201
|
Puri KD, Gold MR. Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory diseases and B-cell malignancies. Front Immunol 2012; 3:256. [PMID: 22936933 PMCID: PMC3425960 DOI: 10.3389/fimmu.2012.00256] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022] Open
Abstract
The delta isoform of the p110 catalytic subunit (p110δ) of phosphoinositide 3-kinase is expressed primarily in hematopoietic cells and plays an essential role in B-cell development and function. Studies employing mice lacking a functional p110δ protein, as well as the use of highly-selective chemical inhibitors of p110δ, have revealed that signaling via p110δ-containing PI3K complexes (PI3Kδ) is critical for B-cell survival, migration, and activation, functioning downstream of key receptors on B cells including the B-cell antigen receptor, chemokine receptors, pro-survival receptors such as BAFF-R and the IL-4 receptor, and co-stimulatory receptors such as CD40 and Toll-like receptors (TLRs). Similarly, this PI3K isoform plays a key role in the survival, proliferation, and dissemination of B-cell lymphomas. Herein we summarize studies showing that these processes can be inhibited in vitro and in vivo by small molecule inhibitors of p110δ enzymatic activity, and that these p110δ inhibitors have shown efficacy in clinical trials for the treatment of several types of B-cell malignancies including chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). PI3Kδ also plays a critical role in the activation, proliferation, and tissue homing of self-reactive B cells that contribute to autoimmune diseases, in particular innate-like B-cell populations such as marginal zone (MZ) B cells and B-1 cells that have been strongly linked to autoimmunity. We discuss the potential utility of p110δ inhibitors, either alone or in combination with B-cell depletion, for treating autoimmune diseases such as lupus, rheumatoid arthritis, and type 1 diabetes. Because PI3Kδ plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, PI3Kδ inhibitors may represent a promising therapeutic approach for treating these diseases.
Collapse
|
202
|
Murray JM, Sweeney ZK, Chan BK, Balazs M, Bradley E, Castanedo G, Chabot C, Chantry D, Flagella M, Goldstein DM, Kondru R, Lesnick J, Li J, Lucas MC, Nonomiya J, Pang J, Price S, Salphati L, Safina B, Savy PPA, Seward EM, Ultsch M, Sutherlin DP. Potent and highly selective benzimidazole inhibitors of PI3-kinase delta. J Med Chem 2012; 55:7686-95. [PMID: 22877085 DOI: 10.1021/jm300717c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of PI3Kδ is considered to be an attractive mechanism for the treatment of inflammatory diseases and leukocyte malignancies. Using a structure-based design approach, we have identified a series of potent and selective benzimidazole-based inhibitors of PI3Kδ. These inhibitors do not occupy the selectivity pocket between Trp760 and Met752 that is induced by other families of PI3Kδ inhibitors. Instead, the selectivity of the compounds for inhibition of PI3Kδ relative to other PI3K isoforms appears to be due primarily to the strong interactions these inhibitors are able to make with Trp760 in the PI3Kδ binding pocket. The pharmacokinetic properties and the ability of compound 5 to inhibit the function of B-cells in vivo are described.
Collapse
Affiliation(s)
- Jeremy M Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|
204
|
Norman P. Evaluation of WO2012032067 and WO2012055846: two selective PI3Kδ inhibitors, which is GSK-2269557? Expert Opin Ther Pat 2012; 22:965-70. [DOI: 10.1517/13543776.2012.701281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
205
|
Barnes PJ. Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 2012; 129:48-59. [PMID: 22196524 DOI: 10.1016/j.jaci.2011.11.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022]
Abstract
Effective treatment of severe asthma is a major unmet need because patients' symptoms are not controlled on maximum treatment with inhaled therapy. Asthma symptoms can be poorly controlled because of poor adherence to controller therapy, and this might be addressed by using combination inhalers that contain a corticosteroid and long-acting β(2)-agonist as reliever therapy in addition to maintenance treatment. New bronchodilators with a longer duration of action are in development, and recent studies have demonstrated the benefit of a long-acting anticholinergic bronchodilator in addition to β(2)-agonists in patients with severe asthma. Anti-IgE therapy is beneficial in selected patients with severe asthma. Several new blockers of specific mediators, including prostaglandin D(2), IL-5, IL-9, and IL-13, are also in clinical trials and might benefit patients with subtypes of severe asthma. Several broad-spectrum anti-inflammatory therapies that target neutrophilic inflammation are in clinical development for the treatment of severe asthma, but adverse effects after oral administration might necessitate inhaled delivery. Macrolides might benefit some patients with infection by atypical bacteria, but recent results are not encouraging, although there could be an effect in patients with predominant neutrophilic asthma. Corticosteroid resistance is a major problem in patients with severe asthma, and several molecular mechanisms have been described that might lead to novel therapeutic approaches, including drugs that could reverse this resistance, such as theophylline and nortriptyline. In selected patients with severe asthma, bronchial thermoplasty might be beneficial, but thus far, clinical studies have not been encouraging. Finally, several subtypes of severe asthma are now recognized, and in the future, it will be necessary to find biomarkers that predict responses to specific forms of therapy.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
206
|
Sutherlin DP, Baker S, Bisconte A, Blaney PM, Brown A, Chan BK, Chantry D, Castanedo G, DePledge P, Goldsmith P, Goldstein DM, Hancox T, Kaur J, Knowles D, Kondru R, Lesnick J, Lucas MC, Lewis C, Murray J, Nadin AJ, Nonomiya J, Pang J, Pegg N, Price S, Reif K, Safina BS, Salphati L, Staben S, Seward EM, Shuttleworth S, Sohal S, Sweeney ZK, Ultsch M, Waszkowycz B, Wei B. Potent and selective inhibitors of PI3Kδ: Obtaining isoform selectivity from the affinity pocket and tryptophan shelf. Bioorg Med Chem Lett 2012; 22:4296-302. [DOI: 10.1016/j.bmcl.2012.05.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 11/24/2022]
|
207
|
Discovery of novel PI3Kγ/δ inhibitors as potential agents for inflammation. Bioorg Med Chem Lett 2012; 22:4546-9. [DOI: 10.1016/j.bmcl.2012.05.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/19/2022]
|
208
|
Tang JF, Lv XH, Wang XL, Sun J, Zhang YB, Yang YS, Gong HB, Zhu HL. Design, synthesis, biological evaluation and molecular modeling of novel 1,3,4-oxadiazole derivatives based on Vanillic acid as potential immunosuppressive agents. Bioorg Med Chem 2012; 20:4226-36. [DOI: 10.1016/j.bmc.2012.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 01/18/2023]
|
209
|
Sunose M, Bell K, Ellard K, Bergamini G, Neubauer G, Werner T, Ramsden N. Discovery of 5-(2-amino-[1,2,4]triazolo[1,5-a]pyridin-7-yl)-N-(tert-butyl)pyridine-3-sulfonamide (CZC24758), as a potent, orally bioavailable and selective inhibitor of PI3K for the treatment of inflammatory disease. Bioorg Med Chem Lett 2012; 22:4613-8. [DOI: 10.1016/j.bmcl.2012.05.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 12/31/2022]
|
210
|
Modulation of autophagy-like processes by tumor viruses. Cells 2012; 1:204-47. [PMID: 24710474 PMCID: PMC3901111 DOI: 10.3390/cells1030204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.
Collapse
|
211
|
Safina BS, Baker S, Baumgardner M, Blaney PM, Chan BK, Chen YH, Cartwright MW, Castanedo G, Chabot C, Cheguillaume AJ, Goldsmith P, Goldstein DM, Goyal B, Hancox T, Handa RK, Iyer PS, Kaur J, Kondru R, Kenny JR, Krintel SL, Li J, Lesnick J, Lucas MC, Lewis C, Mukadam S, Murray J, Nadin AJ, Nonomiya J, Padilla F, Palmer WS, Pang J, Pegg N, Price S, Reif K, Salphati L, Savy PA, Seward EM, Shuttleworth S, Sohal S, Sweeney ZK, Tay S, Tivitmahaisoon P, Waszkowycz B, Wei B, Yue Q, Zhang C, Sutherlin DP. Discovery of novel PI3-kinase δ specific inhibitors for the treatment of rheumatoid arthritis: taming CYP3A4 time-dependent inhibition. J Med Chem 2012; 55:5887-900. [PMID: 22626259 DOI: 10.1021/jm3003747] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PI3Kδ is a lipid kinase and a member of a larger family of enzymes, PI3K class IA(α, β, δ) and IB (γ), which catalyze the phosphorylation of PIP2 to PIP3. PI3Kδ is mainly expressed in leukocytes, where it plays a critical, nonredundant role in B cell receptor mediated signaling and provides an attractive opportunity to treat diseases where B cell activity is essential, e.g., rheumatoid arthritis. We report the discovery of novel, potent, and selective PI3Kδ inhibitors and describe a structural hypothesis for isoform (α, β, γ) selectivity gained from interactions in the affinity pocket. The critical component of our initial pharmacophore for isoform selectivity was strongly associated with CYP3A4 time-dependent inhibition (TDI). We describe a variety of strategies and methods for monitoring and attenuating TDI. Ultimately, a structure-based design approach was employed to identify a suitable structural replacement for further optimization.
Collapse
Affiliation(s)
- Brian S Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Bartok B, Boyle DL, Liu Y, Ren P, Ball ST, Bugbee WD, Rommel C, Firestein GS. PI3 Kinase δ Is a Key Regulator of Synoviocyte Function in Rheumatoid Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1906-16. [DOI: 10.1016/j.ajpath.2012.01.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
213
|
Bergamini G, Bell K, Shimamura S, Werner T, Cansfield A, Müller K, Perrin J, Rau C, Ellard K, Hopf C, Doce C, Leggate D, Mangano R, Mathieson T, O'Mahony A, Plavec I, Rharbaoui F, Reinhard F, Savitski MM, Ramsden N, Hirsch E, Drewes G, Rausch O, Bantscheff M, Neubauer G. A selective inhibitor reveals PI3Kγ dependence of T(H)17 cell differentiation. Nat Chem Biol 2012; 8:576-82. [PMID: 22544264 DOI: 10.1038/nchembio.957] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/02/2012] [Indexed: 01/18/2023]
Abstract
We devised a high-throughput chemoproteomics method that enabled multiplexed screening of 16,000 compounds against native protein and lipid kinases in cell extracts. Optimization of one chemical series resulted in CZC24832, which is to our knowledge the first selective inhibitor of phosphoinositide 3-kinase γ (PI3Kγ) with efficacy in in vitro and in vivo models of inflammation. Extensive target- and cell-based profiling of CZC24832 revealed regulation of interleukin-17-producing T helper cell (T(H)17) differentiation by PI3Kγ, thus reinforcing selective inhibition of PI3Kγ as a potential treatment for inflammatory and autoimmune diseases.
Collapse
|
214
|
Ci X, Chu X, Wei M, Yang X, Cai Q, Deng X. Different effects of farrerol on an OVA-induced allergic asthma and LPS-induced acute lung injury. PLoS One 2012; 7:e34634. [PMID: 22563373 PMCID: PMC3338508 DOI: 10.1371/journal.pone.0034634] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/02/2012] [Indexed: 01/05/2023] Open
Abstract
Background Farrerol, isolated from rhododendron, has been shown to have the anti-bacterial activity, but no details on the anti-inflammatory activity. We further evaluated the effects of this compound in two experimental models of lung diseases. Methodology/Principal Findings For the asthma model, female BALB/c mice were challenged with ovalbumin (OVA), and then treated daily with farrerol (20 and 40 mg/kg, ip) as a therapeutic treatment from day 22 to day 26 post immunization. To induce acute lung injury, female BALB/c mice were injected intranasally with LPS and treated with farrerol (20 and 40 mg/kg, i.p.) 1 h prior to LPS stimulation. Inflammation in the two different models was determined using ELISA, histology, real-time PCR and western blot. Farrerol significantly regulated the phenotype challenged by OVA, like cell number, Th1 and Th2 cytokines levels in the BALF, the OVA-specific IgE level in the serum, goblet cell hyperplasia in the airway, airway hyperresponsiveness to inhaled methacholine and mRNA expression of chemokines and their receptors. Furthermore, farrerol markedly attenuated the activation of phosphorylation of Akt and nuclear factor-κB (NF-κB) subunit p65 both in vivo and in vitro. However, farrerol has no effect on the acute lung injury model. Conclusion/Significance Our finding demonstrates that the distinct anti-inflammatory effect of farrerol in the treatment of asthma acts by inhibiting the PI3K and NF-κB pathway.
Collapse
Affiliation(s)
- Xinxin Ci
- Institute of Zoonoses, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiao Chu
- Institute of Zoonoses, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Miaomiao Wei
- Institute of Zoonoses, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiaofeng Yang
- Institute of Zoonoses, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Qinren Cai
- Institute of Zoonoses, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xuming Deng
- Institute of Zoonoses, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People’s Republic of China
- * E-mail:
| |
Collapse
|
215
|
Zhang ZM, Zhang XW, Zhao ZZ, Yan R, Xu R, Gong HB, Zhu HL. Synthesis, biological evaluation and molecular docking studies of 1,3,4-oxadiazole derivatives as potential immunosuppressive agents. Bioorg Med Chem 2012; 20:3359-67. [PMID: 22520630 DOI: 10.1016/j.bmc.2012.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023]
Abstract
A series of 1,3,4-oxadiazole derivatives derived from 4-methoxysalicylic acid or 4-methylsalicylic acid (6a-6z) have been first synthesized for their potential immunosuppressive activity. Among them, compound 6z displayed the most potent biological activity against lymph node cells (inhibition=38.76% for lymph node cells and IC(50)=0.31 μM for PI3Kγ). The preliminary mechanism of compound 6z inhibition effects was also detected by flow cytometry (FCM) and the compound exerted immunosuppressive activity via inducing the apoptosis of activated lymph node cells in a dose dependent manner. Docking simulation was performed to position compound 6z into the PI3Kγ structure active site to determine the probable binding model.
Collapse
Affiliation(s)
- Zhi-Ming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
216
|
Shimizu-Hirota R, Xiong W, Baxter BT, Kunkel SL, Maillard I, Chen XW, Sabeh F, Liu R, Li XY, Weiss SJ. MT1-MMP regulates the PI3Kδ·Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev 2012; 26:395-413. [PMID: 22345520 DOI: 10.1101/gad.178749.111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3β signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.
Collapse
Affiliation(s)
- Ryoko Shimizu-Hirota
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Kang BN, Ha SG, Ge XN, Reza Hosseinkhani M, Bahaie NS, Greenberg Y, Blumenthal MN, Puri KD, Rao SP, Sriramarao P. The p110δ subunit of PI3K regulates bone marrow-derived eosinophil trafficking and airway eosinophilia in allergen-challenged mice. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1179-91. [PMID: 22427531 DOI: 10.1152/ajplung.00005.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Trafficking and recruitment of eosinophils during allergic airway inflammation is mediated by the phosphatidylinositol 3-kinase (PI3K) family of signaling molecules. The role played by the p110δ subunit of PI3K (PI3K p110δ) in regulating eosinophil trafficking and recruitment was investigated using a selective pharmacological inhibitor (IC87114). Treatment with the PI3K p110δ inhibitor significantly reduced murine bone marrow-derived eosinophil (BM-Eos) adhesion to VCAM-1 as well as ICAM-1 and inhibited activation-induced changes in cell morphology associated with reduced Mac-1 expression and aberrant cell surface localization/distribution of Mac-1 and α4. Infused BM-Eos demonstrated significantly decreased rolling and adhesion in inflamed cremaster muscle microvessels of mice treated with IC87114 compared with vehicle-treated mice. Furthermore, inhibition of PI3K p110δ significantly attenuated eotaxin-1-induced BM-Eos migration and prevented eotaxin-1-induced changes in the cytoskeleton and cell morphology. Knockdown of PI3K p110δ with siRNA in BM-Eos resulted in reduced rolling, adhesion, and migration, as well as inhibition of activation-induced changes in cell morphology, validating its role in regulating trafficking and migration. Finally, in a mouse model of cockroach antigen-induced allergic airway inflammation, oral administration of the PI3K p110δ inhibitor significantly inhibited airway eosinophil recruitment, resulting in attenuation of airway hyperresponsiveness in response to methacholine, reduced mucus secretion, and expression of proinflammatory molecules (found in inflammatory zone-1 and intelectin-1). Overall, these findings indicate the important role played by PI3K p110δ in mediating BM-Eos trafficking and migration by regulating adhesion molecule expression and localization/distribution as well as promoting changes in cell morphology that favor recruitment during inflammation.
Collapse
Affiliation(s)
- Bit Na Kang
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Zhang TT, Makondo KJ, Marshall AJ. p110δ Phosphoinositide 3-Kinase Represses IgE Switch by Potentiating BCL6 Expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:3700-8. [DOI: 10.4049/jimmunol.1103302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
219
|
Inhibitory effects of ZSTK474, a phosphatidylinositol 3-kinase inhibitor, on adjuvant-induced arthritis in rats. Inflamm Res 2012; 61:551-62. [DOI: 10.1007/s00011-012-0444-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/11/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022] Open
|
220
|
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is the first kinase involved in, and a key component of, the PI3K/Akt/mTOR signalling pathway, and is significantly upregulated in many cancers. However, four distinct isoforms of PI3K are known with different expression patterns and different pathophysiological roles. The PI3Kδ isoform is expressed in leukocytes and has been implicated as a potential target in the development of selective inhibitors for the treatment of haematological malignancies and various inflammatory diseases. AREAS COVERED This review briefly covers the understanding of the four PI3K isoforms and their roles and the inhibitors selective for either one or two isoforms that have been identified to date. It then focuses upon progress in the identification of selective PI3Kδ inhibitors focusing upon the original efforts at ICOS/Calistoga that led to the initial clinical candidates such as CAL-101. After assessing the patent filings from these companies, it considers filings from other players and how they have sought to explore similar, and structurally distinct, scaffolds in their search for selective inhibitors, and how different companies appear focused on either oncological or anti-inflammatory uses for their inhibitors. EXPERT OPINION The impact of the work at ICOS is highlighted by the fact that prior to their disclosure of selective leads, no patent applications claiming selective PI3Kδ inhibitors had been filed by other companies. This disclosure, followed by the first filings by Piramed, led to an upsurge in interest with a large cluster of filings published in 2008 while half the relevant applications were published in 2010 or 2011. These efforts, and the initial clinical data on CAL-101, the leading PI3Kδ inhibitors, have also prompted a number of commercially significant deals. In addition to an increasing number of filings, the entry into the clinical development of more selective PI3Kδ inhibitors should stimulate a better understanding of the role of this specific kinase isoform.
Collapse
|
221
|
Yan R, Zhang ZM, Fang XY, Hu Y, Zhu HL. Synthesis, molecular docking and biological evaluation of 1,3,4-oxadiazole derivatives as potential immunosuppressive agents. Bioorg Med Chem 2012; 20:1373-9. [DOI: 10.1016/j.bmc.2012.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/14/2022]
|
222
|
Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling. J Inflamm (Lond) 2012; 9:1. [PMID: 22239975 PMCID: PMC3293082 DOI: 10.1186/1476-9255-9-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/12/2012] [Indexed: 11/10/2022] Open
Abstract
COPD is a disease of innate immunity and bacterial infections are a dominant cause of exacerbations in the later stages resulting in poor health and high mortality. The pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS) is sensed by immune cells through activation of the toll-like receptor 4 (TLR4). This leads to the activation of NADPH oxidase (NOX) and NF-κB which together drive COPD inflammation. In this study we show in human PBMCs that LPS stimulated proinflammatory cytokine release (CXCL8 and IL6) was inhibited by approximately 50% by the broad specificity phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Our results also demonstrate that activation of PI3K following LPS stimulation is mediated by a NOX4 dependent mechanism releasing endogenous H2O2, as the NOX4 inhibitor apocynin blocked LPS induced AKT phosphorylation. Moreover, LPS-induced PI3K activation was inhibited by the anti-oxidant N-acetylcysteine in a concentration dependent manner (IC50 ~100 μM). In addition, our data demonstrated that inhibition of small G proteins, by pre-treatment with pertussis toxin, inhibited LPS-induced AKT phosphorylation. Furthermore, the G-protein inhibitors pertussis toxin and mastoparan both inhibited LPS-induced CXCL8 and IL-6 release by approximately 50%. Together, these data indicate there is a mechanism in human PBMCs where TLR4 activation by LPS leads to ROS generation through NOX4 and activation of the PI3K pathway. This effect is apparently mediated through small G proteins facilitating the release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Anta Ngkelo
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Koremu Meja
- University College London, Cancer Institute, London, UK
| | - Mike Yeadon
- Allergy and Respiratory, Pfizer, Sandwich, Kent, UK
| | - Ian Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul A Kirkham
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
223
|
Abstract
In the last decade, the availability of genetically modified animals has revealed interesting roles for phosphoinositide 3-kinases (PI3Ks) as signaling platforms orchestrating multiple cellular responses, both in health and pathology. By acting downstream distinct receptor types, PI3Ks nucleate complex signaling assemblies controlling several biological process, ranging from cell proliferation and survival to immunity, cancer, metabolism and cardiovascular control. While the involvement of these kinases in modulating immune reactions and neoplastic transformation has long been accepted, recent progress from our group and others has highlighted new and unforeseen roles of PI3Ks in controlling cardiovascular function. Hence, the view is emerging that pharmacological targeting of distinct PI3K isoforms could be successful in treating disorders such as myocardial infarction and heart failure, besides inflammatory diseases and cancer. Currently, PI3Ks represent attractive drug targets for companies interested in the development of novel and safe treatments for such diseases. Numerous hit and lead compounds are now becoming available and, for some of them, clinical trials can be envisaged in the near future. In the following sections, we will outline the impact of specific PI3K isoforms in regulating different cellular contexts, including immunity, metabolism, cancer and cardiovascular system, both in physiological and disease conditions.
Collapse
|
224
|
Gaestel M, Kotlyarov A. Small-molecule protein and lipid kinase inhibitors in inflammation and specific models for their evaluation. Methods Mol Biol 2012; 795:35-44. [PMID: 21960213 DOI: 10.1007/978-1-61779-337-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The inflammatory response requires complex and coordinated cooperation of different signaling pathways and cell types. Therefore, more than 40 different protein or lipid kinases can be regarded as potential small-molecule inhibitor targets to approach a therapy of acute inflammation, such as septic syndrome, and especially chronic inflammation, such as rheumatoid arthritis or inflammatory bowel disease. Besides the general considerations about selectivity and potency of small-molecule kinase inhibitors, in this chapter special emphasis is put on the inflammation-specific methods and assays available for testing potential small-molecule inhibitors for their anti-inflammatory activity. Examples for human cell-based assays for characterization of the effect of inhibitors on contribution of various cell types, such as monocytes, neutrophils, mast cells, T-cells, and synovial fibroblasts, to the inflammatory scenario are given. It is further demonstrated how these assays are complemented by rodent models for septic syndrome, rheumatoid arthritis, ulcerative colitis, Crohn's disease, and systemic lupus erythematosus. Finally, it is discussed how the results obtained by these methods can be further validated and which future strategies for the treatment of chronic inflammation will exist.
Collapse
Affiliation(s)
- Matthias Gaestel
- Hannover Medical School, Institute of Biochemistry, Hannover, Germany.
| | | |
Collapse
|
225
|
Class I phosphoinositide 3-kinases in normal and pathologic hematopoietic cells. Curr Top Microbiol Immunol 2012; 362:163-84. [PMID: 23086418 DOI: 10.1007/978-94-007-5025-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Class I phosphoinositide 3-kinases which produce the D3-phosphoinositide second messenger phosphatidylinositol 3,4,5-trisphosphate in response to membrane receptors activation play a critical role in cell proliferation, survival, metabolism, and motility. These lipid kinases and the phosphatases regulating the level of D3-phosphoinositides have been an intense area of research these last two decades. The class I phosphoinositide 3-kinases signaling is found aberrantly activated in numerous human cancers, including in malignant hemopathies, and are important therapeutic targets for cancer therapy. Haematopoiesis is an ongoing process which generates the distinct blood cell types from a common hematopoietic stem cell through the action of a variety of cytokines. In the human adult hematopoiesis occurs primarily in the bone marrow, and defects in hematopoiesis result in diseases, such as anemia, thrombocytopenia, myeloproliferative syndromes, or leukemia. Here we give a brief overview of the role of class I phosphoinositide 3-kinases in hematopoietic stem cells, in hematopoietic lineage development and in leukemia, particularly in acute myeloid leukemia and summarize the potential therapeutic implications.
Collapse
|
226
|
Pereira PJS, Lazarotto LF, Leal PC, Lopes TG, Morrone FB, Campos MM. Inhibition of phosphatidylinositol-3 kinase γ reduces pruriceptive, inflammatory, and nociceptive responses induced by trypsin in mice. Pain 2011; 152:2861-2869. [DOI: 10.1016/j.pain.2011.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 08/14/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
|
227
|
Jiang H, Tian L, Li Z, Liu Q, Li C, Yao X, Yang Z. InCl3-mediated intramolecular Friedel-Crafts-type cyclization and its application to construct the [6-7-5-6] tetracyclic scaffold of liphagal. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4454-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
228
|
Greenfield EM, Tatro JM, Smith MV, Schnaser EA, Wu D. PI3Kγ deletion reduces variability in the in vivo osteolytic response induced by orthopaedic wear particles. J Orthop Res 2011; 29:1649-53. [PMID: 21538508 PMCID: PMC3338193 DOI: 10.1002/jor.21440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/31/2011] [Indexed: 02/06/2023]
Abstract
Orthopedic wear particles activate a number of intracellular signaling pathways associated with inflammation in macrophages and we have previously shown that the phosphoinositol-3-kinase (PI3K)/Akt pathway is one of the signal transduction pathways that mediates the in vitro activation of macrophages by orthopedic wear particles. Since PI3Kγ is primarily responsible for PI3K activity during inflammation, we hypothesized that PI3Kγ mediates particle-induced osteolysis in vivo. Our results do not strongly support the hypothesis that PI3Kγ regulates the overall amount of particle-induced osteolysis in the murine calvarial model. However, our results strongly support the conclusion that variability in the amount of particle-induced osteolysis between individual mice is reduced in the PI3Kγ(-/-) mice. These results suggest that PI3Kγ contributes to osteolysis to different degrees in individual mice and that the mice, and patients, that are most susceptible to osteolysis may be so, in part, due to an increased contribution from PI3Kγ.
Collapse
Affiliation(s)
- Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, University Hospitals Case Medical Center, Biomedical Research Building, Room 331, 2109 Adelbert Road, Cleveland, Ohio 44106,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Joscelyn M. Tatro
- Department of Orthopaedics, Case Western Reserve University, University Hospitals Case Medical Center, Biomedical Research Building, Room 331, 2109 Adelbert Road, Cleveland, Ohio 44106
| | - Matthew V. Smith
- Department of Orthopaedics, Washington University, St. Louis, Missouri
| | - Erik A. Schnaser
- Department of Orthopaedics, Case Western Reserve University, University Hospitals Case Medical Center, Biomedical Research Building, Room 331, 2109 Adelbert Road, Cleveland, Ohio 44106
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut,Department of Pharmacology, Yale University, New Haven, Connecticut
| |
Collapse
|
229
|
The secret life of kinases: functions beyond catalysis. Cell Commun Signal 2011; 9:23. [PMID: 22035226 PMCID: PMC3215182 DOI: 10.1186/1478-811x-9-23] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/28/2011] [Indexed: 02/07/2023] Open
Abstract
Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.
Collapse
|
230
|
Phosphoinositide 3-kinaseγ controls the intracellular localization of CpG to limit DNA-PKcs-dependent IL-10 production in macrophages. PLoS One 2011; 6:e26836. [PMID: 22053215 PMCID: PMC3203906 DOI: 10.1371/journal.pone.0026836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/04/2011] [Indexed: 12/12/2022] Open
Abstract
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/-) cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/-) cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/-) cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/-) cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.
Collapse
|
231
|
Heffron TP, Wei B, Olivero A, Staben ST, Tsui V, Do S, Dotson J, Folkes AJ, Goldsmith P, Goldsmith R, Gunzner J, Lesnick J, Lewis C, Mathieu S, Nonomiya J, Shuttleworth S, Sutherlin DP, Wan NC, Wang S, Wiesmann C, Zhu BY. Rational Design of Phosphoinositide 3-Kinase α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase β Isoform. J Med Chem 2011; 54:7815-33. [DOI: 10.1021/jm2007084] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Timothy P. Heffron
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - BinQing Wei
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Alan Olivero
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Steven T. Staben
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Jennafer Dotson
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Adrian J. Folkes
- Piramed Pharma, 957 Buckingham
Avenue, Slough, Berks SL1 4NL, United Kingdom
| | - Paul Goldsmith
- Piramed Pharma, 957 Buckingham
Avenue, Slough, Berks SL1 4NL, United Kingdom
| | - Richard Goldsmith
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Janet Gunzner
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - John Lesnick
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Cristina Lewis
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Simon Mathieu
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Jim Nonomiya
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | | | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Nan Chi Wan
- Piramed Pharma, 957 Buckingham
Avenue, Slough, Berks SL1 4NL, United Kingdom
| | - Shumei Wang
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Christian Wiesmann
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| | - Bing-Yan Zhu
- Genentech, Inc., 1 DNA Way, South San
Francisco, California 94080, United States
| |
Collapse
|
232
|
Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation. ACTA ACUST UNITED AC 2011; 193:1275-88. [PMID: 21708979 PMCID: PMC3216328 DOI: 10.1083/jcb.201009126] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of p110α or of the downstream PI3K signaling pathway components PDK1 and Akt, as well as phosphoinositide sequestration, blocks invadopodia formation in breast cancer cells. Invadopodia are extracellular matrix–degrading protrusions formed by invasive cancer cells that are thought to function in cancer invasion. Although many invadopodia components have been identified, signaling pathways that link extracellular stimuli to invadopodia formation remain largely unknown. We investigate the role of phosphoinositide 3-kinase (PI3K) signaling during invadopodia formation. We find that in human breast cancer cells, both invadopodia formation and degradation of a gelatin matrix were blocked by treatment with PI3K inhibitors or sequestration of D-3 phosphoinositides. Functional analyses revealed that among the PI3K family proteins, the class I PI3K catalytic subunit p110α, a frequently mutated gene product in human cancers, was selectively involved in invadopodia formation. The expression of p110α with cancerous mutations promoted invadopodia-mediated invasive activity. Furthermore, knockdown or inhibition of PDK1 and Akt, downstream effectors of PI3K signaling, suppressed invadopodia formation induced by p110α mutants. These data suggest that PI3K signaling via p110α regulates invadopodia-mediated invasion of breast cancer cells.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Acosta YY, Zafra MP, Ojeda G, Bernardone IS, Dianzani U, Portolés P, Rojo JM. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell Mol Life Sci 2011; 68:3065-79. [PMID: 21188463 PMCID: PMC11115116 DOI: 10.1007/s00018-010-0606-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/12/2010] [Accepted: 11/26/2010] [Indexed: 12/01/2022]
Abstract
To better understand T lymphocyte costimulation by inducible costimulator (ICOS; H4; CD278), we analyzed proteins binding to ICOS peptides phosphorylated at the Y(191)MFM motif. Phosphorylated ICOS binds class IA phosphatidyl inositol 3-kinase (PI3-K) p85α, p50-55α and p85β regulatory subunits and p110α, p110δ and p110β catalytic subunits. Intriguingly, T cells expressed high levels of both p110α or p110δ catalytic subunits, yet ICOS peptides, cell surface ICOS or PI3-kinase class IA regulatory subunits preferentially coprecipitated p110α catalytic subunits. Silencing p110α or p110δ partially inhibited Akt/PKB activation induced by anti-CD3 plus anti-ICOS antibodies. However, silencing p110α enhanced and silencing p110δ inhibited Erk activation. Both p110α- and p110δ-specific inhibitors blocked cytokine secretion induced by TCR/CD3 activation with or without ICOS costimulus, but only p110α inhibitors blocked ICOS-induced cell elongation. Thus, p110α and p110δ are essential to optimal T cell activation, but their abundance and activity differentially tune up distinct ICOS signaling pathways.
Collapse
Affiliation(s)
- Yenny Y. Acosta
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Paz Zafra
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Gloria Ojeda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ilaria Seren Bernardone
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, 28100 Novara, Italy
| | - Pilar Portolés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jose M. Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
234
|
Costa C, Martin-Conte EL, Hirsch E. Phosphoinositide 3-kinase p110γ in immunity. IUBMB Life 2011; 63:707-13. [PMID: 21800408 DOI: 10.1002/iub.516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 11/07/2022]
Abstract
The rapid and accurate response of leukocytes to environmental cues is critical for a proper inflammatory reaction to foreign particles or invading microbes. In the last decade, the signal transduction enzyme phosphoinositide 3-kinase γ (PI3Kγ) has emerged as a critical modulator of leukocyte responses, with its effects spanning from recruitment to the site of inflammation to the production of reactive oxygen species. These findings initially obtained from genetically modified mice have led to the development of experimental anti-inflammatory inhibitors with reasonable selectivity and specificity. While such molecules have not yet reached clinical use, preclinical studies combining genetics and pharmacology continue to provide new therapeutic indications for targeting PI3Kγ. Thus, this review focuses on the latest discoveries regarding PI3Kγ function in leukocytes and on the most recent findings in disease models related to immunity.
Collapse
Affiliation(s)
- Carlotta Costa
- Department of Genetic, Biology and Biochemistry and Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino, Italy
| | | | | |
Collapse
|
235
|
Nabe T, Morishita T, Matsuya K, Ikedo A, Fujii M, Mizutani N, Yoshino S. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. J Pharmacol Sci 2011; 116:373-83. [PMID: 21778663 DOI: 10.1254/jphs.11083fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
It is known that the late asthmatic response (LAR), a characteristic feature of asthma, is closely associated with CD4+ Th2 cell-mediated allergic inflammation. Airway remodeling is also a pathogenesis of asthma, but literature reporting roles of CD4+ cells in the remodeling is controversial. There has been no study that simultaneously assessed the roles of CD4+ cells in both LAR and airway remodeling. Sensitized mice were intratracheally challenged with ovalbumin 4 times. Treatment with an anti-CD4 monoclonal antibody (mAb) before the 1st challenge almost completely abolished increase in CD4+ cells in the tissues after the 4th challenge. The late phase increase in airway resistance after the 4th challenge was also completely inhibited by anti-CD4 mAb. Parameters of airway remodeling, subepithelial fibrosis and epithelial thickening were attenuated by treatment, whereas the inhibition was only 30% - 40%. Bronchial smooth muscle thickening was not affected. Because interleukin (IL)-5 production as well as eosinophilia was effectively suppressed by anti-CD4 mAb, the effect of anti-IL-5 mAb was also examined, resulting in no inhibition of airway remodeling. Collectively, although the LAR was completely dependent on CD4+ cell activation, airway remodeling was only partially dependent on the cell.
Collapse
Affiliation(s)
- Takeshi Nabe
- Department of Pharmacology, Kyoto Pharmaceutical University, Japan.
| | | | | | | | | | | | | |
Collapse
|
236
|
Inhibitory activity of flavonoids against class I phosphatidylinositol 3-kinase isoforms. Molecules 2011; 16:5159-67. [PMID: 21694679 PMCID: PMC6264676 DOI: 10.3390/molecules16065159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 11/24/2022] Open
Abstract
Class I PI3 Kinase (PI3K) phosphorylates phosphatidylinositol 4,5-bisphophate (PIP2) to generate the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) and therefore plays an important role in fundamental cellular responses such as proliferation. There are four isoforms of class I PI3K which are known to have different functions and relate to various diseases such as cancer and inflammation. Flavonoids are abundant in fruits, vegetables and plant-derived beverages such as tea. So far, various pharmacological effects of flavonoids have been reported. We previously reported that the flavonoid baicalein exhibits potent PI3K-inhibitory activity. Recently we examined the inhibitory activity of eighteen flavonoids against PI3Kα by using an in vitro homogenous time resolved fluorescence (HTRF) kinase assay, and deduced their structure-activity relationships by comparing the activities of the analogues. Our result suggests that the number of hydroxyl groups in the A and B rings might promote the activity, while loss of C2-C3 double bond might reduce the activity. Furthermore, the activity against 4 class I PI3K isoforms of some selected flavonoids was investigated, and the results indicate that the flavonoids seem to exhibit more potent activity on PI3Kα and δ isoforms compared with that on PI3Kβ and γ isoforms.
Collapse
|
237
|
Kurki MI, Häkkinen SK, Frösen J, Tulamo R, von und zu Fraunberg M, Wong G, Tromp G, Niemelä M, Hernesniemi J, Jääskeläinen JE, Ylä-Herttuala S. Upregulated Signaling Pathways in Ruptured Human Saccular Intracranial Aneurysm Wall: An Emerging Regulative Role of Toll-Like Receptor Signaling and Nuclear Factor-κB, Hypoxia-Inducible Factor-1A, and ETS Transcription Factors. Neurosurgery 2011; 68:1667-75; discussion 1675-6. [DOI: 10.1227/neu.0b013e318210f001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
BACKGROUND:
Aneurysmal subarachnoid hemorrhage, almost always from saccular intracranial aneurysm (sIA), is a devastating form of stroke that affects the working-age population. Cellular and molecular mechanisms predisposing to the rupture of the sIA wall are largely unknown. This knowledge would facilitate the design of novel diagnostic tools and therapies for the sIA disease.
OBJECTIVE:
To investigate gene expression patterns distinguishing ruptured and unruptured sIA.
METHODS:
We compared the whole-genome expression profile of 11 ruptured sIA wall samples with that of 8 unruptured ones using oligonucleotide microarrays. Signaling pathways enriched in the ruptured sIA walls were identified with bioinformatic analyses. Their transcriptional control was predicted in silico by seeking the enrichment of conserved transcription factor binding sites in the promoter regions of differentially expressed genes.
RESULTS:
Overall, 686 genes were significantly upregulated and 740 were downregulated in the ruptured sIA walls. Significantly upregulated biological processes included response to turbulent blood flow, chemotaxis, leukocyte migration, oxidative stress, vascular remodeling; and extracellular matrix degradation. Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factor binding sites were significantly enriched among the upregulated genes.
CONCLUSION:
We identified pathways and candidate genes associated with the rupture of human sIA wall. Our results may provide clues to the molecular mechanism in sIA wall rupture and insight for novel therapeutic strategies to prevent rupture.
Collapse
Affiliation(s)
- Mitja I. Kurki
- Laboratory of Functional Genomics and Bioinformatics, Department of Neurobiology
- Department of Biosciences
| | - Sanna-Kaisa Häkkinen
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juhana Frösen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Riikka Tulamo
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | | | - Garry Wong
- Laboratory of Functional Genomics and Bioinformatics, Department of Neurobiology
- Department of Biosciences
| | - Gerard Tromp
- Center for Molecular Medicine and Genetics and Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan; Current address: Weis Center for Research, Geisinger Health System, Danville, Pennsylvania
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | | | - Seppo Ylä-Herttuala
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
238
|
Choi J, Ifuku M, Noda M, Guilarte TR. Translocator protein (18 kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state. Glia 2011; 59:219-30. [PMID: 21125642 DOI: 10.1002/glia.21091] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the brain, translocator protein (18 kDa) (TSPO), previously called peripheral benzodiazepine receptor (PBR), is a glial protein that has been extensively used as a biomarker of brain injury and inflammation. However, the functional role of TSPO in glial cells is not well characterized. In this study, we show that the TSPO-specific ligands R-PK11195 (PK) and Ro5-4864 (Ro) increased microglia proliferation and phagocytosis with no effect on migration. Both ligands increased reactive oxygen species (ROS) production, and this effect may be mediated by NADPH-oxidase. PK and Ro also produced a small but detectable increase in IL-1β release. We also examined the effect of PK and Ro on the expression of proinflammatory genes and cytokine release in lipopolysaccharide (LPS) and adenosine triphosphate (ATP) activated microglia. PK or Ro had no effect on LPS-induced increase of pro-inflammatory genes, but they both decreased the ATP-induced increase of COX-2 gene expression. Ro, but not PK, enhanced the LPS-induced release of IL-1β. However, Ro decreased the ATP-induced release of IL-1β and TNF-α, and PK decreased the ATP-induced release of TNF-α. Exposure to Ro in the presence of LPS increased the number of apoptotic microglia, an effect that could be blocked by PK. These findings show that TSPO ligands modulate cellular functions consistent with microglia activation. Further, when microglia are activated, these ligands may have therapeutic potential by reducing the expression of pro-inflammatory genes and cytokine release. Finally, Ro-like ligands may be involved in the elimination of activated microglia via apoptosis.
Collapse
Affiliation(s)
- Judy Choi
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
239
|
Kerr WG, Colucci F. Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 2011; 3:249-57. [PMID: 21422750 DOI: 10.1159/000323920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/07/2010] [Indexed: 12/30/2022] Open
Abstract
A family of phosphoinositide-3 kinase (PI3K) isoenzymes catalyzes the production of second messengers that recruit critical regulators of cell growth, survival, proliferation and motility. Conversely, 3'-(phosphatase and tensin homolog) and 5'-inositol polyphosphatases (SH2-containing inositol phosphatases 1/2, SHIP1/2) are recruited to sites of PI3K signaling at the plasma membrane to oppose or, in some cases, to modify and enhance PI3K signaling. A substantial and growing body of literature demonstrates that these enzymes which mediate interchange of phosphates on inositol phospholipid species at the plasma membrane have prominent roles in natural killer cell biology, including development, effector functions and trafficking. Here, we review the salient points of these recent papers with a special emphasis on the role of p110δ and SHIP1 in natural killer cells.
Collapse
Affiliation(s)
- William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
240
|
C5a-mediated neutrophil dysfunction is RhoA-dependent and predicts infection in critically ill patients. Blood 2011; 117:5178-88. [PMID: 21292772 DOI: 10.1182/blood-2010-08-304667] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Critically ill patients are at heightened risk for nosocomial infections. The anaphylatoxin C5a impairs phagocytosis by neutrophils. However, the mechanisms by which this occurs and the relevance for acquisition of nosocomial infection remain undetermined. We aimed to characterize mechanisms by which C5a inhibits phagocytosis in vitro and in critically ill patients, and to define the relationship between C5a-mediated dysfunction and acquisition of nosocomial infection. In healthy human neutrophils, C5a significantly inhibited RhoA activation, preventing actin polymerization and phagocytosis. RhoA inhibition was mediated by PI3Kδ. The effects on RhoA, actin, and phagocytosis were fully reversed by GM-CSF. Parallel observations were made in neutrophils from critically ill patients, that is, impaired phagocytosis was associated with inhibition of RhoA and actin polymerization, and reversed by GM-CSF. Among a cohort of 60 critically ill patients, C5a-mediated neutrophil dysfunction (as determined by reduced CD88 expression) was a strong predictor for subsequent acquisition of nosocomial infection (relative risk, 5.8; 95% confidence interval, 1.5-22; P = .0007), and remained independent of time effects as assessed by survival analysis (hazard ratio, 5.0; 95% confidence interval, 1.3-8.3; P = .01). In conclusion, this study provides new insight into the mechanisms underlying immunocompromise in critical illness and suggests novel avenues for therapy and prevention of nosocomial infection.
Collapse
|
241
|
|
242
|
Pinson JA, Schmidt-Kittler O, Zhu J, Jennings IG, Kinzler KW, Vogelstein B, Chalmers DK, Thompson PE. Thiazolidinedione-based PI3Kα inhibitors: an analysis of biochemical and virtual screening methods. ChemMedChem 2011; 6:514-22. [PMID: 21360822 PMCID: PMC3187668 DOI: 10.1002/cmdc.201000467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/29/2010] [Indexed: 12/27/2022]
Abstract
A series of synthesized and commercially available compounds were assessed against PI3Kα for in vitro inhibitory activity and the results compared to binding calculated in silico. Using published crystal structures of PI3Kγ and PI3Kδ co-crystallized with inhibitors as a template, docking was able to identify the majority of potent inhibitors from a decoy set of 1000 compounds. On the other hand, PI3Kα in the apo-form, modeled by induced fit docking, or built as a homology model gave only poor results. A PI3Kα homology model derived from a ligand-bound PI3Kδ crystal structure was developed that has a good ability to identify active compounds. The docking results identified binding poses for active compounds that differ from those identified to date and can contribute to our understanding of structure-activity relationships for PI3K inhibitors.
Collapse
Affiliation(s)
- Jo-Anne Pinson
- Medicinal Chemistry & Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Backer JM. The regulation of class IA PI 3-kinases by inter-subunit interactions. Curr Top Microbiol Immunol 2011; 346:87-114. [PMID: 20544340 DOI: 10.1007/82_2010_52] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphoinositide 3-kinases (PI 3-kinases) are activated by growth factor and hormone receptors, and regulate cell growth, survival, motility, and responses to changes in nutritional conditions (Engelman et al. 2006). PI 3-kinases have been classified according to their subunit composition and their substrate specificity for phosphoinositides (Vanhaesebroeck et al. 2001). The class IA PI 3-kinase is a heterodimer consisting of one regulatory subunit (p85α, p85β, p55α, p50α, or p55γ) and one 110-kDa catalytic subunit (p110α, β or δ). The Class IB PI 3-kinase is also a dimer, composed of one regulatory subunit (p101 or p87) and one catalytic subunit (p110γ) (Wymann et al. 2003). Class I enzymes will utilize PI, PI[4]P, or PI[4,5]P2 as substrates in vitro, but are thought to primarily produce PI[3,4,5]P3 in cells.The crystal structure of the Class IB PI 3-kinase catalytic subunit p110γ was solved in 1999 (Walker et al. 1999), and crystal or NMR structures of the Class IA p110α catalytic subunit and all of the individual domains of the Class IA p85α regulatory subunit have been solved (Booker et al. 1992; Günther et al. 1996; Hoedemaeker et al. 1999; Huang et al. 2007; Koyama et al. 1993; Miled et al. 2007; Musacchio et al. 1996; Nolte et al. 1996; Siegal et al. 1998). However, a structure of an intact PI 3-kinase enzyme has remained elusive. In spite of this, studies over the past 10 years have lead to important insights into how the enzyme is regulated under physiological conditions. This chapter will specifically discuss the regulation of Class IA PI 3-kinase enzymatic activity, focusing on regulatory interactions between the p85 and p110 subunits and the modulation of these interactions by physiological activators and oncogenic mutations. The complex web of signaling downstream from Class IA PI 3-kinases will be discussed in other chapters in this volume.
Collapse
Affiliation(s)
- Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
244
|
Shuttleworth SJ, Silva FA, Cecil ARL, Tomassi CD, Hill TJ, Raynaud FI, Clarke PA, Workman P. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr Med Chem 2011; 18:2686-714. [PMID: 21649578 PMCID: PMC3228236 DOI: 10.2174/092986711796011229] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/13/2011] [Accepted: 05/15/2011] [Indexed: 01/01/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer.
Collapse
Affiliation(s)
- S J Shuttleworth
- Karus Therapeutics Ltd., Southampton Science Park, Southampton, SO16 7NP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol Ther 2010; 19:567-75. [PMID: 21179008 DOI: 10.1038/mt.2010.282] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A major hurdle for harnessing small interfering RNA (siRNA) for therapeutic application is an effective and safe delivery of siRNA to target tissues and cells via systemic administration. While lipid nanoparticles (LNPs) composed of a cationic lipid, poly-(ethylene glycol) lipid and cholesterol, are effective in delivering siRNA to hepatocytes via systemic administration, they may induce multi-faceted toxicities in a dose-dependent manner, independently of target silencing. To understand the underlying mechanism of toxicities, pharmacological probes including anti-inflammation drugs and specific inhibitors blocking different pathways of innate immunity were evaluated for their abilities to mitigate LNP-siRNA-induced toxicities in rodents. Three categories of rescue effects were observed: (i) pretreatment with a Janus kinase (Jak) inhibitor or dexamethasone abrogated LNP-siRNA-mediated lethality and toxicities including cytokine induction, organ impairments, thrombocytopenia and coagulopathy without affecting siRNA-mediated gene silencing; (ii) inhibitors of PI3K, mammalian target of rapamycin (mTOR), p38 and IκB kinase (IKK)1/2 exhibited a partial alleviative effect; (iii) FK506 and etoricoxib displayed no protection. Furthermore, knockout of Jak3, tumor necrosis factor receptors (Tnfr)p55/p75, interleukin 6 (IL-6) or interferon (IFN)-γ alone was insufficient to alleviate LNP-siRNA-associated toxicities in mice. These indicate that activation of innate immune response is a primary trigger of systemic toxicities and that multiple innate immune pathways and cytokines can mediate toxic responses. Jak inhibitors are effective in mitigating LNP-siRNA-induced toxicities.
Collapse
|
246
|
Pereira AR, Strangman WK, Marion F, Feldberg L, Roll D, Mallon R, Hollander I, Andersen RJ. Synthesis of Phosphatidylinositol 3-Kinase (PI3K) Inhibitory Analogues of the Sponge Meroterpenoid Liphagal. J Med Chem 2010; 53:8523-33. [DOI: 10.1021/jm100531u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Frederic Marion
- Department of Chemistry
- Department of Earth and Ocean Sciences
| | - Larry Feldberg
- Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965, United States
| | - Deborah Roll
- Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965, United States
| | - Robert Mallon
- Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965, United States
| | - Irwin Hollander
- Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965, United States
| | | |
Collapse
|
247
|
Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function. Mol Cell Biol 2010; 31:63-80. [PMID: 20974805 DOI: 10.1128/mcb.00468-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function.
Collapse
|
248
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2010; 129:62-81. [PMID: 20965213 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
249
|
Yanagawa Y, Matsumoto M, Togashi H. Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. THE JOURNAL OF IMMUNOLOGY 2010; 185:5762-8. [PMID: 20935206 DOI: 10.4049/jimmunol.1001899] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although noradrenaline (NA), a stress-associated neurotransmitter, seems to affect the immune system, the precise mechanisms underlying NA-mediated immunoregulation are not fully understood. We examined the effect of NA on Ag uptake (endocytosis) by dendritic cells (DCs) using murine bone marrow-derived DCs and fluorescence-labeled endocytic tracers (dextran and OVA). Ag uptake by DCs notably increased following a very brief treatment (3 min) with NA. NA-induced endocytosis was completely blocked by treatment with α(2)-adrenoceptor antagonist yohimbine. Neither α(1)-adrenoceptor antagonist prazosin nor β-adrenoceptor antagonist propranolol affected NA-induced endocytosis by DCs. A selective α(2)-adrenoceptor agonist, azepexole (B-HT 933), also significantly increased endocytosis by DCs. Thus, the α(2)-adrenoceptor seems to be responsible for NA-induced DC endocytosis. In parallel, NA markedly activated intracellular signaling pathways of PI3K and ERK1/2 in DCs. NA-mediated activation of these pathways was completely inhibited by yohimbine treatment. Blocking PI3K activation significantly reduced NA-induced endocytosis by DCs. Based on these results, NA rapidly enhances Ag capture by DCs via α(2) adrenoceptor-mediated PI3K activation, which may be associated with immune enhancement following acute stress.
Collapse
Affiliation(s)
- Yoshiki Yanagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| | | | | |
Collapse
|
250
|
Chirumbolo S, Marzotto M, Conforti A, Vella A, Ortolani R, Bellavite P. Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets. Clin Mol Allergy 2010; 8:13. [PMID: 20849592 PMCID: PMC2949734 DOI: 10.1186/1476-7961-8-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/17/2010] [Indexed: 12/11/2022] Open
Abstract
Background Flavonoids, a large group of polyphenolic metabolites derived from plants have received a great deal of attention over the last several decades for their properties in inflammation and allergy. Quercetin, the most abundant of plant flavonoids, exerts a modulatory action at nanomolar concentrations on human basophils. As this mechanism needs to be elucidated, in this study we focused the possible signal transduction pathways which may be affected by this compound. Methods: K2-EDTA derived leukocyte buffy coats enriched in basophil granulocytes were treated with different concentrations of quercetin and triggered with anti-IgE, fMLP, the calcium ionophore A23187 and the phorbol ester PMA in different experimental conditions. Basophils were captured in a flow cytometry analysis as CD123bright/HLADRnon expressing cells and fluorescence values of the activation markers CD63-FITC or CD203c-PE were used to produce dose response curves. The same population was assayed for histamine release. Results Quercetin inhibited the expression of CD63 and CD203c and the histamine release in basophils activated with anti-IgE or with the ionophore: the IC50 in the anti-IgE model was higher than in the ionophore model and the effects were more pronounced for CD63 than for CD203c. Nanomolar concentrations of quercetin were able to prime both markers expression and histamine release in the fMLP activation model while no effect of quercetin was observed when basophils were activated with PMA. The specific phosphoinositide-3 kinase (PI3K) inhibitor wortmannin exhibited the same behavior of quercetin in anti-IgE and fMLP activation, thus suggesting a role for PI3K involvement in the priming mechanism. Conclusions These results rule out a possible role of protein kinase C in the complex response of basophil to quercetin, while indirectly suggest PI3K as the major intracellular target of this compound also in human basophils.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Pathology and Diagnostics, sect, General Pathology, strada Le Grazie 8, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|