201
|
Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Sci Rep 2017; 7:41507. [PMID: 28128339 PMCID: PMC5269746 DOI: 10.1038/srep41507] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Several tissue specific non-viral carriers have been developed for gene delivery purposes. However, the inability to escape endosomes, undermines the efficacy of these carriers. Researchers inspired by HIV and influenza virus, have randomly used Gp41 and H5WYG fusogenic peptides in several gene delivery systems without any rational preference. Here for the first time, we have genetically engineered two Nano-biomimetic carriers composed of either HWYG (HNH) or Gp41 (GNH) that precisely provide identical conditions for the study and evaluation of these fusogenic peptides. The luciferase assay demonstrated a two-fold higher transfection efficiency of HNH compared to GNH. These nanocarriers also displayed equivalent properties in terms of DNA binding ability and DNA protection against serum nucleases and formed similar nanoparticles in terms of surface charge and size. Interestingly, hemolysis and cellular analysis demonstrated both of nanoparticles internalized into cells in similar rate and escaped from endosome with different efficiency. Furthermore, the structural analysis revealed the mechanisms responsible for the superior endosomal escaping capability of H5WYG. In conclusion, this study describes the rationale for using H5WYG peptide to deliver nucleic acids and suggests that using nano-biomimetic carriers to screen different endosomal release peptides, improves gene delivery significantly.
Collapse
|
202
|
Wang X, Ding J, Feng Y, Weng L, Zhao G, Xiang J, Zhang M, Xing D. Targeting of growth factors in the treatment of hepatocellular carcinoma: The potentials of polysaccharides. Oncol Lett 2017; 13:1509-1517. [PMID: 28454283 DOI: 10.3892/ol.2017.5602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-associated mortality worldwide and is thus of great concern. Although various chemotherapeutic drugs are currently used for the treatment of HCC, severe side effects associated with these treatments have prompted interest in novel therapies, including the use of certain biological macromolecules such as polysaccharides. Several studies have shown that polysaccharides have anticancer and antiproliferative effects on HCC. Vascular endothelial growth factor, transforming growth factor β, epidermal growth factor and fibroblast growth factor may be effective targets for polysaccharides and may modulate tumor growth and immunity through increasing the expression levels of cytokines. The present review focuses on the ways in which growth factors contribute to the development of HCC, and on the anti-growth factor activities of natural and synthetic polysaccharides, as well as their effect on proinflammatory cytokines.
Collapse
Affiliation(s)
- Xuan Wang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jieyu Ding
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuanyuan Feng
- Oncology Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Lingling Weng
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guangqiang Zhao
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jianfeng Xiang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Minguang Zhang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Dongwei Xing
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
203
|
Nair BG, Zhou Y, Hagiwara K, Ueki M, Isoshima T, Abe H, Ito Y. Enhancement of synergistic gene silencing by RNA interference using branched “3-in-1” trimer siRNA. J Mater Chem B 2017; 5:4044-4051. [DOI: 10.1039/c7tb00846e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanostructured RNA carrying three different siRNAs was assembled to silence three target genes (Axin, APC, and GSK-3β) in the Wnt/β-catenin signaling pathway. This nanostructured ‘3-in-1’ siRNA showed high activity at a low concentration due to the long-term resistance, and enhancing the effect of RNA interference.
Collapse
Affiliation(s)
| | - Yue Zhou
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
| | - Kyoji Hagiwara
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Wako
- Japan
| | - Masashi Ueki
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
| | | | - Hiroshi Abe
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
- Emergent Bioengineering Materials Research Team
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
- Emergent Bioengineering Materials Research Team
| |
Collapse
|
204
|
Abstract
There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.
Collapse
Affiliation(s)
- Gianluca Civenni
- Laboratory of Experimental Therapeutics, IOR, Institute of Oncology Research, Via Vela 6, Bellinzona, 6500, Switzerland.
| |
Collapse
|
205
|
Dan Q, Xia Q, Wang T. Interference chemically synthesized dsRNA decreased IL‐1β expression in PC12 cells and its functional implication. IBRAIN 2017. [DOI: 10.1002/j.2769-2795.2017.tb00014.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qi‐Qin Dan
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduChina
| | - Qing‐Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduChina
| | - Ting‐Hua Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
206
|
Lin G, Chen CK, Yin F, Yang C, Tian J, Chen T, Xu G, He C, Lin MCM, Wang J, Lu F, Wang X, Yong KT. Biodegradable nanoparticles as siRNA carriers for in vivo gene silencing and pancreatic cancer therapy. J Mater Chem B 2017; 5:3327-3337. [DOI: 10.1039/c6tb03116a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable charged polyester-based vectors (BCPVs) were utilized for efficiently delivering mutatedK-Ras-targeting siRNA and successfully inhibiting tumor growth in a pancreatic xenograft modelin vivo.
Collapse
|
207
|
Giraud L, Viricel W, Leblond J, Giasson S. Single stranded siRNA complexation through non-electrostatic interactions. Biomaterials 2017; 113:230-242. [DOI: 10.1016/j.biomaterials.2016.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
|
208
|
Xue H, Guo X, Han X, Yan S, Zhang J, Xu S, Li T, Guo X, Zhang P, Gao X, Liu Q, Li G. MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1. Oncotarget 2016; 7:4785-805. [PMID: 26715733 PMCID: PMC4826243 DOI: 10.18632/oncotarget.6735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Here, we report that microRNA-584-3p (miR-584-3p) is up-regulated in hypoxic glioma cells and in high-grade human glioma tumors (WHO grades III–IV) relative to normoxic cells and to low-grade tumors (WHO grades I–II), respectively. The postoperative survival time was significantly prolonged in the high-grade glioma patients with high miR-584-3p expression compared with those with low miR-584-3p expression. miR-584-3p may function as a potent tumor suppressor and as a prognostic biomarker for malignant glioma. However, the molecular mechanisms underlying these properties remain poorly understood. Our mechanistic studies revealed that miR-584-3p suppressed the migration and invasion of glioma cells by disrupting hypoxia-induced stress fiber formation. Specifically, we have found that ROCK1 is a direct and functionally relevant target of miR-584-3p in glioma cells. Our results have demonstrated a tumor suppressive function of miR-584-3p in glioma, in which it inhibits the migration and invasion of tumor cells by antagonizing hypoxia-induced, ROCK1-dependent stress fiber formation. Our findings have potential implications for glioma gene therapy and suggest that miR-584-3p could represent a prognostic indicator for glioma.
Collapse
Affiliation(s)
- Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China.,Brain Science Research Institute, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China.,Brain Science Research Institute, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Shaofeng Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Jinsen Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Shugang Xu
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong Province, P.R. China
| | - Tong Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China.,Brain Science Research Institute, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xiao Gao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Qinglin Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China.,Brain Science Research Institute, Shandong University, Jinan, Shandong Province, P.R. China
| |
Collapse
|
209
|
Zhen S, Lu JJ, Wang LJ, Sun XM, Zhang JQ, Li X, Luo WJ, Zhao L. In Vitro and In Vivo Synergistic Therapeutic Effect of Cisplatin with Human Papillomavirus16 E6/E7 CRISPR/Cas9 on Cervical Cancer Cell Line. Transl Oncol 2016; 9:498-504. [PMID: 27816686 PMCID: PMC5094426 DOI: 10.1016/j.tranon.2016.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023] Open
Abstract
PURPOSE: Human papillomavirus (HPV) type 16 is one of the major etiologic factors of cervical cancer. Our study aims to investigate the potentiality of the antiviral clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system (CRISPR/Cas9) targeting the E6 and E7 oncogenes of HPV16 as a potential chemosensitizer of cisplatin (cis-diaminedichloroplatinum II; CDDP) for cervical cancer. METHODS: Specifically, the therapeutic efficacy of combination of CDDP and HPV16 E6 + E7-CRISPR/Cas9 was assessed in cervical cancer cells and cervical cancer xenograft models. RESULTS: In vitro experiments showed that long-term exposure of SiHa cells to the HPV16 E6 + E7-CRISPR/Cas9 induced apoptosis, and its pro-apoptosis effect became more obvious when combined with CDDP. In vivo study found the efficacy of the combination of HPV16 E6 + E7-CRISPR/Cas9 and CDDP were superior to either of the treatments in term of apoptosis induction and metastasis inhibition. CONCLUSION: Collectively, our results suggested that HPV16 E6 + E7-CRISPR/Cas9 could be an effective sensitizer of CDDP chemotherapy in cervical cancer.
Collapse
Affiliation(s)
- Shuai Zhen
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao-Jiao Lu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li-Jie Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Min Sun
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia-Qi Zhang
- Department of Medical Imaging, The NO.2 People's Hospital of Lanzhou City, Lanzhou, China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen-Juan Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
210
|
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240:109-126. [PMID: 26571000 PMCID: PMC4862943 DOI: 10.1016/j.jconrel.2015.11.009] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
Abstract
Nanogels have emerged as a versatile hydrophilic platform for encapsulation of guest molecules with a capability to respond to external stimuli that can be used for a multitude of applications. These are soft materials capable of holding small molecular therapeutics, biomacromolecules, and inorganic nanoparticles within their crosslinked networks, which allows them to find applications for therapy as well as imaging of a variety of disease conditions. Their stimuli-responsive behavior can be easily controlled by selection of constituent polymer and crosslinker components to achieve a desired response at the site of action, which imparts nanogels the ability to participate actively in the intended function of the carrier system rather than being passive carriers of their cargo. These properties not only enhance the functionality of the carrier system but also help in overcoming many of the challenges associated with the delivery of cargo molecules, and this review aims to highlight the distinct and unique capabilities of nanogels as carrier systems for the delivery of an array of cargo molecules over other nanomaterials. Despite their obvious usefulness, nanogels are still not a commonplace occurrence in clinical practice. We have also made an attempt to highlight some of the major challenges that need to be overcome to advance nanogels further in the field of biomedical applications.
Collapse
Affiliation(s)
- Kruti S Soni
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Swapnil S Desale
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| |
Collapse
|
211
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
212
|
Saha A, Bhagyawant SS, Parida M, Dash PK. Vector-delivered artificial miRNA effectively inhibited replication of Chikungunya virus. Antiviral Res 2016; 134:42-49. [PMID: 27565991 PMCID: PMC7113671 DOI: 10.1016/j.antiviral.2016.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
Chikungunya virus (CHIKV) has emerged as one of the most significant arboviral threats in many parts of the world. In spite of large scale morbidity, and long lasting polyarthralgia, no licensed vaccine or antivirals are available for the clinical management of CHIKV infection. In this study, a novel RNA interference based strategy has been adopted for effective inhibition of CHIKV. Four artificial microRNAs (amiRNAs) were designed to target different regions of CHIKV genome. These amiRNAs significantly inhibited CHIKV replication in Vero cells at both RNA and protein levels as assessed by qRT-PCR, immunoblotting and immunofluorescence techniques. Further inhibition of the infectious CHIKV up to 99.8% was demonstrated by plaque reduction assay. Concatemerization of amiRNA resulted in higher inhibition of CHIKV than individual amiRNAs. In addition, we studied the effect of combination of RNAi based therapy with other classical antivirals like chloroquine, ribavirin and mycophenolic acid, that helped in understanding the rational selection of RNAi based combination therapy. These findings provide a promising avenue for the development of novel amiRNA or combination based therapeutics against emerging CHIKV.
amiRNAs targeting different ORF of CHIKV was designed. Significant Inhibition of CHIKV replication through amiRNA was demonstrated. Concatenated amiRNAs results in higher viral inhibition. Combination of RNAi with classical drugs may obliterate failure of monotherapy.
Collapse
Affiliation(s)
- Amrita Saha
- Virology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | | | - Manmohan Parida
- Virology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Paban Kumar Dash
- Virology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
213
|
Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8:v8080231. [PMID: 27548204 PMCID: PMC4997593 DOI: 10.3390/v8080231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.
Collapse
Affiliation(s)
- Terence P Scott
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
214
|
Parmar MB, Arteaga Ballesteros BE, Fu T, K C RB, Montazeri Aliabadi H, Hugh JC, Löbenberg R, Uludağ H. Multiple siRNA delivery against cell cycle and anti-apoptosis proteins using lipid-substituted polyethylenimine in triple-negative breast cancer and nonmalignant cells. J Biomed Mater Res A 2016; 104:3031-3044. [PMID: 27465922 DOI: 10.1002/jbm.a.35846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/28/2016] [Accepted: 07/26/2016] [Indexed: 11/07/2022]
Abstract
Conventional breast cancer therapies have significant limitations that warrant a search for alternative therapies. Short-interfering RNA (siRNA), delivered by polymeric biomaterials and capable of silencing specific genes critical for growth of cancer cells, holds great promise as an effective, and more specific therapy. Here, we employed amphiphilic polymers and silenced the expression of two cell cycle proteins, TTK and CDC20, and the anti-apoptosis protein survivin to determine the efficacy of polymer-mediated siRNA treatment in breast cancer cells as well as side effects in nonmalignant cells in vitro. We first identified effective siRNA carriers by screening a library of lipid-substituted polyethylenimines (PEI), and PEI substituted with linoleic acid (LA) emerged as the most effective carrier for selected siRNAs. Combinations of TTK/CDC20 and CDC20/Survivin siRNAs decreased the growth of MDA-MB-231 cells significantly, while only TTK/CDC20 combination inhibited MCF7 cell growth. The effects of combinational siRNA therapy was higher when complexes were formulated at lower siRNA:polymer ratio (1:2) compared to higher ratio (1:8) in nonmalignant cells. The lead polymer (1.2PEI-LA6) showed differential transfection efficiency based on the cell-type transfected. We conclude that the lipid-substituted polymers could serve as a viable platform for delivery of multiple siRNAs against critical targets in breast cancer therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3031-3044, 2016.
Collapse
Affiliation(s)
- Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bárbara E Arteaga Ballesteros
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy Fu
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Remant Bahadur K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Judith C Hugh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada. .,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
215
|
Krivitsky A, Polyak D, Scomparin A, Eliyahu S, Ori A, Avkin-Nachum S, Krivitsky V, Satchi-Fainaro R. Structure–Function Correlation of Aminated Poly(α)glutamate as siRNA Nanocarriers. Biomacromolecules 2016; 17:2787-800. [DOI: 10.1021/acs.biomac.6b00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adva Krivitsky
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dina Polyak
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Scomparin
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shay Eliyahu
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asaf Ori
- QBI Enterprise, Ltd., Ness-Ziona 70400, Israel
| | | | - Vadim Krivitsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
216
|
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103:187-201. [PMID: 27151309 PMCID: PMC4935568 DOI: 10.1016/j.addr.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022]
Abstract
One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials.
Collapse
Affiliation(s)
- Olivier Pernet
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Swati Seth Yadav
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Dong Sung An
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; Hematology-Oncology, The Department of Medicine, David Geffen School of Medicine at UCLA, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| |
Collapse
|
217
|
Wang T, Chen Q, Lu H, Li W, Li Z, Ma J, Gao H. Shedding PEG Palisade by Temporal Photostimulation and Intracellular Reducing Milieu for Facilitated Intracellular Trafficking and DNA Release. Bioconjug Chem 2016; 27:1949-57. [PMID: 27453033 DOI: 10.1021/acs.bioconjchem.6b00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dilemma of poly(ethylene glycol) surface modification (PEGylation) inspired us to develop an intracellularly sheddable PEG palisade for synthetic delivery systems. Here, we attempted to conjugate PEG to polyethylenimine (PEI) through tandem linkages of disulfide-bridge susceptible to cytoplasmic reduction and an azobenzene/cyclodextrin inclusion complex responsive to external photoirradiation. The subsequent investigations revealed that facile PEG detachment could be achieved in endosomes upon photoirradiation, consequently engendering exposure of membrane-disruptive PEI for facilitated endosome escape. The liberated formulation in the cytosol was further subjected to complete PEG detachment relying on disulfide cleavage in the reductive cytosol, thus accelerating dissociation of electrostatically assembled PEI/DNA polyplex to release DNA by means of polyion exchange reaction with intracellularly charged species, ultimately contributing to efficient gene expression.
Collapse
Affiliation(s)
- Tieyan Wang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Qixian Chen
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Zaifen Li
- School of Science, Tianjin University , 92 Weijin Road, Tianjin, Nankai District, 300072, China
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| |
Collapse
|
218
|
Xiao B, Ma L, Merlin D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin Drug Deliv 2016; 14:65-73. [PMID: 27337289 DOI: 10.1080/17425247.2016.1205583] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cancer is the leading cause of death worldwide. Current cancer treatments in the clinic mainly include chemotherapy, radiotherapy and surgery, with chemotherapy being the most common. Areas covered: Cancer treatments based on the single 'magic-bullet' concept are often associated with limited therapeutic efficacy, unwanted adverse effects, and drug resistance. The combination of multiple drugs is a promising strategy for effective cancer treatment due to the synergistic or additive effects. Small interfering RNA (siRNA) has the ability to knock down the expression of carcinogenic genes or drug efflux transporter genes, paving the way for cancer treatment. Treatment with both a chemotherapeutic agent and siRNA based on nanoparticle (NP)-mediated co-delivery is a promising approach for combination cancer therapy. Expert opinion: The combination of chemotherapeutic agents and siRNAs for cancer treatment offers the potential to enhance therapeutic efficacy, decrease side effects, and overcome drug resistance. Co-delivery of chemical drug and siRNA in the same NP would be much more effective in cancer therapy than application of chemical agent or siRNA alone. With the development of material science, NPs have come to be the most widely used platform for co-delivery of chemotherapeutic drugs and siRNAs.
Collapse
Affiliation(s)
- Bo Xiao
- a Institute for Clean Energy and Advanced Materials , Faculty for Materials and Energy, Southwest University , Chongqing , P. R. China.,b Center for Diagnostics and Therapeutics, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Lijun Ma
- a Institute for Clean Energy and Advanced Materials , Faculty for Materials and Energy, Southwest University , Chongqing , P. R. China
| | - Didier Merlin
- b Center for Diagnostics and Therapeutics, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA.,c Veterans Affairs Medical Center , Decatur , GA , USA
| |
Collapse
|
219
|
Detection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem-loop array RT-PCR analysis. Biochem Biophys Rep 2016; 6:16-23. [PMID: 26949742 PMCID: PMC4776327 DOI: 10.1016/j.bbrep.2016.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The small interfering RNA (siRNA)-mediated target mRNA cleavage activity generates cleaved mRNA fragments with varied termini, which creates major technical challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs. Here we used a sensitive stem-loop array reverse transcription polymerase chain reaction (SLA-RT-PCR) approach to detect and verify the siRNA-mediated target mRNA cleavage sites by determining precise sequences at the 3′- termini of cleaved mRNA fragments in human cells under physiological conditions. Our results demonstrated the great potential and broad applications of using the SLA-RT-PCR as a sensitive, cost-efficient, and high-throughput tool to systematically detect siRNA-targeted mRNA cleavage sites and fragments in human cells.
SLA-RT-PCR identifies authentic siRNA-cleavage sites under physiological conditions. SLA-RT-PCR detects whether the siRNA therapeutic hits its predicted gene target. SLA-RT-PCR is the basis for the successful application of siRNA as a therapeutic for human disease.
Collapse
|
220
|
Man DK, Chow MY, Casettari L, Gonzalez-Juarrero M, Lam JK. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv Drug Deliv Rev 2016; 102:21-32. [PMID: 27108702 DOI: 10.1016/j.addr.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.
Collapse
|
221
|
Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy. Colloids Surf B Biointerfaces 2016; 146:387-95. [PMID: 27388967 DOI: 10.1016/j.colsurfb.2016.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022]
Abstract
The lack of safe and effective gene delivery strategies remains a bottleneck for cancer gene therapy. Here, we describe the synthesis, characterization, and application of cell-penetrating peptide (CPP)-loaded nanobubbles (NBs), which are characterized by their safety, strong penetrating power and high gene loading capability for gene delivery. An epidermal growth factor receptor (EGFR)-targeted small interfering RNA (siEGFR) was transfected into triple negative breast cancer (TNBC) cells via prepared CPP-NBs synergized with ultrasound-targeted microbubble destruction (UTMD) technology. Fluorescence microscopy showed that siEGFR and CPP were loaded on the shells of the NBs. The transfection efficiency and cell proliferation levels were evaluated by FACS and MTT assays, respectively. In addition, in vivo experiments showed that the expression of EGFR mRNA and protein could be efficiently downregulated and that the growth of a xenograft tumor derived from TNBC cells could be inhibited. Our results indicate that CPP-NBs carrying siEGFR could potentially be used as a promising non-viral gene vector that can be synergized with UTMD technology for efficient TNBC therapy.
Collapse
|
222
|
Yao C, Liu J, Wu X, Tai Z, Gao Y, Zhu Q, Li J, Zhang L, Hu C, Gu F, Gao J, Gao S. Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy. J Control Release 2016; 232:203-14. [DOI: 10.1016/j.jconrel.2016.04.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/30/2016] [Accepted: 04/23/2016] [Indexed: 01/04/2023]
|
223
|
Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, Guo X, Xu S, Li T, Shao Q, Yan S, Li G. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy 2016; 12:1129-52. [PMID: 27163161 PMCID: PMC4990999 DOI: 10.1080/15548627.2016.1178446] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients.
Collapse
Affiliation(s)
- Hao Xue
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Guang Yuan
- c Department of Neurosurgery , Central Hospital of Zibo City , Zibo , Shandong Province , China
| | - Xing Guo
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Qinglin Liu
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Jinsen Zhang
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Xiao Gao
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Xiaofan Guo
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Shugang Xu
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,d Department of Neurosurgery , Dezhou People's Hospital , Dezhou , Shandong Province , China
| | - Tong Li
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Qianqian Shao
- e Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Shaofeng Yan
- b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Gang Li
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| |
Collapse
|
224
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 34:44-69. [PMID: 28392618 PMCID: PMC5381822 DOI: 10.14356/kona.2017005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system can be used to overcome the barriers of pulmonary delivery, such as anatomical barriers, mucociliary clearance, cough clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems include those of lipidic, polymeric, peptide, or inorganic origin. These delivery systems can achieve pulmonary delivery through the generation of an aerosol via an inhaler or nebulizer. The preparation methodologies for these siRNA nanocarrier systems will be discussed herein. The use of inhalable nanocarrier siRNA delivery systems have barriers to their effective delivery, but overcoming these constraints while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, The Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
225
|
Shatizadeh Malekshahi S, Arefian E, Salimi V, Mokhtari Azad T, Yavarian J. Potential siRNA Molecules for Nucleoprotein and M2/L Overlapping Region of Respiratory Syncytial Virus: In Silico Design. Jundishapur J Microbiol 2016; 9:e34304. [PMID: 27303618 PMCID: PMC4902852 DOI: 10.5812/jjm.34304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/05/2015] [Accepted: 02/16/2016] [Indexed: 11/28/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in the pediatric population, elderly and in immunosuppressed individuals. Respiratory syncytial virus is also responsible for bronchiolitis, pneumonia, and chronic obstructive pulmonary infections in all age groups. With this high disease burden and the lack of an effective RSV treatment and vaccine, there is a clear need for discovery and development of novel, effective and safe drugs to prevent and treat RSV disease. The most innovative approach is the use of small interfering RNAs (siRNAs) which represent a revolutionary new concept in human therapeutics. The nucleoprotein gene of RSV which is known as the most conserved gene and the M2/L mRNA, which encompass sixty-eight overlapping nucleotides, were selected as suitable targets for siRNA design. Objectives The present study is aimed to design potential siRNAs for silencing nucleoprotein and an overlapping region of M2-L coding mRNAs by computational analysis. Materials and Methods Various computational methods (target alignment, similarity search, secondary structure prediction, and RNA interaction calculation) have been used for siRNA designing against different strains of RSV. Results In this study, seven siRNA molecules were rationally designed against the nucleoprotein gene and validated using various computational methods for silencing different strains of RSV. Additionally, three effective siRNA molecules targeting the overlapping region of M2/L mRNA were designed. Conclusions This approach provides insight and a validated strategy for chemical synthesis of an antiviral RNA molecule which meets many sequence features for efficient silencing and treatment at the genomic level.
Collapse
Affiliation(s)
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, IR Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Jila Yavarian, Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2188962343, E-mail:
| |
Collapse
|
226
|
Yang Y, Xie X, Yang Y, Li Z, Yu F, Gong W, Li Y, Zhang H, Wang Z, Mei X. Polymer Nanoparticles Modified with Photo- and pH-Dual-Responsive Polypeptides for Enhanced and Targeted Cancer Therapy. Mol Pharm 2016; 13:1508-19. [PMID: 27043442 DOI: 10.1021/acs.molpharmaceut.5b00977] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cationic nature of cell penetrating peptides (CPPs) and their absence of cell selectivity restrains their applications in vivo. In this work, polymer nanoparticles (NPs) modified with photo- and pH-responsive polypeptides (PPPs) were successfully developed and respond to near-infrared (NIR) light illumination at the tumor site and a lowered tumor extracellular pH (pHe). In PPPs, the internalization function of CPPs (positively charged) is quenched by a pH-sensitive inhibitory peptide (negatively charged), which is linked via a photocleavable group. Small interfering RNA (siRNA) was loaded into NPs by a double-emulsion technique. In vivo experiments included siRNA loading, cellular uptake, cell apoptosis, siRNA transfection, tumor targeting delivery, and the in vivo antitumor efficacy. Results showed that the prepared PPP-NPs could selectively accumulate at the tumor sites and internalized into the tumor cells by the NIR light illumination and the lowered pHe at the tumor site. These studies demonstrated that PPP-NPs are a promising carrier for future tumor gene delivery.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Xiangyang Xie
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Department of Pharmacy, Wuhan General Hospital of Guangzhou Command , Wuhan 430070, China
| | - Yanfang Yang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Fanglin Yu
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Ying Li
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Zhiyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Xingguo Mei
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| |
Collapse
|
227
|
Prognostic and therapeutic impact of RPN2-mediated tumor malignancy in non-small-cell lung cancer. Oncotarget 2016; 6:3335-45. [PMID: 25595901 PMCID: PMC4413657 DOI: 10.18632/oncotarget.2793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful gene-silencing platform for cancer treatment. Previously, we demonstrated that ribophorin II (RPN2), which is part of the N-oligosaccharyl transferase complex, regulates docetaxel sensitivity and tumor lethal phenotypes in breast cancer. However, the molecular functions and clinical relevance of RPN2 in non-small-cell lung cancer (NSCLC) remain unknown. Here, we examined RPN2 expression in tumor specimens from recurrent NSCLC patients after resection (n = 32 and = 177) and assessed the correlation between RPN2 expression and various clinical features. We also investigated whether RPN2 affects cancer malignancy in vitro and tumor growth and drug resistance in vivo. Our data show that RPN2 expression confers early and distant recurrence as well as poor survival in NSCLC patients. Furthermore, RPN2 silencing suppressed cell proliferation and invasiveness, and increased the sensitivity to chemotherapeutic drugs in vitro. Remarkably, we found that intrinsic apoptosis signaling is the mechanism of cell death involved with RPN2 knockdown. Strikingly, RPN2 silencing repressed tumorigenicity and sensitized the tumors to cisplatin treatment, which led to the longer survival of NSCLC-bearing mice. In conclusion, these data suggest that RPN2 is involved in the regulation of lethal cancer phenotypes and represents a promising new target for RNAi-based medicine against NSCLC.
Collapse
|
228
|
A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e299. [PMID: 27003758 PMCID: PMC5014458 DOI: 10.1038/mtna.2016.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
Abstract
Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion–deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9+/mut and Krt9mut/mut mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9+/mut) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9+/mut mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.
Collapse
|
229
|
Li J, Liu J, Li S, Hao Y, Chen L, Zhang X. Antibody h-R3-dendrimer mediated siRNA has excellent endosomal escape and tumor targeted delivery ability, and represents efficient siPLK1 silencing and inhibition of cell proliferation, migration and invasion. Oncotarget 2016; 7:13782-96. [PMID: 26883109 PMCID: PMC4924678 DOI: 10.18632/oncotarget.7368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
The major obstacle to developing siRNA delivery is their extracellular and intracellular barriers. Herein, a humanized anti-EGFR monoclonal antibody h-R3 was developed to modify the self-assembled binary complexes (dendriplexes) of PAMAM and siRNA via electrostatic interactions, and two common ligands HSA and EGF were used as a control. Compared to dendriplexes, h-R3/EGF/HSA-dendriplexes showed increased particle size, decreased zeta potentials and lower cytotoxicity. Moreover, h-R3-dendriplexes presented greater cellular uptake and excellent endosomal escape ability in HepG2 cells. Ex vivo fluorescence imaging revealed that h-R3-dendriplexes showed higher targeted delivery and gene expression in the tumors than dendriplexes, HSA-dendriplexes and EGF-dendriplexes, which was in agreement with confocal results of cryosections. Furthermore, h-R3-dendriplexes for siPLK1 delivery indicated efficient gene silencing, potentiated cell growth inhibition and cell apoptosis, and suppressed cellular migration/invasion. These results indicate that h-R3-dendriplexes represent a great potential to be used as efficient targeted siRNA delivery carriers.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Shengnan Li
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Yanli Hao
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Xiaoning Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| |
Collapse
|
230
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 33:63-85. [PMID: 27081214 PMCID: PMC4829385 DOI: 10.14356/kona.2016014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
231
|
Morla-Folch J, Xie HN, Alvarez-Puebla RA, Guerrini L. Fast Optical Chemical and Structural Classification of RNA. ACS NANO 2016; 10:2834-2842. [PMID: 26831953 DOI: 10.1021/acsnano.5b07966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As more biological activities of ribonucleic acids continue to emerge, the development of efficient analytical tools for RNA identification and characterization is necessary to acquire an in-depth understanding of their functions and chemical properties. Herein, we demonstrate the capacity of label-free direct surface-enhanced Raman scattering (SERS) analysis to access highly specific structural information on RNAs at the ultrasensitive level. This includes the recognition of distinctive vibrational features of RNAs organized into a variety of conformations (micro-, fully complementary duplex-, small interfering- and short hairpin-RNAs) or characterized by subtle chemical differences (single-base variances, nucleobase modifications and backbone composition). This method represents a key advance in the ribonucleic acid analysis and will have a direct impact in a wide range of different fields, including medical diagnosis, drug design, and biotechnology, by enabling the rapid, high-throughput, simple, and low-cost identification and classification of structurally similar RNAs.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Universitat Rovira i Virgili and Centro Tecnológico de la Química de Catalunya , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Hai-nan Xie
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
| | - Ramon A Alvarez-Puebla
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Universitat Rovira i Virgili and Centro Tecnológico de la Química de Catalunya , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Luca Guerrini
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
| |
Collapse
|
232
|
Han XF, Zhang Y, Xiong LL, Xu Y, Zhang P, Xia QJ, Wang TH, Ba YC. Lentiviral-Mediated Netrin-1 Overexpression Improves Motor and Sensory Functions in SCT Rats Associated with SYP and GAP-43 Expressions. Mol Neurobiol 2016; 54:1684-1697. [PMID: 26873853 DOI: 10.1007/s12035-016-9723-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/13/2016] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI), as a major cause of disability, usually causes serious loss of motor and sensory functions. As a bifunctional axonal guidance cue, netrin-1 can attract axons via the deleted in colorectal cancer (DCC) receptors and repelling others via Unc5 receptors, but its exact role in the recovery of motor and sensory function has not well been studied, and the mechanisms remains elusive. The aim of this experiment is to determine whether lentiviral (LV)-mediated overexpression of netrin-1 or RNA interference (RNAi) can regulate the functional recovery in rats subjected to spinal cord transection (SCT). Firstly, two lentiviral vectors including Lv-exNtn-1 (netrin-1 open reading frame (ORF)) and Lv-shNtn-1 (netrin-1 sh) were constructed and injected into spinal cords rostral and caudal to the transected lesion site. Overexpressing netrin-1 enhanced significantly locomotor function, and reduced thermal and mechanical stimuli in vivo, compared with the control, while silencing netrin-1 did not significantly change the situation. Western blot and immunostaining analysis confirmed that netrin-1 ORF treatment not only effectively increased the expression level of netrin-1, also up-regulated the level of synaptophysin (SYP) in spinal cord rostral to the lesion, but also enhanced growth-associated protein-43 (GAP-43) expression in spinal cord caudal to the lesion site. Comparatively, knockdown of netrin-1 did not give rise to positive findings in our experimental condition. These findings therefore pointed that Lv-mediated netrin-1 overexpression could promote motor and sensory functional recoveries following SCT, and the underlying mechanisms were associated with SYP and GAP-43 expressions. The present study therefore provided a novel strategy for the treatment of SCI and explained the possible mechanisms for the functional improvement.
Collapse
Affiliation(s)
- Xue Fei Han
- Institute of Neuroscience and Department of Anatomy, Kunming Medical University, Kunming, 650000, China
| | - Yuan Zhang
- Institute of Neuroscience and Department of Anatomy, Kunming Medical University, Kunming, 650000, China
| | - Liu Lin Xiong
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yang Xu
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Piao Zhang
- Institute of Neuroscience and Department of Anatomy, Kunming Medical University, Kunming, 650000, China
| | - Qing Jie Xia
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Ting Hua Wang
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Ying Chun Ba
- Institute of Neuroscience and Department of Anatomy, Kunming Medical University, Kunming, 650000, China.
| |
Collapse
|
233
|
Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine. Biomacromolecules 2016; 17:788-97. [PMID: 26813877 DOI: 10.1021/acs.biomac.5b01518] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel diseases (IBD) manifest from excessive intestinal inflammation. Local delivery of siRNA that targets these inflammatory cytokines would provide a novel treatment approach. Microencapsulated nanogels are designed and validated as platforms for oral delivery of siRNA targeting TNF-α, a common clinical target of IBD treatments. The preferred platform was designed to (i) protect siRNA-loaded nanogels from the harsh acidic environment of the upper GI tract and (ii) enzymatically degrade and release the nanogels once the carrier has reached the intestinal region. This platform consists of microgels composed of poly(methacrylic acid-co-N-vinyl-2-pyrrolidone) (P[MAA-co-NVP]) cross-linked with a trypsin-degradable peptide linker. The P(MAA-co-NVP) backbone is designed to collapse around and protect encapsulated nanogel from degradation at the low pH levels seen in the stomach (pH 2-4). At pH levels of 6-7.5, as typically observed in the intestine, the P(MAA-co-NVP) matrix swells, potentially facilitating diffusion of intestinal fluid and degradation of the matrix by intestinal enzymes such as trypsin, thus "freeing" the therapeutic nanogels for delivery and cellular uptake within the intestine. TNF-α siRNA-loaded nanogels released from this platform were capable of inducing potent knockdown of secreted TNF-α levels in murine macrophages, further validating the potential for this approach to be used for the treatment of IBD.
Collapse
Affiliation(s)
- Jennifer M Knipe
- Department of Chemical Engineering, C0400, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Laura E Strong
- Department of Biomedical Engineering, C0800, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Department of Chemical Engineering, C0400, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Biomedical Engineering, C0800, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin , Austin, Texas 78712, United States.,College of Pharmacy, A1900, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
234
|
Xue H, Gao X, Xu S, Zhang J, Guo X, Yan S, Li T, Guo X, Liu Q, Li G. MicroRNA-Let-7f reduces the vasculogenic mimicry of human glioma cells by regulating periostin-dependent migration. Oncol Rep 2016; 35:1771-7. [PMID: 26750768 DOI: 10.3892/or.2016.4548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/05/2015] [Indexed: 11/05/2022] Open
Abstract
The present study was the first to examine the effect of microRNA-Let-7f (miR-Let-7f) inhibiting vasculogenic mimicry (VM) of human glioma cells. The postoperative survival time was significantly poor in VM-positive glioma patients compared with those without VM. Thus, it is reasonable to postulate that miR-Let-7f functions as a potent tumor suppressor by inhibiting glioma VM. However, the molecular mechanisms involved remain poorly clarified. Our preliminary studies revealed that miR-Let-7f suppressed VM by disturbing periostin (POSTN)-induced migration of glioma cells. Our results clearly demonstrated that inhibiting the pro-migratory function of POSTN by the overexpression of miR-Let-7f significantly reduced the formation of VM. Our findings suggest that miR-Let-7f may serve as a potential complementary therapeutic target in the anti‑angiogenesis treatment of gliomas via suppressing VM.
Collapse
Affiliation(s)
- Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao Gao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shugang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinsen Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaofeng Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tong Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinglin Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
235
|
Inhibition of osteoclastogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. Acta Biomater 2016; 29:352-364. [PMID: 26432439 DOI: 10.1016/j.actbio.2015.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022]
Abstract
Gene silencing through siRNA delivery has shown great promise for treating diseases and repairing damaged tissues, including bone. This report is the first to develop siRNA delivery system in the inhibition of osteoclastic functions which in turn can help turn-over bone mass increase in the diseases like osteoporosis. For this reason, biocompatible and degradable nanocarriers that can effectively load and deliver genetic molecules to target cells and tissues are being actively sought by researchers. In this study, mesoporous bioactive glass nanospheres (MBG), a novel unique biocompatible degradable inorganic nanocarrier, is introduced. Furthermore, siRNA was designed to function by inhibiting the expression of the receptor activator of nuclear factor kappa B (RANK) in order to suppress osteoclastogenesis. Amine-functionalized MBG were synthesized with tunable mesoporosities, showing a strong complexation with siRNA. An in vitro release profile indicated that the siRNA from the MBG was able to achieve a highly sustainable liberation for up to 4 days, confirming a temporary delivery system can be designed to function for that period of time. The intracellular uptake capacity of the complex siRNA(RANK)-MBG was recorded to be around 70%. Furthermore, the RANK-expressing cell population declined down to 29% due to the delivery of siRNA(RANK)-MBG (vs. 86% in control). The expression of osteoclastogenesis-related genes, including c-fos, cathepsin-K, tartrate-resistant acid phosphatase (TRAP), and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), was substantially down-regulated by the siRNA delivery system. This study reports for the first time on the use of a novel MBG delivery system for siRNA that aims to suppress osteoclastic actions. MBGs may be a potential gene delivery platform for hard tissue repair and disease treatment due to the collective results which indicate a high loading capacity, temporary release kinetics, high intracellular uptake rate, and sufficient gene silencing effects, together with the intrinsic beneficial properties like bone-bioactivity and degradability. STATEMENT OF SIGNIFICANCE This report is the first to develop siRNA delivery system of biocompatible and degradable nanocarriers made from a unique composition, i.e., mesoporous bioactive glass that can effectively load and deliver genetic molecules to osteoclastic cells. We proved through a series of studies that the biocompatible nanocarriers are effective for the delivery of siRNA in the inhibition of osteoclastic functions which thus might be considered as a nanocarrier platform to help turn-over bone mass increase in the diseases like osteoporosis.
Collapse
|
236
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
237
|
Müller G. Personalized Diagnosis and Therapy. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:3167-3284. [DOI: 10.1007/978-3-319-05392-9_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
238
|
Seo D, Kim NY, Lee JA, Han KR, Hur GH, Yang JM, Shin S. Protection against lethal vaccinia virus infection in mice using an siRNA targeting the A5R gene. Antivir Ther 2016; 21:397-404. [DOI: 10.3851/imp3022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
239
|
Guo P, Yang J, Jia D, Moses MA, Auguste DT. ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer. Theranostics 2016; 6:1-13. [PMID: 26722369 PMCID: PMC4679350 DOI: 10.7150/thno.12167] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Lipocalin 2 (Lcn2) is a promising therapeutic target as well as a potential diagnostic biomarker for breast cancer. It has been previously shown to promote breast cancer progression by inducing the epithelial to mesenchymal transition in breast cancer cells as well as by enhancing angiogenesis. Lcn2 levels in urine and tissue samples of breast cancer patients has also been correlated with breast cancer status and poor patient prognosis. In this study, we have engineered a novel liposomal small interfering RNA (siRNA) delivery system to target triple negative breast cancer (TNBC) via a recently identified molecular target, intercellular adhesion molecule-1 (ICAM-1). This ICAM-1-targeted, Lcn2 siRNA- encapsulating liposome (ICAM-Lcn2-LP) binds human TNBC MDA-MB-231cells significantly stronger than non-neoplastic MCF-10A cells. Efficient Lcn2 knockdown by ICAM-Lcn2-LPs led to a significant reduction in the production of vascular endothelial growth factor (VEGF) from MDA-MB-231 cells, which, in turn, led to reduced angiogenesis both in vitro and in vivo. Angiogenesis (neovascularization) is a requirement for solid tumor growth and progression, and its inhibition is an important therapeutic strategy for human cancers. Our results indicate that a tumor-specific strategy such as the TNBC-targeted, anti-angiogenic therapeutic approach developed here, may be clinically useful in inhibiting TNBC progression.
Collapse
Affiliation(s)
- Peng Guo
- 1. Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States
- 2. Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- 3. Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Jiang Yang
- 2. Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- 3. Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Di Jia
- 2. Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- 3. Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Marsha A. Moses
- 2. Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- 3. Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Debra T. Auguste
- 1. Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States
- 2. Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- 3. Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
240
|
Abstract
RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in in vitro and in vivo siRNA delivery and gene silencing.
Collapse
Affiliation(s)
- Maneesh Gujrati
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Amita Vaidya
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
241
|
Braicu O, Pileczki V, Braicu C, Achimas-Cadariu P, Irimie A, Berindan-Neagoe I. p53 siRNA - a therapeutic tool with significant implication in the modulation of apoptosis and angiogenic pathways. ACTA ACUST UNITED AC 2015; 88:333-7. [PMID: 26609266 PMCID: PMC4632892 DOI: 10.15386/cjmed-434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 12/28/2022]
Abstract
Background and aims siRNAs represent an encouraging novel alternative in cancer therapy as a result of targeting the mutated tumour suppressor genes or activated oncogenes. Targeting oncogenic signals, as the mutated p53 gene that gains oncogenic role, we observed inhibition of migration, a downregulation of specific genes involved in apoptosis but also in angiogenesis, connected with a reduction in invasion rate in the case of p53siRNA therapy. Methods The study was designed to assess the role of p53 by using RNAi (RNA interference) in Hela in vitro cell culture model. Therefore cell migration rate was assessed by using xCELLigence Systems, gene expression for a panel of genes involved in apoptosis and angiogenesis, and validation of gene expression data at protein level. Results On the selected in vitro model p53 siRNA therapy was correlated with the reduction of cell migration. The downregulation of p53, PTEN, TNFα, NFkB, BCL-2, ICAM-2, VEGF, and FGFb was evidenced as response to p53 inhibition. Conclusion RNAi may be a valuable technology in order to restore the normal cellular phenotype. The results in the current research may also have an important significance outside the context of cervical cancer, by using specific inhibitors for p53 for increasing the therapeutic response in a wide range of tumoral pathology.
Collapse
Affiliation(s)
- Ovidiu Braicu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Surgical Oncology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Surgical Oncology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Surgical Oncology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, The Oncological Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| |
Collapse
|
242
|
Liao XJ, Mao WM, Wang Q, Yang GG, Wu WJ, Shao SX. MicroRNA-24 inhibits serotonin reuptake transporter expression and aggravates irritable bowel syndrome. Biochem Biophys Res Commun 2015; 469:288-93. [PMID: 26631964 DOI: 10.1016/j.bbrc.2015.11.102] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. MicroRNAs (miRNAs) have been widely demonstrated to take part in various physiological and pathological processes. In the present study, the role of miR-24 in the pathogenesis of IBS and the potential mechanism in this process were evaluated. Human intestinal mucosa epithelial cells of colon from IBS patients and healthy subjects were collected. An IBS mouse model was established with the induction of trinitro-benzene-sulfonic acid (TNBS). The expression levels of miR-24 and serotonin reuptake transporter (SERT) were analyzed using Real-time PCR and western blot in both human specimen and mice. miR-24 was upregulated in IBS patients and mice intestinal mucosa epithelial cells. Luciferase reporter assay showed that SERT was a potential target gene of miR-24. The treatment of miR-24 inhibitor increased pain threshold and nociceptive threshold levels and reduced MPO activity in proximal colon of IBS mice, and up-regulated the mRNA and protein expression levels of SERT in intestinal mucosa epithelial cells. miR-24 played a role in the pathogenesis of IBS probably through regulating SERT expression.
Collapse
Affiliation(s)
- Xiu-Jun Liao
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China.
| | - Wei-Ming Mao
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Qin Wang
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Guan-Gen Yang
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Wen-Jing Wu
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Shu-Xian Shao
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
243
|
Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence. Proc Natl Acad Sci U S A 2015; 112:E6597-605. [PMID: 26627251 DOI: 10.1073/pnas.1517039112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.
Collapse
|
244
|
Time depended Bcl-2 inhibition might be useful for a targeted drug therapy. Cancer Cell Int 2015; 15:105. [PMID: 26535028 PMCID: PMC4630962 DOI: 10.1186/s12935-015-0254-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023] Open
Abstract
Background Over expression of Bcl-2 is frequently observed in several types of cancers and it is one of the prognostic markers in breast cancer. The importance of the Bcl-2 protein as ideal therapeutic target is the dual role of inhibiting apoptosis and autophagy-mediated cell death. Thus, the bcl-2 targeting may be a strategy of choice to improve treatment efficacy and overcome drug resistance to cancer chemotherapy. For this reason, we designed the siRNA mediated silencing of the Bcl-2 gene in the MCF-7 breast cancer cell line. Objectives The purpose of this research was to investigate the effective Bcl-2 gene silencing by our homemade siRNA, more than previous study. Our data demonstrated that specific inhibition of the Bcl-2 by siRNA induces approximately more than 90 % gene silencing. Methods MCF-7 Cell lines were treated by homemade Bcl-2siRNA for the first time and control siRNA that was transfected with nanoparticle. The cells harvested at 24, 48 and 72 h and transcription level of Bcl-2 was examined by Real Time -PCR analysis. The drug sensitivity was detected by using LDH assay test. Finally Anexin V-FITC test was performed for evaluation of apoptosis. Results In the present study, results showed that targeting the specific sequence of the Bcl-2 by our homemade siRNA in the MCF7 cell line and its effect was more obvious in 24 h in contrast to 48 and 72 h. Conclusions However, we showed here a time dependent blocking of the bcl-2 transcript that might lead to cell dead due autophagy, and not necessarily to apoptosis.
Collapse
|
245
|
Kharma N, Varin L, Abu-Baker A, Ouellet J, Najeh S, Ehdaeivand MR, Belmonte G, Ambri A, Rouleau G, Perreault J. Automated design of hammerhead ribozymes and validation by targeting the PABPN1 gene transcript. Nucleic Acids Res 2015; 44:e39. [PMID: 26527730 PMCID: PMC4770207 DOI: 10.1093/nar/gkv1111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
We present a new publicly accessible web-service, RiboSoft, which implements a comprehensive hammerhead ribozyme design procedure. It accepts as input a target sequence (and some design parameters) then generates a set of ranked hammerhead ribozymes, which target the input sequence. This paper describes the implemented procedure, which takes into consideration multiple objectives leading to a multi-objective ranking of the computer-generated ribozymes. Many ribozymes were assayed and validated, including four ribozymes targeting the transcript of a disease-causing gene (a mutant version of PABPN1). These four ribozymes were successfully tested in vitro and in vivo, for their ability to cleave the targeted transcript. The wet-lab positive results of the test are presented here demonstrating the real-world potential of both hammerhead ribozymes and RiboSoft. RiboSoft is freely available at the website http://ribosoft.fungalgenomics.ca/ribosoft/.
Collapse
Affiliation(s)
- Nawwaf Kharma
- Electrical & Computer Eng. Dept., Concordia University, 1455 boul. de Maisonneuve O., Montreal, QC, H3G 1M8, Canada
| | - Luc Varin
- Biology Department, Concordia University, 7141 rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Aida Abu-Baker
- Montreal Neurological Hospital and Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Ouellet
- INRS - Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Sabrine Najeh
- INRS - Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Gabriel Belmonte
- Electrical & Computer Eng. Dept., Concordia University, 1455 boul. de Maisonneuve O., Montreal, QC, H3G 1M8, Canada
| | - Anas Ambri
- Electrical & Computer Eng. Dept., Concordia University, 1455 boul. de Maisonneuve O., Montreal, QC, H3G 1M8, Canada
| | - Guy Rouleau
- Montreal Neurological Hospital and Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Perreault
- INRS - Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
246
|
Lakshminarayanan A, Reddy BU, Raghav N, Ravi VK, Kumar A, Maiti PK, Sood AK, Jayaraman N, Das S. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. NANOSCALE 2015; 7:16921-16931. [PMID: 26411288 DOI: 10.1039/c5nr02898a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.
Collapse
|
247
|
Ajiro M, Jia R, Wang RH, Deng CX, Zheng ZM. Adapted Resistance to the Knockdown Effect of shRNA-Derived Srsf3 siRNAs in Mouse Littermates. Int J Biol Sci 2015; 11:1248-56. [PMID: 26435690 PMCID: PMC4582148 DOI: 10.7150/ijbs.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
Abstract
Gene silencing techniques are widely used to control gene expression and have potential for RNAi-based therapeutics. In this report, transgenic mouse lines were created for conditional knockdown of Srsf3 (SRp20) expression in liver and mammary gland tissues by expressing Srsf3-specific shRNAs driven by a U6 promoter. Although a small portion of the transgenic mouse littermates were found to produce siRNAs in the targeted tissues, most of the transgenic littermates at two months of age failed to display a knockdown phenotype of Srsf3 expression in their liver and mammary gland tissues where an abundant level of Srsf3 siRNAs remained. We saw only one of four mice with liver/mammary gland expressing Srsf3 siRNA displayed a suppressed level of Srsf3 protein, but not the mRNA. Data indicate that the host resistance to a gene-specific siRNA targeting an essential gene transcript can be developed in animals, presumably as a physiological necessity to cope with the hostile perturbation.
Collapse
Affiliation(s)
- Masahiko Ajiro
- 1. Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Rong Jia
- 1. Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA ; 3. Wuhan University School of Stomatology, Wuhan, Hubei, China
| | - Rui-Hong Wang
- 2. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA. ; 4. Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- 2. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA. ; 4. Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhi-Ming Zheng
- 1. Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
248
|
Diao J, Wang H, Chang N, Zhou XH, Zhu X, Wang J, Xiong JW. PEG–PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart. Dev Biol 2015; 406:196-202. [DOI: 10.1016/j.ydbio.2015.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 08/21/2015] [Accepted: 08/28/2015] [Indexed: 01/12/2023]
|
249
|
Kim JY. Current Prospects of RNA Interference-based Therapy in Organ Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2015. [DOI: 10.4285/jkstn.2015.29.3.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Korea
| |
Collapse
|
250
|
Niemietz C, Chandhok G, Schmidt H. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis. Molecules 2015; 20:17944-75. [PMID: 26437390 PMCID: PMC6332041 DOI: 10.3390/molecules201017944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Animals
- Clinical Studies as Topic
- Drug Evaluation, Preclinical
- Gene Silencing
- Genetic Therapy
- Humans
- Liver Diseases/genetics
- Liver Diseases/therapy
- Mutation
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Prealbumin/genetics
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Christoph Niemietz
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Gursimran Chandhok
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Hartmut Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| |
Collapse
|