201
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Intermetallic Nanocrystals: Seed-Mediated Synthesis and Applications in Electrocatalytic Reduction Reactions. Chemistry 2022; 28:e202202221. [PMID: 36066483 DOI: 10.1002/chem.202202221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 12/14/2022]
Abstract
In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Shilong Jiao
- Department School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, Henan, 475001, P.R. China
| | - Xiuying Ya
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huiling Zheng
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Ran Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Jiao Yu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huanyu Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Zhilin Zhang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Congxiao He
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| |
Collapse
|
202
|
Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting. Int J Mol Sci 2022; 23:ijms232315405. [PMID: 36499732 PMCID: PMC9737096 DOI: 10.3390/ijms232315405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The development of non-noble metal-based electrocatalysts with high performance for hydrogen evolution reaction and oxygen evolution reaction is highly desirable in advancing electrocatalytic water-splitting technology but proves to be challenging. One promising way to improve the catalytic activity is to tailor the d-band center. This approach can facilitate the adsorption of intermediates and promote the formation of active species on surfaces. This review summarizes the role and development of the d-band center of materials based on iron-series metals used in electrocatalytic water splitting. It mainly focuses on the influence of the change in the d-band centers of different composites of iron-based materials on the performance of electrocatalysis. First, the iron-series compounds that are commonly used in electrocatalytic water splitting are summarized. Then, the main factors affecting the electrocatalytic performances of these materials are described. Furthermore, the relationships among the above factors and the d-band centers of materials based on iron-series metals and the d-band center theory are introduced. Finally, conclusions and perspectives on remaining challenges and future directions are given. Such information can be helpful for adjusting the active centers of catalysts and improving electrochemical efficiencies in future works.
Collapse
|
203
|
Abidi N, Bonduelle-Skrzypczak A, Steinmann SN. How to dope the basal plane of 2H-MoS2 to boost the hydrogen evolution reaction? Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
204
|
Yu X, Qu L, Lee C, Peng J, Yan Q, Bai H, Yao M. Bismuth-nickel bimetal nanosheets with a porous structure for efficient hydrogen production in neutral and alkaline media. NANOSCALE 2022; 14:17210-17221. [PMID: 36300418 DOI: 10.1039/d2nr04407b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active and durable electrocatalysts are very important for efficient and economically sustainable hydrogen generation via electrocatalytic water splitting. A bismuth-nickel (Bi-Ni) bimetal nanosheet with a mesoporous structure was prepared via a self-template electrochemical in situ process. The Bi-Ni catalyst required overpotentials of 56 mV and 183 mV at 10 mA cm-2 for the hydrogen evolution reaction (HER), which were close to that of commercial Pt/C in 1.0 M KOH and 1.0 M PBS (pH 7.0), respectively. The electrocatalyst maintained a steady current density during 20 h electrolysis in 1.0 M KOH and 1.0 M PBS (pH 7.0). Density functional theory (DFT) indicated that the alloying effect could induce charge transfer from the Bi atom to Ni atom and thus modulate the d-band centre of Bi-Ni nanosheets, which could efficiently accelerate H* conversion and H2 desorption at the Ni active site. This promotes the HER kinetics. By adopting the Bi84.8Ni15.2 alloy as the cathode to establish a full-cell (IrO2∥Bi84.8Ni15.2) for water splitting in 1.0 M KOH, the required cell voltage was 1.53 V to drive 10 mA cm-2, which was lower than that of the IrO2∥Pt/C electrolyzer (1.64 V@10 mA cm-2).
Collapse
Affiliation(s)
- Xueping Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Li Qu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Carmen Lee
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Juan Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Qingyu Yan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Hongcun Bai
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Min Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| |
Collapse
|
205
|
Zhang M, Zhang K, Ai X, Liang X, Zhang Q, Chen H, Zou X. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
206
|
Dong F, Zhang M, Xu X, Pan J, Zhu L, Hu J. Orbital Modulation with P Doping Improves Acid and Alkaline Hydrogen Evolution Reaction of MoS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4273. [PMID: 36500899 PMCID: PMC9740413 DOI: 10.3390/nano12234273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
There has been great interest in developing and designing economical, stable and highly active electrocatalysts for the hydrogen evolution reaction (HER) via water splitting in an aqueous solution at different pH values. Transition-metal dichalcogenides (TMDCs), e.g., MoS2, are identified to be promising catalysts for the HER due to the limited active sites at their edges, while the large basal plane of MoS2 is inert and shows poor performance in electrocatalytic hydrogen production. We theoretically propose orbital modulation to improve the HER performance of the basal plane of MoS2 through non-metal P doping. The substitutional doping of P provides empty 3pz orbitals, perpendicular to the basal plane, can enhance the hydrogen adsorption for acid HER and can promote water dissociation for alkaline HER, which creates significant active sites and enhances the electronic conductivity as well. In addition, 3P-doped MoS2 exhibits excellent HER catalytic activity with ideal free energy at acid media and low reaction-barrier energy in alkaline media. Thus, the doping of P could significantly boost the HER activity of MoS2 in such conditions. Our study suggests an effective strategy to tune HER catalytic activity of MoS2 through orbital engineering, which should also be feasible for other TMDC-based electrocatalysts.
Collapse
Affiliation(s)
- Fuyu Dong
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Minghao Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Xiaoyong Xu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Jing Pan
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Liyan Zhu
- School of Physics and Electronic & Electrical Engineering, Huaiyin Normal University, Huai’an 223300, China
| | - Jingguo Hu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
207
|
Yu E, Pan Y. Exploring the hydrogen evolution catalytic activity of the orthorhombic and hexagonal borophene as the hydrogen storage material. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
208
|
Kumar P, Arumugam M, Jagannathan M, Maia G, Praserthdam S, Praserthdam P. Reduced nickel on cobalt sulphide with carbon supported (Ni-CoS/C) composite material as a low-cost and efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
209
|
Huang Q, Liu X, Zhang Z, Wang L, Xiao B, Ao Z. Dopant-vacancy activated tetragonal transition metal selenide for hydrogen evolution electrocatalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
210
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
211
|
Iqbal S, Ahmed K, Ayub K, Hamid Butt M, Nauman Shah Saqib A, Lakhani A, Muhammad Fahim Ayaz C, Ali Hashmi M. Transition Metals Incorporated on Phosphorene Sheet as Cost-Effective Single Atom Catalysts for Hydrogen Evolution Reaction: A DFT Study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
212
|
Oshchepkov AG, Simonov PA, Kuznetsov AN, Shermukhamedov SA, Nazmutdinov RR, Kvon RI, Zaikovskii VI, Kardash TY, Fedorova EA, Cherstiouk OV, Bonnefont A, Savinova ER. Bimetallic NiM/C (M = Cu and Mo) Catalysts for the Hydrogen Oxidation Reaction: Deciphering the Role of Unintentional Surface Oxides in the Activity Enhancement. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Alexandr G. Oshchepkov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel A. Simonov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksey N. Kuznetsov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Shokir A. Shermukhamedov
- Kazan National Research Technological University, Kazan 420015, Russia
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Ren I. Kvon
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
| | - Vladimir I. Zaikovskii
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatyana Yu. Kardash
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Olga V. Cherstiouk
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Antoine Bonnefont
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Elena R. Savinova
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, Strasbourg Cedex 67087, France
| |
Collapse
|
213
|
Yang Y, Qian Y, Luo Z, Li H, Chen L, Cao X, Wei S, Zhou B, Zhang Z, Chen S, Yan W, Dong J, Song L, Zhang W, Feng R, Zhou J, Du K, Li X, Zhang XM, Fan X. Water induced ultrathin Mo 2C nanosheets with high-density grain boundaries for enhanced hydrogen evolution. Nat Commun 2022; 13:7225. [PMID: 36433983 PMCID: PMC9700844 DOI: 10.1038/s41467-022-34976-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Grain boundary controlling is an effective approach for manipulating the electronic structure of electrocatalysts to improve their hydrogen evolution reaction performance. However, probing the direct effect of grain boundaries as highly active catalytic hot spots is very challenging. Herein, we demonstrate a general water-assisted carbothermal reaction strategy for the construction of ultrathin Mo2C nanosheets with high-density grain boundaries supported on N-doped graphene. The polycrystalline Mo2C nanosheets are connected with N-doped graphene through Mo-C bonds, which affords an ultra-high density of active sites, giving excellent hydrogen evolution activity and superior electrocatalytic stability. Theoretical calculations reveal that the dz2 orbital energy level of Mo atoms is controlled by the MoC3 pyramid configuration, which plays a vital role in governing the hydrogen evolution activity. The dz2 orbital energy level of metal atoms exhibits an intrinsic relationship with the catalyst activity and is regarded as a descriptor for predicting the hydrogen evolution activity.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Chemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Yumin Qian
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Zhaoping Luo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Haijing Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanlan Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xumeng Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bo Zhou
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Chaoyang District, Beijing, 100124, China
| | - Zhenhua Zhang
- Innovative Center for Advanced Materials, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Shuai Chen
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Wenjun Yan
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Renfei Feng
- Canadian Light Source, Saskatoon, SK, S7N2V3, Canada
| | - Jigang Zhou
- Canadian Light Source, Saskatoon, SK, S7N2V3, Canada
| | - Kui Du
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiuyan Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Chemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.
| | - Xiujun Fan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China.
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
214
|
Liu F, Ding C, Tian S, Lu SM, Feng C, Tu D, Liu Y, Wang W, Li C. Electrocatalytic NAD + reduction via hydrogen atom-coupled electron transfer. Chem Sci 2022; 13:13361-13367. [PMID: 36507184 PMCID: PMC9682901 DOI: 10.1039/d2sc02691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide adenine dinucleotide cofactor (NAD(P)H) is regarded as an important energy carrier and charge transfer mediator. Enzyme-catalyzed NADPH production in natural photosynthesis proceeds via a hydride transfer mechanism. Selective and effective regeneration of NAD(P)H from its oxidized form by artificial catalysts remains challenging due to the formation of byproducts. Herein, electrocatalytic NADH regeneration and the reaction mechanism on metal and carbon electrodes are studied. We find that the selectivity of bioactive 1,4-NADH is relatively high on Cu, Fe, and Co electrodes without forming commonly reported NAD2 byproducts. In contrast, more NAD2 side product is formed with the carbon electrode. ADP-ribose is confirmed to be a side product caused by the fragmentation reaction of NAD+. Based on H/D isotope effects and electron paramagnetic resonance analysis, it is proposed that the formation of NADH on these metal electrodes proceeds via a hydrogen atom-coupled electron transfer (HadCET) mechanism, in contrast to the direct electron-transfer and NAD˙ radical pathway on carbon electrodes, which leads to more by-product, NAD2. This work sheds light on the mechanism of electrocatalytic NADH regeneration, which is different from biocatalysis.
Collapse
Affiliation(s)
- Fengyuan Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shujie Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengcheng Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China
| | - Dandan Tu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Can Li
- Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
215
|
Wei J, Chen W, Zhou D, Cai J, Chen YX. Restructuring of well-defined Pt-based electrode surfaces under mild electrochemical conditions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
216
|
In situ precipitated NiCo nanoparticles synergize with metaborate to promote hydrogen evolution and couple with urea oxidation to reduce overall water splitting potential. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
217
|
Microwave Induced Rapid Surface Amorphization of Metal Oxide Nanowire into Sulfides Shell for Electronically Modulated Efficient Hydrogen Evolution Catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
218
|
Average metal ion electronegativity as a general descriptor for screening Ni-based double hydroxides with high electrocatalytic water oxidation activity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
219
|
Kim H, Yoo JM, Chung DY, Kim Y, Jung M, Bootharaju MS, Kim J, Koo S, Shin H, Na G, Mun BS, Kwak JH, Sung YE, Hyeon T. Design of a Metal/Oxide/Carbon Interface for Highly Active and Selective Electrocatalysis. ACS NANO 2022; 16:16529-16538. [PMID: 36153951 DOI: 10.1021/acsnano.2c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable energy-conversion and chemical-production require catalysts with high activity, durability, and product-selectivity. Metal/oxide hybrid structure has been intensively investigated to achieve promising catalytic performance, especially in neutral or alkaline electrocatalysis where water dissociation is promoted near the oxide surface for (de)protonation of intermediates. Although catalytic promise of the hybrid structure is demonstrated, it is still challenging to precisely modulate metal/oxide interfacial interactions on the nanoscale. Herein, we report an effective strategy to construct rich metal/oxide nano-interfaces on conductive carbon supports in a surfactant-free and self-terminated way. When compared to the physically mixed Pd/CeO2 system, a much higher degree of interface formation was identified with largely improved hydrogen oxidation reaction (HOR) kinetics. The benefits of the rich metal-CeO2 interface were further generalized to Pd alloys for optimized adsorption energy, where the Pd3Ni/CeO2/C catalyst shows superior performance with HOR selectivity against CO poisoning and shows long-term stability. We believe this work highlights the importance of controlling the interfacial junctions of the electrocatalyst in simultaneously achieving enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongseon Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Moonjung Jung
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejong Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Geumbi Na
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongjin Simon Mun
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hun Kwak
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
220
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
221
|
Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution. Nat Commun 2022; 13:6249. [PMID: 36271088 PMCID: PMC9586971 DOI: 10.1038/s41467-022-33725-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm−2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm−2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation. It remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, the authors report single iron atom-dispersed Mo-based nanosheets synthesized from a scalable two-dimensional mineral hydrogel approach for hydrogen evolution reaction in alkaline condition.
Collapse
|
222
|
Amorphous Iron-Doped Nickel Selenide Film on Nickel Foam via One-Step Electrodeposition Method for Overall Water Splitting. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
223
|
Wang S, Zhao R, Zheng T, Lu Z, Fang Y, Xie H, Wang W, Xue W. Rational Design of a Low-Dimensional and Metal-free Heterostructure for Efficient Water Oxidation: DFT and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12562-12569. [PMID: 36191260 DOI: 10.1021/acs.langmuir.2c02011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nitrogen-doped fullerene dimer is synthesized and compounded with multi-walled carbon nanotubes (MWCNTs) to construct a low-dimensional and metal-free 0D-1D heterostructure for electrocatalytic water oxidation. The (C59N)2/MWCNTs heterostructure exhibits a highly efficient performance, as verified by both first-principles density functional theory and experimental studies. The *O → *OOH process is confirmed as the rate-determining step of water oxidation. The negatively charged N-doping leads to electronic redistribution and intermolecular charge transfer and thus reduces the uphill free energies of intermediates on the (C59N)2/MWCNTs interface. Therefore, the (C59N)2/MWCNTs heterostructure has great potential to emit light and heat in metal-free-based electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Tian Zheng
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang621010, China
| | - Zheng Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou310003, China
| | - Wenjian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
224
|
Smiljanić M, Panić S, Bele M, Ruiz-Zepeda F, Pavko L, Gašparič L, Kokalj A, Gaberšček M, Hodnik N. Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catal 2022; 12:13021-13033. [PMID: 36313525 PMCID: PMC9594320 DOI: 10.1021/acscatal.2c03214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Indexed: 11/29/2022]
Abstract
![]()
Water electrolysis powered by renewables is regarded
as the feasible
route for the production of hydrogen, obtained at the cathode side
through electrochemical hydrogen evolution reaction (HER). Herein,
we present a rational strategy to improve the overall HER catalytic
performance of Pt, which is known as the best monometallic catalyst
for this reaction, by supporting it on a conductive titanium oxynitride
(TiONx) dispersed over reduced graphene
oxide nanoribbons. Characterization of the Pt/TiONx composite revealed the presence of small Pt particles with
diameters between 2 and 3 nm, which are well dispersed over the TiONx support. The Pt/TiONx nanocomposite exhibited improved HER activity and stability with
respect to the Pt/C benchmark in an acid electrolyte, which was ascribed
to the strong metal–support interaction (SMSI) triggered between
the TiONx support and grafted Pt nanoparticles.
SMSI between TiONx and Pt was evidenced
by X-ray photoelectron spectroscopy (XPS) through a shift of the binding
energies of the characteristic Pt 4f photoelectron lines with respect
to Pt/C. Density functional theory (DFT) calculations confirmed the
strong interaction between Pt nanoparticles and the TiONx support. This strong interaction improves the stability
of Pt nanoparticles and weakens the binding of chemisorbed H atoms
thereon. Both of these effects may result in enhanced HER activity.
Collapse
Affiliation(s)
- Milutin Smiljanić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
- Laboratory for Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Mike Alasa 12-14, 11001Belgrade, Serbia
| | - Stefan Panić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Lea Gašparič
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
- Centre of Excellence for Low-Carbon Technologies, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Anton Kokalj
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Miran Gaberšček
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000Nova Gorica, Slovenia
| |
Collapse
|
225
|
Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat Commun 2022; 13:5843. [PMID: 36195616 PMCID: PMC9532448 DOI: 10.1038/s41467-022-33589-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
To date, the effect of oxidation state on activity remains controversial in whether higher or lower oxidation states benefit the enhancement of catalytic activity. Herein, we discover a volcanic relationship between oxidation state and hydrogen evolution reaction activity based on Os single-atom catalysts. Firstly, a series of Os SACs with oxidation states ranging from + 0.9 to + 2.9 are synthesized via modifying the coordination environments, including Os-N3S1, Os-N4, Os-S6, Os-C3, and Os-C4S2. A volcano-type relation between oxidation states and hydrogen evolution activity emerge with a summit at a moderate experimental oxidation state of + 1.3 (Os-N3S1). Mechanism studies illustrate that with increasing oxidation states, the adsorption of H atoms on Os is strengthened due to increased energy level and decreased occupancy of anti-bonding states of Os-H bond until the anti-bonding states become empty. Further increasing the oxidation states weakens hydrogen adsorption because of the decreased occupancy of Os-H bonding states. In this work, we emphasize the essential role of oxidation state in manipulating activity, which offers insightful guidance for the rational design of single-atom catalysts. While single atom catalysis offers high efficiency for materials use, different possible atomic configurations yield differing activities. Here, authors modulate single-atom Os coordinations to show a volcano relationship between oxidation state and H2 evolution electrocatalytic activities.
Collapse
|
226
|
Guo S, Yu S, Yuan H, Cai K, Tian H, Da Z. Peptization mechanism of aluminum phosphate sol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
227
|
Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
228
|
Perspective of p-block single-atom catalysts for electrocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
229
|
P-doped CoCu aerogel as a bifunctional electrocatalyst for efficient overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
230
|
Wang X, Wang J, Wang P, Li L, Zhang X, Sun D, Li Y, Tang Y, Wang Y, Fu G. Engineering 3d-2p-4f Gradient Orbital Coupling to Enhance Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206540. [PMID: 36085436 DOI: 10.1002/adma.202206540] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient and economical materials for the oxygen reduction reaction (ORR) plays a key role in practical energy conversion technologies. However, the intrinsic scaling relations exert thermodynamic inhibition on realizing highly active ORR electrocatalysts. Herein, a novel and feasible gradient orbital coupling strategy for tuning the ORR performance through the construction of Co 3d-O 2p-Eu 4f unit sites on the Eu2 O3 -Co model is proposed. Through the gradient orbital coupling, the pristine ionic property between Eu and O atoms is assigned with increased covalency, which optimizes the eg occupancy of Co sites, and weakens the OO bond, thus ultimately breaking the scaling relation between *OOH and *OH at Co-O-Eu unit sites. The optimized model catalyst displays onset and half-wave potential of 1.007 and 0.887 V versus reversible hydrogen electrode, respectively, which are higher than those of commercial Pt/C and most Co-based catalysts ever reported. In addition, the catalyst is found to possess superior selectivity and durability. It also reveals better cell performance than commercial noble-metal catalysts in Zn-air batteries in terms of high power/energy densities and long cycle life. This study provides a new perspective for electronic modulation strategy by the construction of gradient 3d-2p-4f orbital coupling.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jingwen Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Pu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangcheng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
231
|
Chen W, Qin Z, Wang ZM. Heterometal doping on nickel selenide corrugations for solar-assisted electrocatalytic hydrogen evolution. Dalton Trans 2022; 51:15507-15514. [PMID: 36165211 DOI: 10.1039/d2dt02617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since nickel exhibits good binding energy and is inexpensive, it is widely applied as a hydrogen evolution reaction (HER) electrocatalyst. Among all Ni-based materials, nickel selenide (NiSe) shows a unique electronic structure as a semiconductor with good electrocatalytic activity. Herein, we prepare Co-doped NiSe (Ni1-xCoxSe) with a structure of uniform corrugations by one-step chemical vapor deposition. For comparison, Fe-doped NiSe (Ni1-xFexSe) and NiSe are also prepared using the same method. In alkaline electrolyte, Ni1-xCoxSe shows great HER performance in terms of low overpotential (93 mV@10 mA cm-2 and 140 mV@50 mA cm-2) and long-term stability. Moreover, with the assistance of solar energy, the overpotential needed for Ni1-xCoxSe is reduced, making Ni1-xCoxSe better than most reported NiSe-based HER catalysts. On the other hand, the current density of Ni1-xCoxSe is 13 mA cm-2@93 mV and 63 mA cm-2@140 mV with illumination, which is 30% and 26% higher than that without solar illumination assistance, respectively. Therefore, we believe that inducing sunlight to electrocatalytic hydrogen evolution in water splitting could be a supplementary footprint toward the utilization of solar energy.
Collapse
Affiliation(s)
- Weiwu Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhaojun Qin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhiming M Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China. .,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
232
|
Williams CK, McCarver GA, Chaturvedi A, Sinha S, Ang M, Vogiatzis KD, Jiang J“J. Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Main‐Group Element Catalysis. Chemistry 2022; 28:e202201323. [DOI: 10.1002/chem.202201323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Caroline K. Williams
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Gavin A. McCarver
- Department of Chemistry University of Tennessee Knoxville Tennessee 37996-1600 USA
| | - Ashwin Chaturvedi
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Soumalya Sinha
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Marcus Ang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | | | - Jianbing “Jimmy” Jiang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| |
Collapse
|
233
|
Tan Y, Zhu Y, Cao X, Liu Y, Li J, Chen Z, Hu J. Discovery of Hydrogen Spillover-Based Binary Electrocatalysts for Hydrogen Evolution: From Theory to Experiment. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Tan
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Yucheng Zhu
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Xiaofei Cao
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Yuhao Liu
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| |
Collapse
|
234
|
Cipriano LA, Di Liberto G, Pacchioni G. Superoxo and Peroxo Complexes on Single-Atom Catalysts: Impact on the Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis A. Cipriano
- Dipartimento di Scienza dei Materiali, Università di Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
235
|
Barlocco I, Cipriano LA, Di Liberto G, Pacchioni G. Modeling Hydrogen and Oxygen Evolution Reactions on Single Atom Catalysts with Density Functional Theory: Role of the Functional. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ilaria Barlocco
- Dipartimento di Scienza dei Materiali Università di Milano–Bicocca via R. Cozzi 55 Milano 20125 Italy
| | - Luis A. Cipriano
- Dipartimento di Scienza dei Materiali Università di Milano–Bicocca via R. Cozzi 55 Milano 20125 Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali Università di Milano–Bicocca via R. Cozzi 55 Milano 20125 Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali Università di Milano–Bicocca via R. Cozzi 55 Milano 20125 Italy
| |
Collapse
|
236
|
Hegde C, Lim CHJ, Teng TH, Liu D, Kim YJ, Yan Q, Li H. In Situ Synthesis and Microfabrication of High Entropy Alloy and Oxide Compounds by Femtosecond Laser Direct Writing under Ambient Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203126. [PMID: 36026538 DOI: 10.1002/smll.202203126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Synthesis and coating of multi-metal oxides (MMOs) and alloys on conductive substrates are indispensable to electrochemical applications, yet demand multiple, resource-intensive, and time-consuming processes. Herein, an alternative approach to the synthesis and coating of alloys and MMOs by femtosecond laser direct writing (FsLDW) is reported. A solution-based precursor ink is deposited and dried on the substrate and illuminated by a femtosecond laser. During the illumination, dried precursor ink is transformed to MMO/alloys and is simultaneously bonded to the substrate. The formulation of the alloy and MMO precursor ink for laser processing is universally applicable to a large family of oxides and alloys. The process is conducted at room temperature and in an open atmosphere. To demonstrate, a large family of 57 MMOs and alloys are synthesized from a group of 13 elements. As a proof of concept, Ni0.24 Co0.23 Cu0.24 Fe0.15 Cr0.14 high entropy alloy synthesized on stainless-steel foil by FsLDW is used for the oxygen evolution reaction, which achieves a current density of 10 mA cm-2 at a significantly low overpotential of 213 mV. Further, FsLDW can also achieve microfabrication of alloys/MMO with feature sizes down to 20 µm.
Collapse
Affiliation(s)
- Chidanand Hegde
- Singapore Centre for 3D Printing, Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chin Huat Joel Lim
- Singapore Centre for 3D Printing, Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tan Hui Teng
- Department of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Daobin Liu
- Department of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Young-Jin Kim
- Department of Mechanical Engineering Korea Advanced Institute of Science and Technology, 291 Science Town, Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Qingyu Yan
- Department of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hua Li
- Singapore Centre for 3D Printing, Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
237
|
Choi H, Kim DH, Han MH, Oh HS, Heo J, Lim HK, Choi CH. Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
238
|
Di J, Chen C, Wu Y, Zhao Y, Zhu C, Zhang Y, Wang C, Chen H, Xiong J, Xu M, Xia J, Zhou J, Weng Y, Song L, Li S, Jiang W, Liu Z. Polarized Cu-Bi Site Pairs for Non-Covalent to Covalent Interaction Tuning toward N 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204959. [PMID: 35863016 DOI: 10.1002/adma.202204959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A universal atomic layer confined doping strategy is developed to prepare Bi24 O31 Br10 materials incorporating isolated Cu atoms. The local polarization can be created along the CuOBi atomic interface, which enables better electron delocalization for effective N2 activation. The optimized Cu-Bi24 O31 Br10 atomic layers show 5.3× and 88.2× improved photocatalytic nitrogen fixation activity than Bi24 O31 Br10 atomic layer and bulk Bi24 O31 Br10 , respectively, with the NH3 generation rate reaching 291.1 µmol g-1 h-1 in pure water. The polarized Cu-Bi site pairs can increase the non-covalent interaction between the catalyst's surface and N2 molecules, then further weaken the covalent bond order in NN. As a result, the hydrogenation pathways can be altered from the associative distal pathway for Bi24 O31 Br10 to the alternating pathway for Cu-Bi24 O31 Br10 . This strategy provides an accessible pathway for designing polarized metal site pairs or tuning the non-covalent interaction and covalent bond order.
Collapse
Affiliation(s)
- Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chao Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Xiong
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Manzhang Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiadong Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering and The Photonics Institute, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore, Singapore
| |
Collapse
|
239
|
Triptycene incorporated carbon nitride based donor-acceptor conjugated polymers with superior visible-light photocatalytic activities. J Colloid Interface Sci 2022; 622:675-689. [DOI: 10.1016/j.jcis.2022.04.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 11/20/2022]
|
240
|
Wang E, Mahmood A, Chen SG, Sun W, Muhmood T, Yang X, Chen Z. Solar-Driven Photocatalytic Reforming of Lignocellulose into H 2 and Value-Added Biochemicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eryu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
| | - Ayyaz Mahmood
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, People’s Republic of China
| | - Sheng-Gui Chen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, People’s Republic of China
| | - Wenhong Sun
- Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, 530004 Nanning, People’s Republic of China
| | - Tahir Muhmood
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, Rostock 18059, Germany
| |
Collapse
|
241
|
Li L, Kang X, He M, Sheveleva A, Hu K, Xu S, Zhou Y, Chen J, Sapchenko S, Whitehead G, Vitorica-Yrezabal IJ, Lopez-Odriozola L, Natrajan LS, McInnes EJL, Schröder M, Yang S, Tuna F. Evolution of bismuth-based metal-organic frameworks for efficient electroreduction of CO 2. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:17801-17807. [PMID: 36132069 PMCID: PMC9426795 DOI: 10.1039/d2ta04485d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/14/2023]
Abstract
Understanding the structural and chemical changes that reactive metal-organic frameworks (MOFs) undergo is crucial for the development of new efficient catalysts for electrochemical reduction of CO2. Here, we describe three Bi(iii) materials, MFM-220, MFM-221 and MFM-222, which are constructed from the same ligand (biphenyl-3,3',5,5'-tetracarboxylic acid) but which show distinct porosity with solvent-accessible voids of 49.6%, 33.6% and 0%, respectively. We report the first study of the impact of porosity of MOFs on their evolution as electrocatalysts. A Faradaic efficiency of 90.4% at -1.1 V vs. RHE (reversible hydrogen electrode) is observed for formate production over an electrode decorated with MFM-220-p, formed from MFM-220 on application of an external potential in the presence of 0.1 M KHCO3 electrolyte. In situ electron paramagnetic resonance spectroscopy confirms the presence of ·COOH radicals as a reaction intermediate, with an observed stable and consistent Faradaic efficiency and current density for production of formate by electrolysis over 5 h. This study emphasises the significant role of porosity of MOFs as they react and evolve during electroreduction of CO2 to generate value-added chemicals.
Collapse
Affiliation(s)
- Lili Li
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Xinchen Kang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science Beijing 100190 China
| | - Meng He
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Alena Sheveleva
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Manchester M13 9PL UK
| | - Kui Hu
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Shaojun Xu
- UK Catalysis Hub, Research Complex at Harwell Didcot OX11 0FA UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK
| | - Yiqi Zhou
- Department of Materials, University of Manchester Manchester M13 9PL UK
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing Beijing 100083 China
| | - Jin Chen
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Sergei Sapchenko
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - George Whitehead
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | | | | | - Louise S Natrajan
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Manchester M13 9PL UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Sihai Yang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Manchester M13 9PL UK
| |
Collapse
|
242
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
243
|
Zhao Q, Xu Y, Greeley J, Savoie BM. Deep reaction network exploration at a heterogeneous catalytic interface. Nat Commun 2022; 13:4860. [PMID: 35982057 PMCID: PMC9388529 DOI: 10.1038/s41467-022-32514-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Characterizing the reaction energies and barriers of reaction networks is central to catalyst development. However, heterogeneous catalytic surfaces pose several unique challenges to automatic reaction network characterization, including large sizes and open-ended reactant sets, that make ad hoc network construction the current state-of-the-art. Here, we show how automated network exploration algorithms can be adapted to the constraints of heterogeneous systems using ethylene oligomerization on silica-supported single-site Ga3+ as a model system. Using only graph-based rules for exploring the network and elementary constraints based on activation energy and size for identifying network terminations, a comprehensive reaction network is generated and validated against standard methods. The algorithm (re)discovers the Ga-alkyl-centered Cossee-Arlman mechanism that is hypothesized to drive major product formation while also predicting several new pathways for producing alkanes and coke precursors. These results demonstrate that automated reaction exploration algorithms are rapidly maturing towards general purpose capability for exploratory catalytic applications.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
244
|
Wang Y, Wu D, Lv P, He B, Li X, Ma D, Jia Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. NANOSCALE 2022; 14:10862-10872. [PMID: 35843116 DOI: 10.1039/d2nr02813a] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrocatalytic reduction of harmful nitrate (NO3-) to valuable ammonia (eNO3RR) is critical and attractive for both environmental remediation and energy transformation. A single atom catalyst (SAC) based on graphene represents one of the most promising eNO3RR catalysts. However, the underlying catalytic mechanism and the intrinsic factors dictating the catalytic activity trend remain unclear. Herein, using first-principles calculations, eNO3RR on TMN3 and TMN4 (TM = Ti-Ni) doped graphene was thoroughly investigated. Our results reveal that FeN4 doped graphene exhibits excellent eNO3RR performance with a low limiting potential of -0.38 V, agreeing with the experimental finding, which can be ascribed to the effective adsorption and activation of NO3-via the charge "acceptance-donation" mechanism and its moderate binding due to the occupation of the d-p antibonding orbital. In particular, we found that eNO3RR activities are well correlated with the intrinsic properties of TM centers and their local environments. With the established activity descriptor, several other graphene-based SACs were efficiently screened out with excellent eNO3RR performance. Our studies could not only provide an atomic insight into the catalytic mechanism and activity origin of eNO3RR on graphene-based SACs, but also open an avenue for the rational design of SACs for eNO3RR towards ammonia by regulating the metal center and its local coordination environment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Bingling He
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Xue Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
245
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
246
|
Liu Q, Chen SW. Ultrafast synthesis of electrocatalysts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
247
|
Heterointerface engineering of Ru/RuS2 on N/S-doped hollow mesoporous carbon for promoting alkaline hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
248
|
Wang X, Zhu Y, Li H, Lee JM, Tang Y, Fu G. Rare-Earth Single-Atom Catalysts: A New Frontier in Photo/Electrocatalysis. SMALL METHODS 2022; 6:e2200413. [PMID: 35751459 DOI: 10.1002/smtd.202200413] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) provide well-defined active sites with 100% atom utilization, and can be prepared using a wide range of support materials. Therefore, they are attracting global attention, especially in the fields of energy conversion and storage. To date, research has focused on transition-metal and precious-metal-based SACs. More recently, rare-earth (RE)-based SACs have emerged as a new frontier in photo/electrocatalysis owing to their unique electronic structure arising from the spin-orbit coupling of the 4f and valence orbitals, unsaturated coordination environment, and unique behavior as charge-transport bridges. However, a systematic review on the role of the RE active sites, catalytic mechanisms, and synthetic methods for RE SACs is lacking. Therefore, in this review, the latest developments in RE SACs having applications in photo/electrocatalysis are summarized and discussed. First, the theoretical advantages of RE SACs for photo/electrocatalysis are briefly introduced, focusing on the roles of the 4f orbitals and coupled energy levels. In addition, the most recent research progress on RE SACs is summarized for several important photo/electrocatalytic reactions and the corresponding catalytic mechanisms are discussed. Further, the synthetic strategies for the production of RE SACs are reported. Finally, challenges for the development of RE SACs are highlighted, along with future research directions and perspectives.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yu Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
249
|
Karthikeyan M, Mahapatra DM, Razak ASA, Abahussain AA, Ethiraj B, Singh L. Machine learning aided synthesis and screening of HER catalyst: Present developments and prospects. CATALYSIS REVIEWS 2022:1-31. [DOI: 10.1080/01614940.2022.2103980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/13/2022] [Indexed: 09/02/2023]
Affiliation(s)
- M Karthikeyan
- Department of Environmental Science, SRM University-AP, Amaravati, India
| | - Durga Madhab Mahapatra
- Department of Chemical Engineering, Energy Cluster, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Dehradun, India
| | - Abdul Syukor Abd Razak
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Kuantan, Malaysia
| | | | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi,India
| |
Collapse
|
250
|
Xie ZL, Wang D, Gong XQ. Theoretical Insights into Nitrate Reduction to Ammonia over Pt/TiO 2: Reaction Mechanism, Activity Regulation, and Catalyst Design. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zheng-Li Xie
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dong Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|