201
|
Quigley EMM. Commentary: Probing probiotics in cirrhosis--a template for future studies? Aliment Pharmacol Ther 2014; 39:1334-5. [PMID: 24803249 DOI: 10.1111/apt.12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 12/08/2022]
Affiliation(s)
- E M M Quigley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; David M Underwood Chair of Medicine in Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
202
|
Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proc Nutr Soc 2014; 73:441-51. [PMID: 24824449 DOI: 10.1017/s0029665114000597] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations in intestinal microbiota composition and function have been linked to conditions including functional gastrointestinal disorders, obesity and diabetes. The gut microbiome encodes metabolic capability in excess of that encoded by the human genome, and bacterially produced enzymes are important for releasing nutrients from complex dietary ingredients. Previous culture-based studies had indicated that the gut microbiota of older people was different from that of younger adults, but the detailed findings were contradictory. Small-scale studies had also shown that the microbiota composition could be altered by dietary intervention or supplementation. We showed that the core microbiota and aggregate composition in 161 seniors was distinct from that of younger persons. To further investigate the reasons for this variation, we analysed the microbiota composition of 178 elderly subjects for whom the dietary intake data were available. The data revealed distinct microbiota composition groups, which overlapped with distinct dietary patterns that were governed by where people lived: at home, in rehabilitation or in long-term residential care. These diet-microbiota separations correlated with cluster analysis of NMR-derived faecal metabolites and shotgun metagenomic data. Major separations in the microbiota correlated with selected clinical measurements. It should thus be possible to programme the microbiota to enrich bacterial species and activities that promote healthier ageing. A number of other studies have investigated the effect of certain dietary components and their ability to modulate the microbiota composition to promote health. This review will discuss dietary interventions conducted thus far, especially those in elderly populations and highlight their impact on the intestinal microbiota.
Collapse
|
203
|
|
204
|
Abstract
The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.
Collapse
|
205
|
Abstract
Pancreatic cancer is one of the most lethal cancers worldwide. No effective screening methods exist, and available treatment modalities do not effectively treat the disease. Inflammatory conditions such as pancreatitis represent a well-known risk factor for pancreatic cancer development. Yet only in the past 2 decades has pancreatic cancer been recognized as an inflammation-driven cancer, and the precise mechanisms underlying the pathogenic role of inflammation are beginning to be explored in detail. A substantial amount of preclinical and clinical evidence suggests that bacteria are likely to influence this process by activating immune receptors and perpetuating cancer-associated inflammation. The recent explosion of investigations of the human microbiome have highlighted how perturbations of commensal bacterial populations can promote inflammation and promote disease processes, including carcinogenesis. The elucidation of the interplay between inflammation and microbiome in the context of pancreatic carcinogenesis will provide novel targets for intervention to prevent and treat pancreatic cancer more efficiently. Further studies toward this direction are urgently needed.
Collapse
Affiliation(s)
- Constantinos P. Zambirinis
- S. Arthur Localio Laboratory, Departments of Surgery New York University School of Medicine, New York, NY 10016
| | - Smruti Pushalkar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010
| | - George Miller
- S. Arthur Localio Laboratory, Departments of Surgery New York University School of Medicine, New York, NY 10016
- S. Arthur Localio Laboratory, Departments of Cell Biology New York University School of Medicine, New York, NY 10016
| |
Collapse
|
206
|
Bourlioux P. Actualité du microbiote intestinal. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 72:15-21. [DOI: 10.1016/j.pharma.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 09/01/2013] [Indexed: 12/26/2022]
|
207
|
The potential link between gut microbiota and IgE-mediated food allergy in early life. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:7235-56. [PMID: 24351744 PMCID: PMC3881164 DOI: 10.3390/ijerph10127235] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field.
Collapse
|
208
|
Feria-Gervasio D, Tottey W, Gaci N, Alric M, Cardot JM, Peyret P, Martin JF, Pujos E, Sébédio JL, Brugère JF. Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. J Microbiol Methods 2013; 96:111-8. [PMID: 24333608 DOI: 10.1016/j.mimet.2013.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 02/07/2023]
Abstract
The technical and ethical difficulties in studying the gut microbiota in vivo warrant the development and improvement of in vitro systems able to simulate and control the physicochemical factors of the gut biology. Moreover, the functional regionalization of this organ implies a model simulating these differences. Here we propose an improved and alternative three-stage continuous bioreactor called 3S-ECSIM (three-stage Environmental Control System for Intestinal Microbiota) to study the human large intestine. Its main feature compared with other in vitro systems is the anaerobic atmosphere originating directly from the microbiota metabolism, leading to different gas ratios of CO2 and H2 in each compartment. Analyses of the metabolic and microbiological profiles (LC-MS and a phylogenetic microarray) show different profiles together with a maintenance of this differentiation between the three compartments, simulating respectively a proximal, a transversal and a distal colon. Moreover, the last reactor presents a high similarity with the initial fecal sample, at the microbiological diversity level. Based on our results, this in-vitro process improvement is a valuable alternative tool to dynamically study the structure and metabolism of gut microbiota, and its response to nutrients, prebiotics, probiotics, drugs or xenobiotics.
Collapse
Affiliation(s)
- David Feria-Gervasio
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - William Tottey
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Nadia Gaci
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Monique Alric
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Cardot
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Jean-François Martin
- INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | - Estelle Pujos
- INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | - Jean-Louis Sébédio
- INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | - Jean-François Brugère
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
209
|
Abstract
Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome-brain-gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.
Collapse
|
210
|
Pagnini C, Fave GD, Bamias G. Probiotics in inflammatory bowel disease: Pathophysiological background and clinical applications. World J Immunol 2013; 3:31-43. [DOI: 10.5411/wji.v3.i3.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis and Crohn’s disease, collectively termed the inflammatory bowel diseases (IBD), are chronic inflammatory disorders of the gastrointestinal tract. A “dysbiotic” relationship between the commensal gut flora and the intestinal mucosa-associated immune system has been at the core of the pathogenesis of these conditions. Probiotics are “good bacteria” with the ability to benefit the health of the host and their therapeutic application has been studied in IBD. The theoretical basis for such utilization relies upon the ability of probiotic microorganisms to interfere with the dysregulated homeostasis that takes place in IBD and restore the immune-bacterial interaction at the intestinal mucosa. Proposed mechanisms of action include the reconstitution of altered flora composition, enhancement of the integrity of the epithelial barrier, promotion of tolerogenic action by dendritic cells, strengthening of the defensive mechanisms of the innate immunity, and the suppression of pro-inflammatory adaptive immune responses. Despite this abundance of supporting experimental evidence, clinical application of probiotics in IBD has been disappointing. Possible explanations for such discrepancy include the great diversity of microorganisms that fall under the definition of probiotics, the lack of standardization of dosages and administration schemes, the heterogeneity between clinical trials, and the inclusion in the treatment arms of patients with a large variety of clinical phenotypes. Addressing these important issues will be critical for the optimal usage of probiotic-based therapies for patients with IBD.
Collapse
|
211
|
Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats. PLoS One 2013; 8:e80578. [PMID: 24260424 PMCID: PMC3832427 DOI: 10.1371/journal.pone.0080578] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/12/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Deoxynivalenol (DON), a mycotoxin produced by Fusarium species, is one of the most prevalent mycotoxins present in cereal crops worldwide. Due to its toxic properties, high stability and prevalence, the presence of DON in the food chain represents a health risk for both humans and animals. The gastrointestinal microbiota represents potentially the first target for these food contaminants. Thus, the effects of mycotoxins on the human gut microbiota is clearly an issue that needs to be addressed in further detail. Using a human microbiota-associated rat model, the aim of the present study was to evaluate the impact of a chronic exposure of DON on the composition of human gut microbiota. METHODOLOGY/PRINCIPAL FINDINGS Four groups of 5 germ free male rats each, housed in 4 sterile isolators, were inoculated with a different fresh human fecal flora. Rats were then fed daily by gavage with a solution of DON at 100 µg/kg bw for 4 weeks. Fecal samples were collected at day 0 before the beginning of the treatment; days 7, 16, 21, and 27 during the treatment; and 10 days after the end of the treatment at day 37. DON effect was assessed by real-time PCR quantification of dominant and subdominant bacterial groups in feces. Despite a different intestinal microbiota in each isolator, similar trends were generally observed. During oral DON exposure, a significant increase of 0.5 log10 was observed for the Bacteroides/Prevotella group during the first 3 weeks of administration. Concentration levels for Escherichia coli decreased at day 27. This significant decrease (0.9 log10 CFU/g) remained stable until the end of the experiment. CONCLUSIONS/SIGNIFICANCE We have demonstrated an impact of oral DON exposure on the human gut microbiota composition. These findings can serve as a template for risk assessment studies of food contaminants on the human gut microbiota.
Collapse
|
212
|
Quigley EM, Monsour HP. The gut microbiota and the liver: implications for clinical practice. Expert Rev Gastroenterol Hepatol 2013; 7:723-32. [PMID: 24134195 DOI: 10.1586/17474124.2013.848167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While a central role for the microbiota in the precipitation of infectious and non-infectious complications of liver disease has been long established, evidence for a more fundamental role in the etiology of several liver diseases continues to accumulate. However, though progress is rapidly occurring in this area, the definitive delineation of the precise relevance of changes in the microbiota to various forms and stages of liver disease is still far from complete. While high quality clinical evidence supports the use of antibiotic therapy, in the management of hepatic encephalopathy, spontaneous bacterial peritonitis and other infectious complications, how these interventions impact on the microbiota and microbiota-host interactions has not been clearly defined. Although probiotics and even, perhaps, fecal transplantation hold promise in the management of liver disease, and the potential impact of probiotics is supported by a considerable amount of laboratory data, high-quality clinical evidence is scanty.
Collapse
Affiliation(s)
- Eamonn M Quigley
- Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | | |
Collapse
|
213
|
Abstract
Microbiota and host form a complex 'super-organism' in which symbiotic relationships confer benefits to the host in many key aspects of life. However, defects in the regulatory circuits of the host that control bacterial sensing and homeostasis, or alterations of the microbiome, through environmental changes (infection, diet or lifestyle), may disturb this symbiotic relationship and promote disease. Increasing evidence indicates a key role for the bacterial microbiota in carcinogenesis. In this Opinion article, we discuss links between the bacterial microbiota and cancer, with a particular focus on immune responses, dysbiosis, genotoxicity, metabolism and strategies to target the microbiome for cancer prevention.
Collapse
Affiliation(s)
- Robert F. Schwabe
- Department of Medicine, and Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, New York 10032, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
214
|
Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2013; 305:G529-41. [PMID: 23886861 PMCID: PMC3798736 DOI: 10.1152/ajpgi.00207.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/17/2013] [Indexed: 02/08/2023]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is believed to involve alterations in the brain-gut axis; however, the etiological triggers and mechanisms by which these changes lead to symptoms of IBS remain poorly understood. Although IBS is often considered a condition without an identified "organic" etiology, emerging evidence suggests that alterations in the gastrointestinal microbiota and altered immune function may play a role in the pathogenesis of the disorder. These recent data suggest a plausible model in which changes in the intestinal microbiota and activation of the enteric immune system may impinge upon the brain-gut axis, causing the alterations in gastrointestinal function and the clinical symptoms observed in patients with IBS. This review summarizes the current evidence for altered intestinal microbiota and immune function in IBS. It discusses the potential etiological role of these factors, suggests an updated conceptual model for the pathogenesis of the disorder, and identifies areas for future research.
Collapse
Affiliation(s)
- Yehuda Ringel
- Division of Gastroenterology and Hepatology, Univ. of North Carolina at Chapel Hill School of Medicine, 4107 BioInformatics Bldg., CB# 7080, 130 Mason Farm Rd., Chapel Hill, NC 27599-7080.
| | | |
Collapse
|
215
|
Davey KJ, Cotter PD, O'Sullivan O, Crispie F, Dinan TG, Cryan JF, O'Mahony SM. Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 2013; 3:e309. [PMID: 24084940 PMCID: PMC3818006 DOI: 10.1038/tp.2013.83] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022] Open
Abstract
The atypical antipsychotic olanzapine is often associated with serious metabolic side effects including weight gain and increased visceral fat. These adverse events are a considerable clinical problem and the mechanisms underlying them are multifactorial and poorly understood. Growing evidence suggests that the gut microbiota has a key role in energy regulation and disease states such as obesity. Moreover, we recently showed that chronic olanzapine altered the composition of the gut microbiome in the rat. It is thus possible that treatments that alter gut microbiota composition could ameliorate olanzapine-induced weight gain and associated metabolic syndrome. To this end, we investigated the impact of antibiotic-induced alteration of the gut microbiota on the metabolic effects associated with chronic olanzapine treatment in female rats. Animals received vehicle or olanzapine (2 mg kg(-1) per day) for 21 days, intraperitoneal injection, two times daily. Animals were also coadministered vehicle or an antibiotic cocktail consisting of neomycin (250 mg kg(-1) per day), metronidazole (50 mg kg(-1) per day) and polymyxin B (9 mg kg(-1) per day) by oral gavage, daily, beginning 5 days before olanzapine treatment. The antibiotic cocktail drastically altered the microbiota of olanzapine-treated rats, and olanzapine alone was also associated with an altered microbiota. Coadministration of the antibiotic cocktail in olanzapine-treated rats attenuated: body weight gain, uterine fat deposition, macrophage infiltration of adipose tissue, plasma free fatty acid levels, all of which were increased by olanzapine alone. These results suggest that the gut microbiome has a role in the cycle of metabolic dysfunction associated with olanzapine, and could represent a novel therapeutic target for preventing antipsychotic-induced metabolic disease.
Collapse
Affiliation(s)
- K J Davey
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - P D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland,TeagascFood Research Centre, Moorepark, Fermoy Ireland
| | - O O'Sullivan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland,TeagascFood Research Centre, Moorepark, Fermoy Ireland
| | - F Crispie
- TeagascFood Research Centre, Moorepark, Fermoy Ireland
| | - T G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland,Department of Psychiatry, University College Cork, Cork, Ireland
| | - J F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Room 386, Western Gateway Building,Western Road, Cork, NA, Ireland. E-mail:
| | - S M O'Mahony
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
216
|
Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg 2013; 148:563-9. [PMID: 23571517 DOI: 10.1001/jamasurg.2013.5] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in parallel genomic processing and computational mapping have been applied to the native human microbial environment to provide a new understanding of the role of the microbiome in health and disease. In particular, studies of the distal gut microbiome have proposed that changes in gut microbiota are related to obesity, the metabolic syndrome, and Western diet. We examined the changes in the distal gut microbiome composition as it relates to the lean and obese phenotypes, particularly after surgical weight loss. A PubMed search of publications from January 1, 2005, through December 31, 2012, used the search terms weight, obesity, microbiome, and bariatric surgery. We included studies that provided information on subjects' weight and/or body mass index and a formal assessment of the microbiome. Certain bacteria, specifically the archaeon Methanobrevibacter smithii, have enhanced ability to metabolize dietary substrate, thereby increasing host energy intake and weight gain. With weight loss, there is a decrease in the ratio of Firmicutes to Bacteroidetes phyla. One major finding from microbial sequencing analyses after Roux-en-Y gastric bypass is the comparative overabundance of Proteobacteria in the distal gut microbiome, which is distinct from the changes seen in weight loss without Roux-en-Y gastric bypass. This review provides the practicing surgeon with (1) an update on the state of a rapidly innovating branch of clinical bioinformatics, specifically, the microbiome; (2) a new understanding of the microbiome changes after Roux-en-Y gastric bypass and weight loss; and (3) a basis for understanding further clinical applications of studies of the distal gut microbiome, such as in Crohn disease, ulcerative colitis, and infectious colitis.
Collapse
Affiliation(s)
- Timothy E Sweeney
- Section of Bariatric and Minimally Invasive Surgery, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | | |
Collapse
|
217
|
Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep 2013; 15:337. [PMID: 23852569 PMCID: PMC3742951 DOI: 10.1007/s11894-013-0337-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Fecal microbiota transplantation (FMT) has attracted great interest in recent years, largely due to the global Clostridium difficile infection (CDI) epidemic and major advances in metagenomic sequencing of the gastrointestinal (GI) microbiota, with growing understanding of its structure and function. FMT is now recommended as the most effective therapy for relapsing CDI and, with further refinement, may even be used in "first-time" CDI. There is interest also in other conditions related to GI dysbiosis--for example, inflammatory bowel disease, irritable bowel syndrome, obesity, and diabetes mellitus--although quality evidence is at present lacking. A few trials are now underway in FMT for ulcerative colitis. Many unanswered questions remain, including FMT methodology--for example, optimal route of administration, what makes a "good donor," safety issues, and long-term effects of FMT.
Collapse
Affiliation(s)
- Thomas J. Borody
- Centre for Digestive Diseases, Level 1, 229 Great North Road, Five Dock, Sydney, NSW 2046 Australia
| | | | - Gaurav Agrawal
- Centre for Digestive Diseases, Level 1, 229 Great North Road, Five Dock, Sydney, NSW 2046 Australia
| |
Collapse
|
218
|
Adamu BO, Lawley TD. Bacteriotherapy for the treatment of intestinal dysbiosis caused by Clostridium difficile infection. Curr Opin Microbiol 2013; 16:596-601. [PMID: 23866975 PMCID: PMC3840269 DOI: 10.1016/j.mib.2013.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
Abstract
Antibiotics damage the intestinal microbiota and disrupt colonization resistance predisposing us to recurrent C. difficile infection (CDI). Faecal microbiota transplantation (FMT) is a promising treatment for recurrent C. difficile infection. Mixtures of beneficial bacteria known as bacteriotherapy should be developed for treatment of CDI and other diseases linked to dysbiosis in the intestinal microbiota.
Faecal microbiota transplantation (FMT) has been used for more than five decades to treat a variety of intestinal diseases associated with pathological imbalances within the resident microbiota, termed dysbiosis. FMT has been particularly effective for treating patients with recurrent Clostridium difficile infection who are left with few clinical options other than continued antibiotic therapy. Our increasing knowledge of the structure and function of the human intestinal microbiota and C. difficile pathogenesis has led to the understanding that FMT promotes intestinal ecological restoration and highlights the microbiota as a viable therapeutic target. However, the use of undefined faecal samples creates a barrier for widespread clinical use because of safety and aesthetic issues. An emerging concept of bacteriotherapy, the therapeutic use of a defined mixture of harmless, health-associated bacteria, holds promise for the treatment of patients with severe C. difficile infection, and possibly represents a paradigm shift for the treatment of diseases linked to intestinal dysbiosis.
Collapse
|
219
|
Salicylates and the Microbiota: A New Mechanistic Understanding of an Ancient Drug's Role in Dermatological and Gastrointestinal Disease. Drug Dev Res 2013. [DOI: 10.1002/ddr.21086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
220
|
Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58:120-7. [PMID: 23401313 DOI: 10.1002/hep.26319] [Citation(s) in RCA: 513] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/05/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Despite evidence that the intestinal microbiota (IM) is involved in the pathogenesis of obesity, the IM composition of patients with nonalcoholic fatty liver disease (NAFLD) has not been well characterized. This prospective, cross-sectional study was aimed at identifying differences in IM between adults with biopsy-proven NAFLD (simple steatosis [SS] or nonalcoholic steatohepatitis [NASH]) and living liver donors as healthy controls (HC). Fifty subjects were included: 11 SS, 22 NASH, and 17 HC. One stool sample was collected from each participant. Quantitative real-time polymerase chain reaction was used to measure total bacterial counts, Bacteroides/Prevotella (herein referred to as Bacteroidetes), Clostridium leptum, C. coccoides, bifidobacteria, Escherichia coli and Archaea in stool. Clinical and laboratory data, food records, and activity logs were collected. Patients with NASH had a lower percentage of Bacteroidetes (Bacteroidetes to total bacteria counts) compared to both SS and HC (P = 0.006) and higher fecal C. coccoides compared to those with SS (P = 0.04). There were no differences in the remaining microorganisms. As body mass index (BMI) and dietary fat intake differed between the groups (P < 0.05), we performed linear regression adjusting for these variables. The difference in C. coccoides was no longer significant after adjusting for BMI and fat intake. However, there continued to be a significant association between the presence of NASH and lower percentage Bacteroidetes even after adjusting for these variables (P = 0.002; 95% confidence interval = -0.06 to -0.02). CONCLUSION There is an inverse and diet-/BMI-independent association between the presence of NASH and percentage Bacteroidetes in the stool, suggesting that the IM may play a role in the development of NAFLD.
Collapse
Affiliation(s)
- Marialena Mouzaki
- Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Diaz PI, Hong BY, Frias-Lopez J, Dupuy AK, Angeloni M, Abusleme L, Terzi E, Ioannidou E, Strausbaugh LD, Dongari-Bagtzoglou A. Transplantation-associated long-term immunosuppression promotes oral colonization by potentially opportunistic pathogens without impacting other members of the salivary bacteriome. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:920-30. [PMID: 23616410 PMCID: PMC3675961 DOI: 10.1128/cvi.00734-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/01/2013] [Indexed: 01/23/2023]
Abstract
Solid-organ transplant recipients rely on pharmacological immunosuppression to prevent allograft rejection. The effect of such chronic immunosuppression on the microflora at mucosal surfaces is not known. We evaluated the salivary bacterial microbiome of 20 transplant recipients and 19 nonimmunosuppressed controls via 454 pyrosequencing of 16S rRNA gene amplicons. Alpha-diversity and global community structure did not differ between transplant and control subjects. However, principal coordinate analysis showed differences in community membership. Taxa more prevalent in transplant subjects included operational taxonomic units (OTUs) of potentially opportunistic Gammaproteobacteria such as Klebsiella pneumoniae, Pseudomonas fluorescens, Acinetobacter species, Vibrio species, Enterobacteriaceae species, and the genera Acinetobacter and Klebsiella. Transplant subjects also had increased proportions of Pseudomonas aeruginosa, Acinetobacter species, Enterobacteriaceae species, and Enterococcus faecalis, among other OTUs, while genera with increased proportions included Klebsiella, Acinetobacter, Staphylococcus, and Enterococcus. Furthermore, in transplant subjects, the dose of the immunosuppressant prednisone positively correlated with bacterial richness, while prednisone and mycophenolate mofetil doses positively correlated with the prevalence and proportions of transplant-associated taxa. Correlation network analysis of OTU relative abundance revealed a cluster containing potentially opportunistic pathogens as transplant associated. This cluster positively correlated with serum levels of C-reactive protein, suggesting a link between the resident flora at mucosal compartments and systemic inflammation. Network connectivity analysis revealed opportunistic pathogens as highly connected to each other and to common oral commensals, pointing to bacterial interactions that may influence colonization. This work demonstrates that immunosuppression aimed at limiting T-cell-mediated responses creates a more permissive oral environment for potentially opportunistic pathogens without affecting other members of the salivary bacteriome.
Collapse
Affiliation(s)
- Patricia I. Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Bo-Young Hong
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jorge Frias-Lopez
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Amanda K. Dupuy
- Center for Applied Genetics and Technologies, The University of Connecticut, Storrs, Connecticut, USA
| | - Mark Angeloni
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Loreto Abusleme
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, Connecticut, USA
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Evimaria Terzi
- Department of Computer Science, Boston University, Boston, Massachusetts, USA
| | - Effie Ioannidou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Linda D. Strausbaugh
- Center for Applied Genetics and Technologies, The University of Connecticut, Storrs, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
222
|
Tottey W, Denonfoux J, Jaziri F, Parisot N, Missaoui M, Hill D, Borrel G, Peyretaillade E, Alric M, Harris HMB, Jeffery IB, Claesson MJ, O'Toole PW, Peyret P, Brugère JF. The human gut chip "HuGChip", an explorative phylogenetic microarray for determining gut microbiome diversity at family level. PLoS One 2013; 8:e62544. [PMID: 23690942 PMCID: PMC3656878 DOI: 10.1371/journal.pone.0062544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
Evaluating the composition of the human gut microbiota greatly facilitates studies on its role in human pathophysiology, and is heavily reliant on culture-independent molecular methods. A microarray designated the Human Gut Chip (HuGChip) was developed to analyze and compare human gut microbiota samples. The PhylArray software was used to design specific and sensitive probes. The DNA chip was composed of 4,441 probes (2,442 specific and 1,919 explorative probes) targeting 66 bacterial families. A mock community composed of 16S rRNA gene sequences from intestinal species was used to define the threshold criteria to be used to analyze complex samples. This was then experimentally verified with three human faecal samples and results were compared (i) with pyrosequencing of the V4 hypervariable region of the 16S rRNA gene, (ii) metagenomic data, and (iii) qPCR analysis of three phyla. When compared at both the phylum and the family level, high Pearson's correlation coefficients were obtained between data from all methods. The HuGChip development and validation showed that it is not only able to assess the known human gut microbiota but could also detect unknown species with the explorative probes to reveal the large number of bacterial sequences not yet described in the human gut microbiota, overcoming the main inconvenience encountered when developing microarrays.
Collapse
Affiliation(s)
- William Tottey
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jeremie Denonfoux
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Faouzi Jaziri
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
- CNRS, UMR 6158, ISIMA/LIMOS, Aubière/Clermont-Ferrand, France
| | - Nicolas Parisot
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Mohiedine Missaoui
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
- CNRS, UMR 6158, ISIMA/LIMOS, Aubière/Clermont-Ferrand, France
| | - David Hill
- CNRS, UMR 6158, ISIMA/LIMOS, Aubière/Clermont-Ferrand, France
| | - Guillaume Borrel
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Eric Peyretaillade
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Monique Alric
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Hugh M. B. Harris
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Ian B. Jeffery
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Marcus J. Claesson
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul W. O'Toole
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Pierre Peyret
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jean-François Brugère
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
223
|
|
224
|
Abstract
The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.
Collapse
Affiliation(s)
- Patrice D Cani
- Université catholique de Louvain, LDRI, Metabolism and Nutrition research group, Avenue E. Mounier, 73, PO Box B1.73.11, B-1200 Brussels, Belgium.
| |
Collapse
|
225
|
Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 2013; 185:385-94. [PMID: 23401405 DOI: 10.1503/cmaj.121189] [Citation(s) in RCA: 633] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The gut microbiota is essential to human health throughout life, yet the acquisition and development of this microbial community during infancy remains poorly understood. Meanwhile, there is increasing concern over rising rates of cesarean delivery and insufficient exclusive breastfeeding of infants in developed countries. In this article, we characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding. METHODS We included a subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing. RESULTS We observed high variability in the profiles of fecal microbiota among the infants. The profiles were generally dominated by Actinobacteria (mainly the genus Bifidobacterium) and Firmicutes (with diverse representation from numerous genera). Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of Clostridium difficile. Escherichia-Shigella and Bacteroides species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity. INTERPRETATION These findings advance our understanding of the gut microbiota in healthy infants. They also provide new evidence for the effects of delivery mode and infant diet as determinants of this essential microbial community in early life.
Collapse
Affiliation(s)
- Meghan B Azad
- Department of Pediatrics, University of Alberta, Edmonton, Alta
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36:305-12. [PMID: 23384445 DOI: 10.1016/j.tins.2013.01.005] [Citation(s) in RCA: 1446] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 12/14/2022]
Abstract
Within the first few days of life, humans are colonized by commensal intestinal microbiota. Here, we review recent findings showing that microbiota are important in normal healthy brain function. We also discuss the relation between stress and microbiota, and how alterations in microbiota influence stress-related behaviors. New studies show that bacteria, including commensal, probiotic, and pathogenic bacteria, in the gastrointestinal (GI) tract can activate neural pathways and central nervous system (CNS) signaling systems. Ongoing and future animal and clinical studies aimed at understanding the microbiota-gut-brain axis may provide novel approaches for prevention and treatment of mental illness, including anxiety and depression.
Collapse
|
227
|
Abstract
PURPOSE OF REVIEW Diverse research interests have converged on the gut microbiota because of its contribution to immune development, mucosal homeostasis and to the pathogenesis of a diversity of intestinal and extraintestinal disorders. Recent landmark findings are addressed here. RECENT FINDINGS The impact of lifestyle, including dietary changes and antibiotics, on the microbiota has been mechanistically linked with disease risk. Microbial, immune and metabolic signalling are mutually interactive, with each of these being regulated by diet. Although changes in the microbiota have been found in several disorders and may have important therapeutic implications, some components of the commensal microbiota may behave like pathogens (pathobionts) depending on the context and host susceptibility. SUMMARY Advances in understanding host-microbe interactions in the gut continue apace, they are relevant to a diversity of infectious, inflammatory, neoplastic and metabolic disorders and are poised for clinical translation.
Collapse
|
228
|
Aziz Q, Doré J, Emmanuel A, Guarner F, Quigley EMM. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil 2013; 25:4-15. [PMID: 23279728 DOI: 10.1111/nmo.12046] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The microbial community of the human gut - the enteric microbiota - plays a critical role in functions that sustain health and is a positive asset in host defenses. In recent years, our understanding of this so-called human 'super organism' has advanced, following characterization of fecal metagenomes which identified three core bacterial enterotypes, and based on basic and clinical research into the impact and consequences of microbiota biodiversity and change on gastrointestinal disorders and diseases. PURPOSE This article considers current knowledge and future perspectives on the make-up and function of human gut microbiota, with a particular focus on altered microbiota and gastrointestinal disorders, nutritional influences on the gut microbiota, and the consequences for gastrointestinal health, as well as improved understanding of gut-microbiota-brain communication.
Collapse
Affiliation(s)
- Q Aziz
- Centre for Digestive Diseases, Blizard Institute of Cell & Molecular Science, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| | | | | | | | | |
Collapse
|
229
|
Quigley EMM. Bugs on the brain; brain in the gut--seeking explanations for common gastrointestinal symptoms. Ir J Med Sci 2012. [PMID: 23179664 DOI: 10.1007/s11845-012-0865-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gastrointestinal symptoms such as heartburn, indigestion (or dyspepsia), bloating, distension, constipation, abdominal pain, abdominal discomfort and diarrhoea are extremely common worldwide. For some, such symptoms can prove to be chronic and disabling. METHODS The recent literature on irritable bowel syndrome and, in particular, work emanating form this authors research group, was reviewed. RESULTS These functional symptoms commonly occur in aggregations, referred to as functional gastrointestinal disorders (FGIDs). Some of the FGIDs and, most notably irritable bowel syndrome (IBS), have achieved a degree of scientific and clinical credibility as coherent entities. Several lines of evidence ranging from gut motility to the microbiota are under investigation in attempts to explain IBS or its symptomatology. CONCLUSION Though biomarkers for IBS and other FGIDs have proven elusive, considerable progress has been made in understanding possible aetiological factors in IBS; progress which may well lead to better therapeutic strategies.
Collapse
Affiliation(s)
- E M M Quigley
- Department of Medicine, Alimentary Pharmbiotic Centre, University College Cork, Cork University Hospital, Clinical Sciences Building, Cork, Ireland.
| |
Collapse
|
230
|
Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13:701-12. [PMID: 22968153 DOI: 10.1038/nrn3346] [Citation(s) in RCA: 2783] [Impact Index Per Article: 214.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS--possibly through neural, endocrine and immune pathways--and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota-gut-brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.
Collapse
|