosine phosphorylation of parkin and restored its E3 ligase activity and cytoprotective function both in vitro and in vivo. Our results suggest that tyrosine phosphorylation of parkin by c-Abl is a major post-translational modification that leads to loss of parkin function and disease progression in sporadic PD. Moreover, inhibition of c-Abl offers new therapeutic opportunities for blocking PD progression.
Collapse
Affiliation(s)
- Syed Z. Imam
- Departments of Medicine and
- Pharmacology and
- the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78229
| | | | - Ayako Yamamoto
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tübingen, Germany, and
| | | | - Syed F. Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/United States Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - James L. Roberts
- Pharmacology and
- the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Philipp J. Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tübingen, Germany, and
| | - Robert A. Clark
- Departments of Medicine and
- the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Senlin Li
- Departments of Medicine and
- Pharmacology and
- the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|
213
|
Trancikova A, Ramonet D, Moore DJ. Genetic Mouse Models of Neurodegenerative Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:419-82. [DOI: 10.1016/b978-0-12-384878-9.00012-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
214
|
Harvey BK, Richie CT, Hoffer BJ, Airavaara M. Transgenic animal models of neurodegeneration based on human genetic studies. J Neural Transm (Vienna) 2011; 118:27-45. [PMID: 20931247 PMCID: PMC3084899 DOI: 10.1007/s00702-010-0476-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/11/2022]
Abstract
The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease.
Collapse
Affiliation(s)
- Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
215
|
Khandelwal PJ, Dumanis SB, Feng LR, Maguire-Zeiss K, Rebeck G, Lashuel HA, Moussa CE. Parkinson-related parkin reduces α-Synuclein phosphorylation in a gene transfer model. Mol Neurodegener 2010; 5:47. [PMID: 21050448 PMCID: PMC2987994 DOI: 10.1186/1750-1326-5-47] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/04/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND α-Synuclein aggregates in Lewy bodies and plays a central role in the pathogenesis of a group of neurodegenerative disorders, known as "Synucleinopathies", including Parkinson's disease. Parkin mutations result in loss of parkin E3-ubiquitin ligase activity and cause autosomal recessive early onset parkinsonism. RESULTS We tested how these two genes interact by examining the effects of parkin on post-translational modification of α-Synuclein in gene transfer animal models, using a lentiviral gene delivery system into the striatum of 2-month old male Sprague Dawley rats.Viral expression of wild type α-Synuclein caused accumulation of α-Synuclein and was associated with increased cell death and inflammation. α-Synuclein increased PLK2 levels and GSK-3β activity and increased the levels of phosphorylated α-Synuclein and Tau. Parkin co-expression reduced the levels of phosphorylated α-Synuclein and attenuated cell death and inflammation. Parkin reduced PLK2 levels and increased PP2A activation. CONCLUSIONS These data suggest that parkin reduces α-Synuclein levels and alters the balance between phosphatase and kinase activities that affect the levels of phosphorylated α-Synuclein. These results indicate novel mechanisms for parkin protection against α-Synuclein-induced toxicity in PD.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center, Washington D,C, U,S,A, 20007.
| | | | | | | | | | | | | |
Collapse
|
216
|
Nakamura T, Lipton SA. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases. Apoptosis 2010; 15:1354-63. [PMID: 20177970 PMCID: PMC2978885 DOI: 10.1007/s10495-010-0476-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer's disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson's disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Stuart A. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
- Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92037 USA
| |
Collapse
|
217
|
Burbulla LF, Krebiehl G, Krüger R. Balance is the challenge--the impact of mitochondrial dynamics in Parkinson's disease. Eur J Clin Invest 2010; 40:1048-60. [PMID: 20735469 DOI: 10.1111/j.1365-2362.2010.02354.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Impaired mitochondrial function has been implicated in neurodegeneration in Parkinson's disease (PD) based on biochemical and pathoanatomical studies in brains of PD patients. This observation was further substantiated by the identification of exogenic toxins, i.e. complex I inhibitors that directly affect mitochondrial energy metabolism and cause Parkinsonism in humans and various animal models. Recently, insights into the underlying molecular signalling pathways leading to alterations in mitochondrial homeostasis were gained based on the functional characterization of mitoprotective genes identified in rare forms of inherited PD. Using in vitro and in vivo loss of function models of the Parkin, PINK1, DJ-1 and Omi/HtrA2 gene, the emerging field of mitochondrial dynamics in PD was established as being critical for the maintenance of mitochondrial function in neurons. This underscored the concept that mitochondria are highly dynamic organelles, which are tightly regulated to continuously adapt shape to functional and anatomical requirements during axonal transport, synaptic signalling, organelle degradation and cellular energy supply. The dissection of pathways involved in mitochondrial quality control clearly established the PINK1/Parkin-pathway in the clearance of dysfunctional mitochondria by autophagy and hints to a complex interplay between PD-associated proteins acting at the mitochondrial interface. The elucidation of this mitoprotective signalling network may help to define novel therapeutic targets for PD via molecular modelling of mitochondria and/or pharmacological modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Lena F Burbulla
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany DZNE, German
| | | | | |
Collapse
|
218
|
Chen D, Gao F, Li B, Wang H, Xu Y, Zhu C, Wang G. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J Biol Chem 2010; 285:38214-23. [PMID: 20889974 DOI: 10.1074/jbc.m110.101469] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Parkin is an E3 ubiquitin ligase that mediates the ubiquitination of protein substrates. The mutations in the parkin gene can lead to a loss of function of parkin and cause autosomal recessive juvenile onset parkinsonism. Recently, parkin was reported to be involved in the regulation of mitophagy. Here, we identify the Bcl-2, an anti-apoptotic and autophagy inhibitory protein, as a substrate for parkin. Parkin directly binds to Bcl-2 via its C terminus and mediates the mono-ubiquitination of Bcl-2, which increases the steady-state levels of Bcl-2. Overexpression of parkin, but not its ligase-deficient forms, decreases autophagy marker LC3 conversion, whereas knockdown of parkin increases LC3 II levels. In HeLa cells, a parkin-deficient cell line, knockdown of parkin does not change LC3 conversion. Moreover, overexpression of parkin enhances the interactions between Bcl-2 and Beclin 1. Our results provide evidence that parkin mono-ubiquitinates Bcl-2 and regulates autophagy via Bcl-2.
Collapse
Affiliation(s)
- Dong Chen
- Laboratory of Molecular Neuropathology, School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | | | | | | | | | | | | |
Collapse
|
219
|
Ottone C, Galasso A, Gemei M, Pisa V, Gigliotti S, Piccioni F, Graziani F, Verrotti di Pianella A. Diminution of eIF4E activity suppresses parkin mutant phenotypes. Gene 2010; 470:12-9. [PMID: 20869429 DOI: 10.1016/j.gene.2010.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 12/31/2022]
Abstract
Mutations in the human parkin (PARK2) gene cause autosomal recessive-juvenile Parkinson's disease (AR-JP). In Drosophila melanogaster, mutant parkin alleles display a broad range of phenotypic alterations, including female infertility. Here we report that reducing the level of eukaryotic translation initiation factor 4E (eIF4E) activity specifically rescues the female sterile phenotypes associated with the parkin(P23) mutant allele. Additional defects, including reduction of pupal viability and body size, are also entirely recovered in both male and female flies of the abovementioned genotype. We further show that a null eIF4E-binding protein (4E-BP) allele counteracts the in vivo effects produced, in a parkin(P23) mutant background, by the reduction of functional eIF4E copy number. Moreover, Parkin and eIF4E interact in vitro and co-localize at the posterior end of developing oocytes. Finally, we show that eIF4E is over-expressed in parkin(P23) mutant ovaries as compared to wild-types. Taken together, our data are consistent with the idea that Parkin and eIF4E act in a common pathway, likely modulating cap-dependent translation initiation events.
Collapse
Affiliation(s)
- Cristina Ottone
- CEINGE-Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
220
|
|
221
|
K63-linked ubiquitination and neurodegeneration. Neurobiol Dis 2010; 43:9-16. [PMID: 20696248 DOI: 10.1016/j.nbd.2010.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/23/2022] Open
Abstract
The proteasome, which identifies and destroys unwanted proteins rapidly, plays a vital role in maintaining cellular protein homeostasis. Proteins that are destined for proteasome-mediated degradation are usually tagged with a chain of ubiquitin linked via lysine (K) 48 that targets them to the proteolytic machinery. However, when the proteasome becomes compromised in its function, it is attractive to think that the cell may switch to an alternative, non-proteolytic form of ubiquitination that could help divert cargo proteins away from an otherwise overloaded proteasome. Of the several types of ubiquitin chain topologies, K63-linked ubiquitination is the only one known to fulfil diverse proteasome-independent roles, including DNA repair, endocytosis and NFκB signaling. By virtue of its apparent dissociation from the proteasome, we have originally proposed that K63-linked ubiquitination may be involved in cargo diversion during proteasomal stress and accordingly, in the biogenesis of inclusion bodies associated with neurodegenerative diseases. Here, we provide an overview of this non-classic form of ubiquitin modification, and discuss current evidence and controversies surrounding our proposed role for K63 polyubiquitin as a key regulator of inclusion dynamics that is relevant to neurodegeneration. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
|
222
|
Ron I, Rapaport D, Horowitz M. Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum Mol Genet 2010; 19:3771-81. [PMID: 20643691 DOI: 10.1093/hmg/ddq292] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gaucher disease (GD), a sphingolipidosis characterized by impaired activity of the lysosomal enzyme glucocerebrosidase (GCase), results from mutations in the GCase-encoding gene, GBA. We have shown that mutant GCase variants present variable degrees of endoplasmic reticulum (ER) retention and undergo ER-associated degradation (ERAD) in the proteasome. Furthermore, the degree of ERAD of mutant GCase variants correlates with and is one of the factors that determine GD severity. An association between GD and Parkinson disease (PD) has been demonstrated by the concurrence of PD in GD patients and the identification of GCase mutations in probands with sporadic PD. One of the genes involved in PD is PARK2, encoding the E3 ubiquitin ligase parkin. Parkin functions in the ERAD of misfolded ER proteins, and it is upregulated by unfolded protein response. Loss of parkin function leads to the accumulation of its substrates, which is deleterious to dopaminergic neurons in PD. We, therefore, tested the possibility that the association between GD and PD reflects the fact that parkin acts as an E3 ligase of mutant GCase variants. Our results showed that mutant GCase variants associate with parkin. Normal parkin, but not its RING finger mutants, affects the stability of mutant GCase variants. Parkin also promotes the accumulation of mutant GCase in aggresome-like structures and is involved in K48-mediated polyubiquitination of GCase mutants, indicating its function as its E3 ligase. We suggest that involvement of parkin in the degradation of mutant GCase explains the concurrence of GD and PD.
Collapse
Affiliation(s)
- Idit Ron
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
223
|
Alladi PA, Mahadevan A, Vijayalakshmi K, Muthane U, Shankar SK, Raju TR. Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Int 2010; 57:530-9. [PMID: 20615443 DOI: 10.1016/j.neuint.2010.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 12/14/2022]
Abstract
Accumulating evidences suggest that dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) during ageing and in Parkinson's disease (PD) is linked to neurodegenerative changes like exponential increase in alpha-synuclein expression and protein misfolding. Lewy body formation is also a quintessential observation in neurodegeneration and PD. In experimental models of PD, GRP78 a neuroprotective endoplasmic reticulum (ER) chaperone protein targets misfolded proteins for degradation and prevents release of caspase12 from the ER. Release of active caspase12 and its translocation to the nucleus induces ER mediated apoptosis. The effect of ageing on these proteins in human nigra is not known. We evaluated alpha-synuclein, caspase12, GRP78 and ubiquitin expression in the SNpc of Asian Indians, using immunohistochemistry and stereology. The number of alpha-synuclein and caspase12 immunoreactive neurons increased gradually with age whereas the number of GRP78-labeled neurons remained stable. In contrast, GRP78 protein expression was significantly upregulated with age, while alpha-synuclein and caspase12 increased slightly. An increase in the size and numbers of marinesco bodies was prominent after the sixth decade. The mild increase in alpha-synuclein expression and occurrence of marinesco bodies suggests ageing induced protein misfolding and GRP78 upregulation indicates presence of ER stress. The logarithmic upregulation of GRP78 could even be an indicator of neuroprotective or neuromodulatory response of ER to protein misfolding and initiation of unfolded protein response pathway. Since dopaminergic neurons are preserved in ageing Asian Indians, our study possibly signifies better proteasomal or ER response and partially explains the lower prevalence of PD in them.
Collapse
Affiliation(s)
- Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | | | | | | | | | | |
Collapse
|
224
|
Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson's disease. Mov Disord 2010; 25 Suppl 1:S32-9. [PMID: 20187240 DOI: 10.1002/mds.22798] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mutations in parkin are the second most common known cause of Parkinson's disease (PD). Parkin is an ubiquitin E3 ligase that monoubiquitinates and polyubiquitinates proteins to regulate a variety of cellular processes. Loss of parkin's E3 ligase activity is thought to play a pathogenic role in both inherited and sporadic PD. Here, we review parkin biology and pathobiology and its role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
225
|
Hwang S, Kim D, Choi G, An SW, Hong YK, Suh YS, Lee MJ, Cho KS. Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila. Mol Cells 2010; 29:575-80. [PMID: 20496123 DOI: 10.1007/s10059-010-0068-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022] Open
Abstract
Parkin is the most prevalent genetic factor in the onset of autosomal recessive juvenile parkinsonism (AR-JP), and mutations in parkin has been reported to cause motor defects, which result from dopamine deficiency caused by dopaminergic neuronal cell death. Activation of c-Jun N-terminal kinase (JNK) has also been implicated in neuronal cell death in Parkinson's disease (PD). Moreover, Drosophila models for AR-JP, loss of function mutants of Drosophila parkin, also show dopaminergic neural degeneration associated with hyperactivation of JNK, increased apoptosis, and mitochondrial defects. However, the molecular mechanism by which Parkin protects cells from apoptosis remains unclear. In the present study, we tested whether Drosophila Parkin suppressed the JNK signaling pathway in developing tissues. Ectopically expressed parkin strongly suppressed the constitutively active form of Hemipterous (Hep(CA)), a Drosophila JNK kinase that induces an eye degeneration phenotype and apoptosis in the eye imaginal disc. Moreover, parkin also suppressed extra vein formation induced by Basket (Bsk), a Drosophila JNK. Interestingly, the bsk mRNA level was markedly reduced by parkin over-expression, suggesting that the effect of parkin on the phenotype induced by activation of JNK signaling was achieved by transcriptional regulation. Furthermore, we found that the expression level of JNK target genes was reduced by parkin over-expression. Taken together, these results suggest that Drosophila Parkin suppresses JNK signaling by reducing bsk transcription.
Collapse
Affiliation(s)
- Soojin Hwang
- Department of Biological Sciences, Konkuk University, Seoul, 143-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. THE PLANT CELL 2010; 22:1716-32. [PMID: 20525848 PMCID: PMC2910972 DOI: 10.1105/tpc.109.073783] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 05/05/2010] [Accepted: 05/17/2010] [Indexed: 05/19/2023]
Abstract
To elucidate potential roles of CUL4-DDB1-DWD (for Cullin 4-Damaged DNA Binding1-DDB1 binding WD40) E3 ligases in abscisic acid (ABA) signaling, we examined ABA sensitivities of T-DNA mutants of a number of Arabidopsis thaliana DWD genes, which encode substrate receptors for CUL4 E3 ligases. Mutants in two DWD genes, DWA1 and DWA2 (DWD hypersensitive to ABA1 and 2), had ABA-hypersensitive phenotypes. Both proteins interacted with DDB1 in yeast two-hybrid assays and associated with DDB1 and CUL4 in vivo, implying they could form CUL4-based complexes. Several ABA-responsive genes were hyperinduced in both mutants, and the ABA-responsive transcription factors ABA INSENSITIVE 5 (ABI5) and MYC2 accumulated to high levels in the mutants after ABA treatment. Moreover, ABI5 interacted with DWA1 and DWA2 in vivo. Cell-free degradation assays showed ABI5 was degraded more slowly in dwa1 and dwa2 than in wild-type cell extracts. Therefore, DWA1 and/or DWA2 may be the substrate receptors for a CUL4 E3 ligase that targets ABI5 for degradation. Our data indicate that DWA1 and DWA2 can directly interact with each other, and their double mutants exhibited enhanced ABA and NaCl hypersensitivities, implying they can act together. This report thus describes a previously unknown heterodimeric cooperation between two independent substrate receptors for CUL4-based E3 ligases.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Hye-Jin Yoon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Molecular Physiology and Biochemistry, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea
| | - William Terzaghi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766
| | - Cristina Martinez
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Mingqiu Dai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Jigang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Myung-Ok Byun
- Department of Molecular Physiology and Biochemistry, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| |
Collapse
|
227
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
228
|
Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. ACTA ACUST UNITED AC 2010; 189:671-9. [PMID: 20457763 PMCID: PMC2872903 DOI: 10.1083/jcb.201001039] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parkin catalyzes mitochondrial ubiquitination, recruiting autophagic components that clear damaged mitochondria. Defects in this pathway are implicated in Parkinson's disease. Mutations in parkin, a ubiquitin ligase, cause early-onset familial Parkinson's disease (AR-JP). How parkin suppresses Parkinsonism remains unknown. Parkin was recently shown to promote the clearance of impaired mitochondria by autophagy, termed mitophagy. Here, we show that parkin promotes mitophagy by catalyzing mitochondrial ubiquitination, which in turn recruits ubiquitin-binding autophagic components, HDAC6 and p62, leading to mitochondrial clearance. During the process, juxtanuclear mitochondrial aggregates resembling a protein aggregate-induced aggresome are formed. The formation of these “mito-aggresome” structures requires microtubule motor-dependent transport and is essential for efficient mitophagy. Importantly, we show that AR-JP–causing parkin mutations are defective in supporting mitophagy due to distinct defects at recognition, transportation, or ubiquitination of impaired mitochondria, thereby implicating mitophagy defects in the development of Parkinsonism. Our results show that impaired mitochondria and protein aggregates are processed by common ubiquitin-selective autophagy machinery connected to the aggresomal pathway, thus identifying a mechanistic basis for the prevalence of these toxic entities in Parkinson's disease.
Collapse
Affiliation(s)
- Joo-Yong Lee
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
229
|
Kincses ZT, Vecsei L. Pharmacological therapy in Parkinson's disease: focus on neuroprotection. CNS Neurosci Ther 2010; 17:345-67. [PMID: 20438581 DOI: 10.1111/j.1755-5949.2010.00150.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the number of available therapeutic approaches in Parkinson's disease (PD) is steadily increasing the search for effective neuroprotective agent is continuing. Such research is directed at influencing the key steps in the pathomechanism: the mitochondrial dysfunction, the oxidative stress, the neuroinflammatory processes and the final common apoptotic pathway. Earlier-developed symptomatic therapies were implicated to be neuroprotective, and promising novel disease modifying approaches were brought into the focus of interest. The current review presents a survey of our current knowledge relating to the pathomechanism of PD and discusses the putative neuroprotective therapy.
Collapse
Affiliation(s)
- Zsigmond Tamas Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
230
|
Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:396-405. [DOI: 10.1016/j.bbadis.2009.12.009] [Citation(s) in RCA: 1795] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
|
231
|
Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 2010; 41:55-72. [PMID: 20333559 DOI: 10.1007/s12035-010-8113-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/19/2010] [Indexed: 12/20/2022]
Abstract
Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration.
Collapse
Affiliation(s)
- Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
232
|
Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice. Neurogenetics 2010; 11:107-20. [PMID: 19760259 DOI: 10.1007/s10048-009-0212-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 08/03/2009] [Indexed: 12/11/2022]
Abstract
Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death.
Collapse
|
233
|
Hanson JE, Orr AL, Madison DV. Altered hippocampal synaptic physiology in aged parkin-deficient mice. Neuromolecular Med 2010; 12:270-6. [PMID: 20232175 DOI: 10.1007/s12017-010-8113-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/26/2010] [Indexed: 12/22/2022]
Abstract
We examined synaptic function in the hippocampus of aged mice deficient for the Parkinson's disease-linked protein, parkin. Surprisingly, heterozygous but not homozygous parkin-deficient mice exhibited impairments in basal excitatory synaptic strength. Similarly heterozygous mice exhibited broad deficits in paired-pulse facilitation, while homozygous parkin-deficient mice exhibited more restricted deficits. In contrast to the measurements of basal synaptic function, synaptic plasticity was not altered in aged heterozygous parkin-deficient mice, but was enhanced in aged homozygous parkin-deficient mice, due to an absence of age-related decline. These findings of differential synaptic phenotypes in heterozygous vs. homozygous parkin deficiency suggest compensatory responses to genetic abnormalities could play an important role during the development of pathology in response to parkin deficiency.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
234
|
The Study of The Interaction Between Parkin and OGCP*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
235
|
Yasuda T, Mochizuki H. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010; 15:1312-21. [DOI: 10.1007/s10495-010-0486-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
236
|
Li Y, Sun L, Cai T, Zhang Y, Lv S, Wang Y, Ye L. α-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells. Brain Res Bull 2010; 81:428-33. [DOI: 10.1016/j.brainresbull.2009.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/21/2009] [Accepted: 11/15/2009] [Indexed: 11/15/2022]
|
237
|
Susaki E, Kaneko-Oshikawa C, Miyata K, Tabata M, Yamada T, Oike Y, Katagiri H, Nakayama KI. Increased E4 activity in mice leads to ubiquitin-containing aggregates and degeneration of hypothalamic neurons resulting in obesity. J Biol Chem 2010; 285:15538-15547. [PMID: 20190229 DOI: 10.1074/jbc.m110.105841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity has become a serious worldwide public health problem. Although neural degeneration in specific brain regions has been suggested to contribute to obesity phenotype in humans, a causal relationship between these two conditions has not been demonstrated experimentally. We now show that E4B (also known as UFD2a), a mammalian ubiquitin chain elongation factor (E4), induces the formation of intracellular aggregates positive for ubiquitin and the adaptor protein p62 when overexpressed in cultured cells or the brain. Mice transgenic for E4B manifested neural degeneration in association with aggregate formation, and they exhibited functional impairment specifically in a subset of hypothalamic neurons that regulate food intake and energy expenditure, resulting in development of hyperphagic obesity and related metabolic abnormalities. The neural pathology of E4B transgenic mice was similar to that of human neurodegenerative diseases associated with the formation of intracellular ubiquitin-positive deposits, indicating the existence of a link between such diseases and obesity and related metabolic disorders. Our findings thus provide experimental evidence for a role of hypothalamic neurodegeneration in obesity, and the E4B transgenic mouse should prove to be a useful animal model for studies of the relationship between neurodegenerative diseases and obesity.
Collapse
Affiliation(s)
- Etsuo Susaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Chie Kaneko-Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Mitsuhisa Tabata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Tetsuya Yamada
- Division of Advanced Therapeutics for Metabolic Diseases, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Hideki Katagiri
- Division of Advanced Therapeutics for Metabolic Diseases, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012.
| |
Collapse
|
238
|
Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA, Copeland NG, Troncoso JC, Pletnikov M, Dawson TM, Martin LJ, Moran TH, Lee MK, Borchelt DR, Ross CA. Synphilin-1 attenuates neuronal degeneration in the A53T alpha-synuclein transgenic mouse model. Hum Mol Genet 2010; 19:2087-98. [PMID: 20185556 DOI: 10.1093/hmg/ddq086] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetic alterations in alpha-synuclein cause autosomal dominant familial Parkinsonism and may contribute to sporadic Parkinson's disease (PD). Synphilin-1 is an alpha-synuclein-interacting protein, with implications in PD pathogenesis related to protein aggregation. Currently, the in vivo role of synphilin-1 in alpha-synuclein-linked pathogenesis is not fully understood. Using the mouse prion protein promoter, we generated synphilin-1 transgenic mice, which did not display PD-like phenotypes. However, synphilin-1/A53T alpha-synuclein double-transgenic mice survived longer than A53T alpha-synuclein single-transgenic mice. There were attenuated A53T alpha-synuclein-induced motor abnormalities and decreased astroglial reaction and neuronal degeneration in brains in double-transgenic mice. Overexpression of synphilin-1 decreased caspase-3 activation, increased beclin-1 and LC3 II expression and promoted formation of aggresome-like structures, suggesting that synphilin-1 alters multiple cellular pathways to protect against neuronal degeneration. These studies demonstrate that synphilin-1 can diminish the severity of alpha-synucleinopathy and play a neuroprotective role against A53T alpha-synuclein toxicity in vivo.
Collapse
Affiliation(s)
- Wanli W Smith
- Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Li X, Liu Z, Tamashiro K, Shi B, Rudnicki DD, Ross CA, Moran TH, Smith WW. Synphilin-1 exhibits trophic and protective effects against Rotenone toxicity. Neuroscience 2010; 165:455-62. [PMID: 19857556 DOI: 10.1016/j.neuroscience.2009.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/19/2009] [Indexed: 12/21/2022]
Abstract
Synphilin-1 is a cytoplasmic protein with unclear function. Synphilin-1 has been identified as an interaction partner of alpha-synuclein. The interaction between synphilin-1 and alpha-synuclein has implications in Parkinson's disease. In this study, we stably overexpressed human synphilin-1 in mouse N1E-115 neuroblastoma cells. We found that overexpression of synphilin-1 shortened cell growth doubling time and increased neurite outgrowth. Knockdown of endogenous synphilin-1 caused neuronal toxicity and shortened neurite outgrowth. We further found that synphilin-1 increased activation of the extracellular signal-regulated kinases (ERK1/2) and mediated neurite outgrowth. Rotenone, mitochondrial complex I inhibitor, has been shown previously to induce dopaminergic neurodegeneration and Parkinsonism in rats and Drosophila. We found that Rotenone induced apoptotic cell death in N1E-115 cells via caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage. Overexpression of synphilin-1 significantly reduced Rotenone-induced cell death, caspase-3 activation and PARP cleavage. The results indicate that synphilin-1 displays trophic and protective effects in vitro, suggesting that synphilin-1 may play a protective role in Parkinson's disease (PD) pathogenesis and may lead to a potential therapeutic target for PD intervention.
Collapse
Affiliation(s)
- X Li
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Xun Z, Kaufman TC, Clemmer DE. Stable isotope labeling and label-free proteomics of Drosophila parkin null mutants. J Proteome Res 2010; 8:4500-10. [PMID: 19705877 DOI: 10.1021/pr9006238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and formation of intracytoplasmic Lewy bodies (LBs). Loss-of-function mutations in parkin which encodes an E3 ubiquitin protein ligase contribute to a predominant cause of a familial form of PD termed autosomal recessive juvenile Parkinsonism (AR-JP). Drosophila parkin null mutants display muscle degeneration and mitochondrial dysfunction, providing an animal model to study Parkin-associated molecular pathways in PD. To define protein alterations involved in Parkin pathogenesis, we performed quantitative proteomic analyses of Drosophila parkin null mutants and age-matched controls utilizing both global internal standard technology (GIST) and extracted ion chromatogram peak area (XICPA) label-free approaches. A total of 375 proteins were quantified with a minimum of two peptide identifications from the combination of the XICPA and GIST measurements applied to two independent biological replicates. Sixteen proteins exhibited significant alteration. Seven of the dysregulated proteins are involved in energy metabolism, of which six were down-regulated. All five proteins involved in transporter activity exhibited higher levels, of which larval serum protein 1alpha, larval serum protein 1beta, larval serum protein 1gamma, and fat body protein 1 showed >10-fold up-regulation and substantially higher level of fat body protein 1 was confirmed by Western blot analysis. These findings suggest that abnormalities in energy metabolism and protein transporter activity pathways may be associated with the pathogenesis of Parkin-associated AR-JP.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
241
|
Kohta R, Kotake Y, Hosoya T, Hiramatsu T, Otsubo Y, Koyama H, Hirokane Y, Yokoyama Y, Ikeshoji H, Oofusa K, Suzuki M, Ohta S. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline binds with tubulin β, a substrate of parkin, and reduces its polyubiquitination. J Neurochem 2010; 114:1291-301. [DOI: 10.1111/j.1471-4159.2010.06576.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
242
|
Ramsey CP, Giasson BI. Identification and characterization of a novel endogenous murine parkin mutation. J Neurochem 2010; 113:402-17. [PMID: 20089136 DOI: 10.1111/j.1471-4159.2010.06605.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Various mutations in the PARK2 gene which encodes the protein, parkin, are causal of a disease entity-termed autosomal recessive juvenile parkinsonism. Parkin can function as an E3 ubiquitin-protein ligase, mediating the ubiquitination of specific targeted proteins and resulting in proteasomal degradation. Parkin is thought to lead to parkinsonism as a consequence of a loss in its function. In this study, immunoblot analyses of brain extracts from Balb/c, C57BL/6, C3H, and 129S mouse strains demonstrated significant variations in immunoreactivity with anti-parkin monoclonal antibodies (PRK8, PRK28, and PRK109). This resulted partly from differences in the steady-state levels of parkin protein across mouse strains. There was also a complete loss of immunoreactivity for PRK8 and PRK28 antibodies in C3H mice due to was because of a homologous nucleotide mutation resulting in an E398Q amino acid substitution. In cultured cells, parkin harboring this mutation had a greater tendency to aggregate, exhibited reduced interaction with the E2 ubiquitin-conjugating enzymes, UbcH7 and UbcH8, and demonstrated loss-of-function in promoting the proteosomal degradation of a specific putative substrate, synphilin-1. In situ, C3H mice displayed age-dependent increased levels of brain cortical synphilin-1 compared with C57BL/6, suggesting that E398Q parkin in these mice is functionally impaired and that C3H mice may be a suitable model of parkin loss-of-function similar to patients with missense mutations.
Collapse
Affiliation(s)
- Chenere P Ramsey
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
243
|
Safadi SS, Shaw GS. Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15. J Biol Chem 2010; 285:1424-34. [PMID: 19875440 PMCID: PMC2801268 DOI: 10.1074/jbc.m109.041970] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/22/2009] [Indexed: 11/06/2022] Open
Abstract
Parkin is a multidomain E3 ligase associated with autosomal recessive Parkinson disease. The N-terminal ubiquitin-like domain (Ubld) of parkin functions with the S5a proteasomal subunit, positioning substrate proteins for degradation. In addition the parkin Ubld recruits the endocytotic protein Eps15, allowing the E3 ligase to ubiquinate Eps15 distal from its parkin-interacting site. The recognition sequences in the S5a subunit and Eps15 for the parkin Ubld are ubiquitin-interacting motifs (UIM). Each protein has two UIM sequences separated by a 50-residue spacer in S5a, but only approximately 5 residues in Eps15. In this work we used NMR spectroscopy to determine how the parkin Ubld recognizes the proteasomal subunit S5a compared with Eps15, a substrate for ubiquitination. We show that Eps15 contains two flexible alpha-helices each encompassing a UIM sequence. The alpha-helix surrounding UIM II is longer than that for UIM I, a situation that is reversed from S5a. Furthermore, we show the parkin Ubld preferentially binds to UIM I in the S5a subunit. This interaction is strongly diminished in a K48A substitution, found near the center of the S5a interacting surface on the parkin Ubld. In contrast to S5a, parkin recruits Eps15 using both its UIM sequences resulting in a larger interaction surface that includes residues from beta1 and beta2, not typically known to interact with UIM sequences. These results show that the parkin Ubld uses differential surfaces to recruit UIM regions from the S5a proteasomal subunit compared with Eps15 involved in cell signaling.
Collapse
Affiliation(s)
- Susan S. Safadi
- From the Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gary S. Shaw
- From the Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
244
|
Rosen KM, Moussa CEH, Lee HK, Kumar P, Kitada T, Qin G, Fu Q, Querfurth HW. Parkin reverses intracellular beta-amyloid accumulation and its negative effects on proteasome function. J Neurosci Res 2010; 88:167-78. [PMID: 19610108 PMCID: PMC2844439 DOI: 10.1002/jnr.22178] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The significance of intracellular beta-amyloid (Abeta(42)) accumulation is increasingly recognized in Alzheimer's disease (AD) pathogenesis. Abeta removal mechanisms that have attracted attention include IDE/neprilysin degradation and antibody-mediated uptake by immune cells. However, the role of the ubiquitin-proteasome system (UPS) in the disposal of cellular Abeta has not been fully explored. The E3 ubiquitin ligase Parkin targets several proteins for UPS degradation, and Parkin mutations are the major cause of autosomal recessive Parkinson's disease. We tested whether Parkin has cross-function to target misfolded proteins in AD for proteasome-dependent clearance in SH-SY5Y and primary neuronal cells. Wild-type Parkin greatly decreased steady-state levels of intracellular Abeta(42), an action abrogated by proteasome inhibitors. Intracellular Abeta(42) accumulation decreased cell viability and proteasome activity. Accordingly, Parkin reversed both effects. Changes in mitochondrial ATP production from Abeta or Parkin did not account for their effects on the proteasome. Parkin knock-down led to accumulation of Abeta. In AD brain, Parkin was found to interact with Abeta and its levels were reduced. Thus, Parkin is cytoprotective, partially by increasing the removal of cellular Abeta through a proteasome-dependent pathway.
Collapse
Affiliation(s)
- Kenneth M. Rosen
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Charbel E.-H. Moussa
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Han-Kyu Lee
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Pravir Kumar
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Tohru Kitada
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gangjian Qin
- Department of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Qinghao Fu
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Henry W. Querfurth
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
245
|
Khandelwal PJ, Moussa CEH. The Relationship between Parkin and Protein Aggregation in Neurodegenerative Diseases. Front Psychiatry 2010; 1:15. [PMID: 21423426 PMCID: PMC3059628 DOI: 10.3389/fpsyt.2010.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/10/2010] [Indexed: 12/12/2022] Open
Abstract
The most prominent changes in neurodegenerative diseases are protein accumulation and inclusion formation. Several neurodegenerative diseases, including Alzheimer's, the Synucleinopathies and Tauopathies share several overlapping clinical symptoms manifest in Parkinsonism, cognitive decline and dementia. As degeneration progresses in the disease process, clinical symptoms suggest convergent pathological pathways. Biochemically, protein cleavage, ubiquitination and phosphorylation seem to play fundamental roles in protein aggregation, inclusion formation and inflammatory responses. In the following we provide a synopsis of the current knowledge about protein accumulation and astrogliosis as a common denominator in neurodegenerative diseases, and we propose insights into protein degradation and anti-inflammation. We review the E3-ubiquitin ligase and other possible functions of parkin as a suppressant of inflammatory signs and a strategy to clear amyloid proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | | |
Collapse
|
246
|
Martin I, Dawson VL, Dawson TM. The impact of genetic research on our understanding of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2010; 183:21-41. [PMID: 20696313 DOI: 10.1016/s0079-6123(10)83002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently, genetics was thought to play a minor role in the development of Parkinson's disease (PD). Over the last decade, a number of genes that definitively cause PD have been identified, which has led to the generation of disease models based on pathogenic gene variants that recapitulate many features of the disease. These genetic studies have provided novel insight into potential mechanisms underlying the aetiology of PD. This chapter will provide a profile of the genes conclusively linked to PD and will outline the mechanisms of PD pathogenesis implicated by genetic studies. Mitochondrial dysfunction, oxidative stress and impaired ubiquitin-proteasome system function are disease mechanisms that are particularly well supported by genetic studies and are therefore the focus of this chapter.
Collapse
Affiliation(s)
- Ian Martin
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
247
|
Asai H, Hirano M, Kiriyama T, Ikeda M, Ueno S. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism. Biochem Biophys Res Commun 2009; 391:800-5. [PMID: 19945426 DOI: 10.1016/j.bbrc.2009.11.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 11/25/2022]
Abstract
Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF(hSel-10) ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.
Collapse
Affiliation(s)
- Hirohide Asai
- Department of Neurology, Faculty of Medicine, Nara Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
248
|
da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, Safe S, Abou-Sleiman PM, Wood NW, Takahashi H, Goldberg MS, Shen J, Checler F. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat Cell Biol 2009; 11:1370-1375. [PMID: 19801972 PMCID: PMC2952934 DOI: 10.1038/ncb1981] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/14/2009] [Indexed: 01/01/2023]
Abstract
Mutations of the ubiquitin ligase parkin account for most autosomal recessive forms of juvenile Parkinson's disease (AR-JP). Several studies have suggested that parkin possesses DNA-binding and transcriptional activity. We report here that parkin is a p53 transcriptional repressor. First, parkin prevented 6-hydroxydopamine-induced caspase-3 activation in a p53-dependent manner. Concomitantly, parkin reduced p53 expression and activity, an effect abrogated by familial parkin mutations known to either abolish or preserve its ligase activity. ChIP experiments indicate that overexpressed and endogenous parkin interact physically with the p53 promoter and that pathogenic mutations abolish DNA binding to and promoter transactivation of p53. Parkin lowered p53 mRNA levels and repressed p53 promoter transactivation through its Ring1 domain. Conversely, parkin depletion enhanced p53 expression and mRNA levels in fibroblasts and mouse brains, and increased cellular p53 activity and promoter transactivation in cells. Finally, familial parkin missense and deletion mutations enhanced p53 expression in human brains affected by AR-JP. This study reveals a ubiquitin ligase-independent function of parkin in the control of transcription and a functional link between parkin and p53 that is altered by AR-JP mutations.
Collapse
Affiliation(s)
- Cristine Alves da Costa
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, équipe labellisée Fondation pour la Recherche Médicale, 660 Route des Lucioles, 06560, Valbonne, France
| | - Claire Sunyach
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, équipe labellisée Fondation pour la Recherche Médicale, 660 Route des Lucioles, 06560, Valbonne, France
| | - Emilie Giaime
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, équipe labellisée Fondation pour la Recherche Médicale, 660 Route des Lucioles, 06560, Valbonne, France
| | - Andrew West
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Olga Corti
- INSERM U679, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Alexis Brice
- INSERM U679, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Stephen Safe
- Center for Environmental & Genetic Medicine, Institute of Biosciences & Technology, Houston, USA
| | - Patrick M. Abou-Sleiman
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Hitoshi Takahashi
- Brain Research Institute, University of Niigata, 1-757 Asahimachi, Niigata 951-8585, Japan
| | - Mathew S. Goldberg
- Center of Neurological Diseases, Harvard Medical School, Boston, Massachusetts, USA
| | - Jie Shen
- Center of Neurological Diseases, Harvard Medical School, Boston, Massachusetts, USA
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, équipe labellisée Fondation pour la Recherche Médicale, 660 Route des Lucioles, 06560, Valbonne, France
| |
Collapse
|
249
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, complex, multidomain protein containing kinase and GTPase enzymatic activities and multiple protein-protein interaction domains. Mutations linked to autosomal dominant forms of Parkinson's disease result in amino acid changes throughout the protein and alterations in both its enzymatic properties and interactions. The best characterized mutation to date, G2019S, leads to increased kinase activity, and mutations in the GTPase domain, such as R1441C and R1441G, have also been reported to influence kinase activity. Therefore, an examination of LRRK2's properties as a kinase is important for understanding the mechanisms underlying the disorder and has the potential to lead to therapeutics. These findings also suggest that there may be complex interplay between the functional domains of LRRK2. Here, we review LRRK2's biochemical functions based on structural and kinetic studies of the enzymatic domains, its potential substrates and the role of its interactions. Despite the field's embryonic understanding of the true relevance of these substrates and interactions, initial studies are providing clues with respect to its pathophysiological functions. Together, these findings should increase our understanding of mechanisms underlying Parkinson's disease and place LRRK2 as a unique molecular target for effective therapeutic development.
Collapse
|
250
|
Su X, Federoff HJ, Maguire-Zeiss KA. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 2009; 16:238-54. [PMID: 19526281 PMCID: PMC2877375 DOI: 10.1007/s12640-009-9053-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 01/14/2023]
Abstract
Microglia provide immune surveillance for the brain through both the removal of cellular debris and protection against infection by microorganisms and "foreign" molecules. Upon activation, microglia display an altered morphology and increased expression of proinflammatory molecules. Increased numbers of activated microglia have been identified in a number of neurodegenerative diseases including Parkinson's disease (PD). What remains to be determined is whether activated microglia result from ongoing cell death or are involved in disease initiation and progression. To address this question we utilized a transgenic mouse model that expresses a mutated form of a key protein involved in Parkinson's disease, alpha-synuclein. Herein, we report an increase in activated microglia and proinflammatory molecules in 1-month-old transgenic mice well before cell death occurs in this model. Frank microglial activation is resolved by 6 months of age while a subset of proinflammatory molecules remain elevated for 12 months. Both tyrosine hydroxylase mRNA expression and alpha-synuclein protein are decreased in the striatum of older animals evidence of dystrophic neuritic projections. To determine whether mutated alpha-synuclein could directly activate microglia primary microglia-enriched cell cultures were treated with exogenous mutated alpha-synuclein. The data reveal an increase in activated microglia and proinflammatory molecules due to direct interaction with mutated alpha-synuclein. Together, these data demonstrate that mutated alpha-synuclein mediates a proinflammatory response in microglia and this activity may participate in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaomin Su
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | |
Collapse
|