201
|
|
202
|
Mallavia B, Oguiza A, Lopez-Franco O, Recio C, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, Egido J, Gomez-Guerrero C. Gene Deficiency in Activating Fcγ Receptors Influences the Macrophage Phenotypic Balance and Reduces Atherosclerosis in Mice. PLoS One 2013; 8:e66754. [PMID: 23805273 PMCID: PMC3689671 DOI: 10.1371/journal.pone.0066754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/10/2013] [Indexed: 01/18/2023] Open
Abstract
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.
Collapse
Affiliation(s)
- Beñat Mallavia
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Ainhoa Oguiza
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Oscar Lopez-Franco
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlota Recio
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Guadalupe Ortiz-Muñoz
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Iolanda Lazaro
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Virginia Lopez-Parra
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Jesus Egido
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- * E-mail:
| |
Collapse
|
203
|
Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci U S A 2013; 110:10729-34. [PMID: 23754379 DOI: 10.1073/pnas.1301001110] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Destruction of bone tissue by osteoclasts represents a severe pathological phenotype during inflammatory arthritis and results in joint pain and bone malformations. Previous studies have established the essential role of cytokines including TNFα and receptor-ligand interactions, such as the receptor activator of nuclear factor-kappa B-receptor activator of nuclear factor-kappa B ligand interaction for osteoclast formation during joint inflammation. Moreover, autoantibodies contribute to joint inflammation in inflammatory arthritis by triggering cellular fragment crystallizable (Fc)γ receptors (FcγR), resulting in the release of proinflammatory cytokines and chemokines essential for recruitment and activation of innate immune effector cells. In contrast, little is known about the expression pattern and function of different FcγRs during osteoclast differentiation. This would allow osteoclasts to directly interact with autoantibody immune complexes, rather than being influenced indirectly via proinflammatory cytokines released upon immune complex binding to other FcγR-expressing innate immune cells. To address this question, we studied FcγR expression and function on osteoclasts during the steady state and during acute joint inflammation in a model of inflammatory arthritis. Our results suggest that osteoclastogenesis is directly influenced by IgG autoantibody binding to select activating FcγRs on immature osteoclasts, resulting in enhanced osteoclast generation and, ultimately, bone destruction.
Collapse
|
204
|
Therapy with immunoglobulin in patients with acute myocarditis and cardiomyopathy: analysis of leukocyte balance. Heart Vessels 2013; 29:336-42. [DOI: 10.1007/s00380-013-0368-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
|
205
|
Burchard PR, Malhotra S, Kaur P, Tsongalis GJ. Detection of the FCGR3a polymorphism using a real-time polymerase chain reaction assay. Cancer Genet 2013; 206:130-4. [PMID: 23680410 DOI: 10.1016/j.cancergen.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
The fragment crystallizable (Fc) region of the immunoglobulin G, low affinity III A receptor (FCGR3a, also known as CD16) belongs to the Fc gamma receptor family (FCGR), which plays an important role in immunoinflammatory processes. It is a low affinity, transmembrane receptor that is mainly expressed in monocytes, natural killer cells, and macrophages. It has been implicated in various inflammatory conditions, and recently a polymorphism (rs396991) in this gene has been shown to influence response to rituximab (anti-CD20) therapy in various disorders. We evaluated two molecular methods to genotype this polymorphism. Archived, formalin-fixed, paraffin-embedded samples from 26 biopsies of diffuse large B-cell lymphoma were retrieved and DNA was extracted. The samples were tested for the FCGR3a polymorphism using real-time polymerase chain reaction (PCR) followed by melt curve analysis or by a standard TaqMan allelic discrimination assay using the ABI 7500 FAST real-time PCR instrument. With the TaqMan allelic discrimination assay, we found that 16 cases were the wild type genotype, homozygous phenylalanine (F/F), for the FCGR3a receptor, whereas two cases had the homozygous valine (V/V) polymorphism and eight cases were heterozygous with a V/F genotype. Results with the real-time PCR followed by melt curve analysis were similar for 25 cases; however, four samples did not have sufficient DNA for the melt curve analysis method, and the result from one sample was discordant. The new TaqMan assay offers several advantages over previously published assays, such as faster turnaround time and ease of interpretation. These performance characteristics make it highly suitable for use in a clinical laboratory.
Collapse
Affiliation(s)
- Paul R Burchard
- Department of Pathology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | |
Collapse
|
206
|
Yang Q, Zhang Y, Chen J, Zhou Y, Li N, Qin Y, Yang M, Xia P, Cui B. Ligation of porcine Fc gamma receptor I inhibits levels of antiviral cytokine in response to PRRSV infection in vitro. Virus Res 2013; 173:421-5. [DOI: 10.1016/j.virusres.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
|
207
|
Nys J, Smulski CR, Tardivel A, Willen L, Kowalczyk C, Donzé O, Huard B, Hess H, Schneider P. No evidence that soluble TACI induces signalling via membrane-expressed BAFF and APRIL in myeloid cells. PLoS One 2013; 8:e61350. [PMID: 23620746 PMCID: PMC3631189 DOI: 10.1371/journal.pone.0061350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called “reverse signalling”. In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.
Collapse
Affiliation(s)
- Josquin Nys
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Aubry Tardivel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | - Bertrand Huard
- Department of Patho-Immunology, Medical University Centre, Geneva, Switzerland
- Division of Hematology, Geneva University Hospital, Geneva, Switzerland
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
208
|
Pillai K, Akhter J, Chua TC, Morris DL. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Invest 2013; 31:241-50. [PMID: 23570457 DOI: 10.3109/07357907.2013.784777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bromelain is a mixture of proteolytic enzymes that is capable of hydrolyzing glycosidic linkages in glycoprotein. Glycoprotein's are ubiquitously distributed throughout the body and serve a variety of physiologic functions. Faulty glycosylation of proteins may lead to cancer. Antitumor properties of bromelain have been demonstrated in both, in vitro and in vivo studies, along with scanty anecdotal human studies. Various mechanistic pathways have been proposed to explain the anticancer properties of bromelain. However, proteolysis by bromelain has been suggested as a main pathway by some researchers. MUC1 is a glycoprotein that provides tumor cells with invasive, metastatic, and chemo-resistant properties. To date, there is no study that examines the effect of bromelain on MUC1. However, the viability of MUC1 expressing pancreatic and breast cancer cells are adversely affected by bromelain. Further, the efficacy of cisplatin and 5-FU are enhanced by adjuvant treatment with bromelain, indicating that the barrier function of MUC1 may be affected. Other studies have also indicated that there is a greater accumulation of 5-FU in the cell compartment on treatment with 5-FU and bromelain. Malignant peritoneal mesothelioma (MPM) expresses MUC1 and initial studies have shown that the viability of MPM cells is adversely affected by exposure to bromelain. Further, bromelain in combination with either 5-FU or cisplatin, the efficacy of the chemotherapeutic drug is enhanced. Hence, current evidence indicates that bromelain may have the potential of being developed into an effective anticancer agent for MPM.
Collapse
Affiliation(s)
- Krishna Pillai
- Department of Surgery, University of New South Wales, St. George Hospital, Kogarah, NSW, Australia
| | | | | | | |
Collapse
|
209
|
Zhang Y, Ding Y, Huang Y, Zhang C, Boquan J, Ran Z. Expression of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) on osteoclasts and its potential role in rheumatoid arthritis. Clinics (Sao Paulo) 2013; 68:475-81. [PMID: 23778340 PMCID: PMC3634951 DOI: 10.6061/clinics/2013(04)07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Leukocyte-associated immunoglobulin-like receptor-1 is an inhibitory receptor primarily expressed by immune cells. This study was undertaken to define the role of this molecule in osteoclast differentiation and rheumatoid arthritis. METHODS In vitro osteoclast assays were performed to characterize the role of Leukocyte-associated immunoglobulin-like receptor-1 in murine and human osteoclastogenesis. Human Leukocyte-associated immunoglobulin-like receptor-1 expression was assessed by immunohistochemistry staining in the synovium of patients with rheumatoid arthritis. The levels of soluble Human Leukocyte-associated immunoglobulin-like receptor-1 were determined by enzyme-linked immunosorbent assay. RESULTS We found that multinucleated osteoclast formation from mouse bone marrow cells was inhibited by treatment with a monoclonal antibody against mouse Leukocyte-associated immunoglobulin-like receptor-1 in vitro. By immunohistochemistry, we found that Leukocyte-associated immunoglobulin-like receptor-1 was mainly expressed by macrophages in the inflamed synovial tissue of rheumatoid arthritis patients. In addition, serum and synovial fluid levels of soluble Leukocyte-associated immunoglobulin-like receptor-1 were higher in rheumatoid arthritis patients compared to healthy controls or osteoarthritis patients. Moreover, overexpression of Leukocyte-associated immunoglobulin-like receptor-1 in CD14+ monocytes from healthy volunteers also inhibited human osteoclastogenesis. CONCLUSION Collectively, these data demonstrate for the first time that Leukocyte-associated immunoglobulin-like receptor-1 inhibits osteoclastogenesis. Therefore, these results may have therapeutic implications for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
210
|
Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4315-23. [PMID: 23509345 DOI: 10.4049/jimmunol.1200501] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IgG molecules are widely used as therapeutic agents either in the form of intact Abs or as Fc fusion proteins. Although efficient binding of the IgG Fc fragment to cellular FcγRs may be essential to achieve a high cytolytic activity, it may be advantageous for other applications to limit or abolish this interaction. Genetic or biochemical approaches have been used to generate these non-FcγR-binding IgG variants. By using soluble versions of FcγRs and monomeric versions of these altered IgG molecules, it was demonstrated that these IgG variants no longer bind to FcγRs. Importantly, however, these assays do not reflect the physiologic interaction of IgG with low-affinity cellular FcγRs occurring in the form of multimeric immune complexes. In this study, we investigated how the size of an immune complex can affect the interaction of normal and various versions of potentially non-FcγR-binding IgG variants with cellular FcγRs. We show that neither the D265A mutation nor EndoS treatment resulting in IgG molecules with only one N-acetylglucosamine and a fucose residue was fully able to abolish the interaction of all IgG subclasses with cellular FcγRs, suggesting that IgG subclass-specific strategies are essential to fully interfere with human FcγR binding.
Collapse
Affiliation(s)
- Anja Lux
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
211
|
Karsten CM, Köhl J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 2013; 217:1067-79. [PMID: 22964232 DOI: 10.1016/j.imbio.2012.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/19/2023]
Abstract
Immunoglobulin G (IgG)-mediated activation of complement and IgG Fc receptors (FcγRs) are important defense mechanisms of the innate immune system to ward off infections. However, the same mechanisms can drive severe and harmful inflammation, when IgG antibodies react with self-antigens in solution or tissues, as described for several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and immune vasculitis. More specifically, IgG immune complexes (ICs) can activate all three pathways of the complement system resulting in the generation of C3 and C5 cleavage products that can activate a panel of different complement receptors on innate and adaptive immune cells. Importantly, complement and FcγRs are often co-expressed on inflammatory immune cells such as neutrophils, monocytes, macrophages or dendritic cells and act in concert to mediate the inflammatory response in autoimmune diseases. In this context, the cross-talk between the receptor for the anaphylatoxin C5a, i.e. C5ar1 (CD88) and FcγRs is of major importance. Recent data suggest a model of bidirectional regulation, in which CD88 acts upstream of FcγRs and sets the threshold for FcγR-dependent effector responses by regulating the ratio between activating and inhibitory FcγRs. Vice versa, FcγR ligation can either amplify or block C5aR-mediated effector functions, depending on whether IgG IC aggregate activating or inhibitory FcγRs. Further, complement and FcγRs cooperate on B cells and on follicular dendritic cells to regulate the development of autoreactive B cells, their differentiation into plasma cells and, eventually, the production of autoantibodies. Here, we will give an update on recent findings regarding this complex regulatory network between complement and FcγRs, which may also regulate the inflammatory response in allergy, cancer and infection.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | | |
Collapse
|
212
|
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013; 13:176-89. [PMID: 23411799 DOI: 10.1038/nri3401] [Citation(s) in RCA: 586] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intravenous immunoglobulin (IVIG) preparations comprise pooled IgG antibodies from the serum of thousands of donors and were initially used as an IgG replacement therapy in immunocompromised patients. Since the discovery, more than 30 years ago, that IVIG therapy can ameliorate immune thrombocytopenia, the use of IVIG preparations has been extended to a wide range of autoimmune and inflammatory diseases. Despite the broad efficacy of IVIG therapy, its modes of action remain unclear. In this Review, we cover the recent insights into the molecular and cellular pathways that are involved in IVIG-mediated immunosuppression, with a particular focus on IVIG as a therapy for IgG-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Inessa Schwab
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| | | |
Collapse
|
213
|
Silwal P, Lee MN, Lee CJ, Hong JH, Namgung U, Lee ZW, Kim J, Lim K, Kweon GR, Park JI, Park SK. Dexamethasone Induces FcγRIIb Expression in RBL-2H3 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:393-8. [PMID: 23269901 PMCID: PMC3526743 DOI: 10.4196/kjpp.2012.16.6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/17/2012] [Accepted: 11/10/2012] [Indexed: 11/18/2022]
Abstract
Mast cells are involved in allergic responses, protection against pathogens and autoimmune diseases. Dexamethasone (Dex) and other glucocorticoids suppress FcεRI-mediated release of inflammatory mediators from mast cells. The inhibition mechanisms were mainly investigated on the downstream signaling of Fc receptor activations. Here, we addressed the effects of Dex on Fc receptor expressions in rat mast cell line RBL-2H3. We measured mRNA levels of Fc receptors by real-time PCR. As expected, Dex decreased the mRNA levels of activating Fc receptor for IgE (FcεR) I and increased the mRNA levels of the inhibitory Fc receptor for IgG FcγRIIb. Interestingly, Dex stimulated transcriptions of other activating receptors such as Fc receptors for IgG (FcγR) I and FcγRIII. To investigate the mechanisms underlying transcriptional regulation, we employed a transcription inhibitor actinomycin D and a translation inhibitor cycloheximide. The inhibition of protein synthesis without Dex treatment enhanced FcγRI and FcγRIII mRNA levels potently, while FcεRI and FcγRIIb were minimally affected. Next, we examined expressions of the Fc receptors on cell surfaces by the flow cytometric method. Only FcγRIIb protein expression was significantly enhanced by Dex treatment, while FcγRI, FcγRIII and FcεRI expression levels were marginally changed. Our data showed, for the first time, that Dex regulates Fc receptor expressions resulting in augmentation of the inhibitory receptor FcγRIIb.
Collapse
Affiliation(s)
- Prashanta Silwal
- Research Institute for Medical Sciences and Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Montaudouin C, Anson M, Hao Y, Duncker SV, Fernandez T, Gaudin E, Ehrenstein M, Kerr WG, Colle JH, Bruhns P, Daëron M, Freitas AA. Quorum sensing contributes to activated IgM-secreting B cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2012; 190:106-14. [PMID: 23209322 DOI: 10.4049/jimmunol.1200907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maintenance of plasma IgM levels is critical for immune system function and homeostasis in humans and mice. However, the mechanisms that control homeostasis of the activated IgM-secreting B cells are unknown. After adoptive transfer into immune-deficient hosts, B lymphocytes expand poorly, but fully reconstitute the pool of natural IgM-secreting cells and circulating IgM levels. By using sequential cell transfers and B cell populations from several mutant mice, we were able to identify novel mechanisms regulating the size of the IgM-secreting B cell pool. Contrary to previous mechanisms described regulating homeostasis, which involve competition for the same niche by cells having overlapping survival requirements, homeostasis of the innate IgM-secreting B cell pool is also achieved when B cell populations are able to monitor the number of activated B cells by detecting their secreted products. Notably, B cell populations are able to assess the density of activated B cells by sensing their secreted IgG. This process involves the FcγRIIB, a low-affinity IgG receptor that is expressed on B cells and acts as a negative regulator of B cell activation, and its intracellular effector the inositol phosphatase SHIP. As a result of the engagement of this inhibitory pathway, the number of activated IgM-secreting B cells is kept under control. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled B cell activation and autoimmunity.
Collapse
Affiliation(s)
- Caroline Montaudouin
- Unité de Biologie des Populations Lymphocytaires, Départment d'Immunologie, Institut Pasteur, Paris 75015, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
|
216
|
Genetics of SLE: functional relevance for monocytes/macrophages in disease. Clin Dev Immunol 2012; 2012:582352. [PMID: 23227085 PMCID: PMC3511832 DOI: 10.1155/2012/582352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/24/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Genetic studies in the last 5 years have greatly facilitated our understanding of how the dysregulation of diverse components of the innate immune system contributes to pathophysiology of SLE. A role for macrophages in the pathogenesis of SLE was first proposed as early as the 1980s following the discovery that SLE macrophages were defective in their ability to clear apoptotic cell debris, thus prolonging exposure of potential autoantigens to the adaptive immune response. More recently, there is an emerging appreciation of the contribution both monocytes and macrophages play in orchestrating immune responses with perturbations in their activation or regulation leading to immune dysregulation. This paper will focus on understanding the relevance of genes identified as being associated with innate immune function of monocytes and macrophages and development of SLE, particularly with respect to their role in (1) immune complex (IC) recognition and clearance, (2) nucleic acid recognition via toll-like receptors (TLRs) and downstream signalling, and (3) interferon signalling. Particular attention will be paid to the functional consequences these genetic associations have for disease susceptibility or pathogenesis.
Collapse
|
217
|
Herda LR, Felix SB, Boege F. Drug-like actions of autoantibodies against receptors of the autonomous nervous system and their impact on human heart function. Br J Pharmacol 2012; 166:847-57. [PMID: 22220626 PMCID: PMC3412294 DOI: 10.1111/j.1476-5381.2012.01828.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies against cholinergic and adrenergic receptors (adrenoceptors) are frequent in serum of patients with chronic heart failure. Their prevalence is associated with Chagas' disease, idiopathic dilated cardiomyopathy (DCM), and ischaemic heart disease. Among the epitopes targeted are first and second extracellular loops of the β-adrenergic (β-adrenoceptor) and M2 muscarinic receptor. β1-adrenoceptor autoantibodies affect radioligand binding and cardiomyocyte function similar to agonists. Corresponding rodent immunizations induce symptoms compatible with chronic heart failure that are reversible upon removal of the antibodies, transferable via the serum and abrogated by adrenergic antagonists. In DCM patients, prevalence and stimulatory efficacy of β1-adrenoceptor autoantibodies are correlated to the decline in cardiac function, ventricular arrhythmia and higher incidence of cardiac death. In conclusion, such autoantibodies seem to cause or promote chronic human left ventricular dysfunction by acting on their receptor targets in a drug-like fashion. However, the pharmacology of this interaction is poorly understood. It is unclear how the autoantibodies trigger changes in receptor activity and second messenger coupling and how that is related to the pathogenesis and severity of the associated diseases. Here, we summarize the available evidence regarding these issues and discuss these findings in the light of recent knowledge about the conformational activation of the human β2-adrenoceptor and the properties of bona fide cardiopathogenic autoantibodies derived from immune-adsorption therapy of DCM patients. These considerations might contribute to the conception of therapy regimen aimed at counteracting or neutralizing cardiopathogenic receptor autoantibodies.
Collapse
Affiliation(s)
- L R Herda
- Department of Internal Medicine B, University of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
218
|
Association of Fcγ receptor IIIa genotype with the rate of HIV infection after gp120 vaccination. Blood 2012; 120:2836-42. [PMID: 22915639 DOI: 10.1182/blood-2012-05-431361] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We determined whether polymorphisms in Fcγ receptor (FcγR) IIa or FcγRIIIa genes were associated with outcomes in Vax004, a trial testing recombinant gp120 vaccination in preventing sexually acquired HIV infection. Male subjects (n = 1725), including infected and uninfected vaccinees and placebo recipients, were genotyped. We observed no association between FcγRIIa genotype and infection rate in vaccinees or placebo recipients. However, FcγRIIIa genotype was associated with infection rate among vaccinees (P = .035). Exploratory analyses revealed that vaccinees homozygous for the FcγRIIIa V allele in the lowest behavioral risk group had a greater rate of infection than low risk vaccinees with at least 1 F allele (hazard ratio [HR] = 3.52; P = .002). No such association was seen among vaccinees with high-risk behaviors or among placebo recipients in either risk stratum. Vaccinated low-risk VV subjects had a greater infection rate than low-risk VV placebo recipients (HR = 4.51; P = .17) or low-risk placebo recipients with any genotype (HR = 4.72; P = .002). Moreover, low-risk VV vaccinees had infection rates similar to individuals with high behavioral risk, irrespective of genotype. Our results generate the hypothesis that recombinant gp120 vaccine may have increased the likelihood of acquiring HIV infection in individuals with the VV genotype (present in ~ 10% of the population) at low behavioral risk of infection.
Collapse
|
219
|
Geng H, Nandakumar KS, Pramhed A, Aspberg A, Mattsson R, Holmdahl R. Cartilage oligomeric matrix protein specific antibodies are pathogenic. Arthritis Res Ther 2012; 14:R191. [PMID: 22906101 PMCID: PMC3580587 DOI: 10.1186/ar4022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP-specific monoclonal antibodies (mAbs). Methods B cell immunodominant regions on the COMP molecule were measured with a novel enzyme-linked immunosorbent assay using mammalian expressed full-length mouse COMP as well as a panel of recombinant mouse COMP fragments. 18 mAbs specific to COMP were generated and the pathogenicity of mAbs was investigated by passive transfer experiments. Results B cell immunodominant epitopes were localized within 4 antigenic domains of the COMP but with preferential response to the epidermal growth factor (EGF)-like domain. Some of our anti-COMP mAbs showed interactions with the native form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis in naive mice. Conclusions We have identified the specificities of mAbs to COMP and their contribution to the development of arthritis. These findings will further improve our understanding of the autoantibody mediated immunopathologies occurring widely in rheumatoid arthritis (RA), as well as in other autoimmune disorders.
Collapse
|
220
|
Zhang Y, Zhou Y, Yang Q, Mu C, Duan E, Chen J, Yang M, Xia P, Cui B. Ligation of Fc gamma receptor IIB enhances levels of antiviral cytokine in response to PRRSV infection in vitro. Vet Microbiol 2012; 160:473-80. [PMID: 22771209 DOI: 10.1016/j.vetmic.2012.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
PRRSV infection ADE facilitates the attachment and internalization of the virus onto its host cells, such as monocytes and macrophages, through Fc receptor-mediated endocytosis. FcγRIIB is the only inhibitory receptor with a tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, where counters the "ITAM triggered" activation signals and down-regulates phagocytosis. However, porcine FcγRIIB's role in the antiviral immune response to PRRSV infection has not been studied. In this study, our results indicated that selective activation of porcine FcγRIIB in PAM cells up-regulated significantly mRNA levels of IFN-α and TNF-α at any time point post-pretreatment, suggesting that porcine FcγRIIB signal can enhance the innate antiviral response of host cells. PRRSV infection assay mediated by FcγRIIB indicated that selective activation of porcine FcγRIIB in PAM cells enhanced mRNA levels of antiviral cytokine (IFN-α and TNF-α) and repressed mRNA levels of IL-10 in response to PRRSV infection, suggesting that FcγRIIB ligation can enhance the antiviral immune response to PRRSV infection. In addition, FcγRIIB ligation to infection indicated that PRRSV replication in PAM was not positive correlation with increasing of IFN-α mRNA levels and decreasing of IL-10 mRNA levels, suggesting that there is complex viral replication mechanism in immune cells such as PAM for PRRSV.
Collapse
Affiliation(s)
- Yina Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Szarka E, Neer Z, Balogh P, Adori M, Angyal A, Prechl J, Kiss E, Kövesdi D, Sármay G. Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production. Biologics 2012; 6:101-15. [PMID: 22532778 PMCID: PMC3333823 DOI: 10.2147/btt.s29749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antibodies specific for bovine type II collagen (CII) and Fcγ receptors play a major role in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA) and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv) fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2). These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro-inflammatory cytokines. Taken together, these results suggest that the in vivo emerging immune complexes formed with autoantigen(s) may trigger the IL-12/23 dependent pathways, escalating the inflammation in RA. Thus blockade of these cytokines may be beneficial to downregulate immune complex-induced inflammation in autoimmune arthritis.
Collapse
Affiliation(s)
- Eszter Szarka
- Department of Immunology, Eötvös Loránd University, 1117 Budapest
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Mann MK, Ray A, Basu S, Karp CL, Dittel BN. Pathogenic and regulatory roles for B cells in experimental autoimmune encephalomyelitis. Autoimmunity 2012; 45:388-99. [PMID: 22443691 DOI: 10.3109/08916934.2012.665523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A dual role of B cells in experimental autoimmune encephalomyelitis (EAE), the animal model of the human autoimmune disease multiple sclerosis (MS), has been established. In the first role, B cells contribute to the pathogenesis of EAE through the production of anti-myelin antibodies that contribute to demyelination. On the contrary, B cells have also been shown to have protective functions in that they play an essential role in the spontaneous recovery from EAE. In this review, we summarize studies conducted in a number of species demonstrating the conditions under which B cells are pathogenic in EAE. We also discuss the phenotype and anti-inflammatory mechanisms of regulatory B cells.
Collapse
Affiliation(s)
- Monica K Mann
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201-2178, USA
| | | | | | | | | |
Collapse
|
223
|
Sakabe I, Asai A, Iijima J, Maruyama M. Age-related guanine nucleotide exchange factor, mouse Zizimin2, induces filopodia in bone marrow-derived dendritic cells. IMMUNITY & AGEING 2012; 9:2. [PMID: 22494997 PMCID: PMC3359169 DOI: 10.1186/1742-4933-9-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/11/2012] [Indexed: 01/10/2023]
Abstract
Background We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cells after immunization with T-cell-dependent antigen. Zizimin2 was revealed to be a new family member of Dock (dedicator of cytokinesis), Dock11, which is the guanine nucleotide exchange factor for Cdc42, a low-molecular-weight GTPase. However, the molecular function of Zizimin2 in acquired immunity has not been elucidated. Results In this study, we show that the protein expression of Zizimin2, which is also restricted to lymphoid tissues and lymphocytes, is reduced in aged mice. Over-expression of full-length Zizimin2 induced filopodial formation in 293T cells, whereas expression of CZH2 domain inhibited it. Stimulation of Fcγ receptor and Toll-like receptor 4 triggered Zizimin2 up-regulation and Cdc42 activation in bone marrow-derived dendritic cells. Conclusions These data suggest that Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration.
Collapse
Affiliation(s)
- Isamu Sakabe
- Department of Mechanism of Aging, Research Institute - National Center for Geriatrics and Gerontology, 35, Gengo, Morioka-Machi, Obu-city, Aichi 474-8511, Japan.
| | | | | | | |
Collapse
|
224
|
Böhm S, Schwab I, Lux A, Nimmerjahn F. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 2012; 34:443-53. [PMID: 22437760 DOI: 10.1007/s00281-012-0308-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/05/2012] [Indexed: 12/24/2022]
Abstract
Immunoglobulin G (IgG) molecules can have two completely opposing activities. They can be very potent pro-inflammatory mediators on the one hand, directing the effector functions of the innate immune system towards infected cells, tumor cells or healthy tissues in the case of autoimmune diseases. On the other hand, a mixture of IgG molecules purified from the blood of ten thousands of healthy donors is used as an anti-inflammatory treatment for many autoimmune diseases since several decades. It has become evident only recently that certain residues in the sugar moiety attached to the IgG constant fragment can dramatically alter the pro- and anti-inflammatory activities of IgG. This review will focus on sialic acid residues as a modulator of the anti-inflammatory activity and provide an overview of situations where serum IgG glycosylation and sialylation is altered and which molecular and cellular pathways may be involved in this immunomodulatory pathway.
Collapse
Affiliation(s)
- Sybille Böhm
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
225
|
Chauhan AK, Moore TL. Immune complexes and late complement proteins trigger activation of Syk tyrosine kinase in human CD4(+) T cells. Clin Exp Immunol 2012; 167:235-45. [PMID: 22235999 DOI: 10.1111/j.1365-2249.2011.04505.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In systemic lupus erythematosus (SLE), the autoantibodies that form immune complexes (ICs) trigger activation of the complement system. This results in the formation of membrane attack complex (MAC) on cell membrane and the soluble terminal complement complex (TCC). Hyperactive T cell responses are hallmark of SLE pathogenesis. How complement activation influences the T cell responses in SLE is not fully understood. We observed that aggregated human γ-globulin (AHG) bound to a subset of CD4(+) T cells in peripheral blood mononuclear cells and this population increased in the SLE patients. Human naive CD4(+) T cells, when treated with purified ICs and TCC, triggered recruitment of the FcRγ chain with the membrane receptor and co-localized with phosphorylated Syk. These events were also associated with aggregation of membrane rafts. Thus, results presented suggest a role for ICs and complement in the activation of Syk in CD4(+) T cells. Thus, we propose that the shift in signalling from ζ-chain-ZAP70 to FcRγ chain-Syk observed in T cells of SLE patients is triggered by ICs and complement. These results demonstrate a link among ICs, complement activation and phosphorylation of Syk in CD4(+) T cells.
Collapse
Affiliation(s)
- A K Chauhan
- Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
226
|
The possible role of genetic variants in autoimmune-related genes in the development of endometriosis. Hum Immunol 2012; 73:306-15. [DOI: 10.1016/j.humimm.2011.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/21/2011] [Accepted: 12/06/2011] [Indexed: 11/18/2022]
|
227
|
Hampe CS. Protective role of anti-idiotypic antibodies in autoimmunity--lessons for type 1 diabetes. Autoimmunity 2012; 45:320-31. [PMID: 22288464 DOI: 10.3109/08916934.2012.659299] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Circulating autoantibodies to beta cell antigens are present in the majority of patients with Type 1 diabetes. These autoantibodies can be detected before and at time of clinical diagnosis of disease. Although the role of autoantibodies in the pathogenesis of the disease is debated, their presence indicates a dysregulation of the humoral immune response. Mechanisms regulating autoantibodies in Type 1 diabetes are not well understood. In contrast, in other autoimmune diseases there is acceptance that autoantibodies are regulated not only by antigen but also by other antibodies that bind to the antigen-binding site of these autoantibodies (anti-idiotypic antibodies). The proposed purpose of this network is to maintain an equilibrium between autoantibodies and their anti-idiotypic antibodies, preventing autoimmunity, while allowing a robust response to exogenous antigen. Anti-idiotypic antibodies regulate both autoantibody binding and their levels by a) neutralizing autoantibodies, and b) inhibiting the secretion of autoantibodies. Because it has been proposed that the B lymphocytes that produce autoantibodies function as autoantigen presenting cells, inhibiting their binding to autoantigen by anti-idiotypic antibodies may prevent development of autoimmune disease. This hypothesis is supported by the presence of anti-idiotypic antibodies in healthy individuals and in patients in remission from autoimmune diseases, and by the lack of anti-idiotypic antibodies during active disease. We recently reported the presence of autoantibodies to glutamate decarboxylase in the majority of healthy individuals, where their binding to autoantigen is prevented by anti-idiotypic antibodies. These anti-idiotypic antibodies are absent at clinical diagnosis of Type 1 diabetes, revealing the presence of autoantibodies. Type 1 diabetes (T1D) is an autoimmune disease characterized by the dysfunction and destruction of insulin-producing beta cells by autoreactive T cells. Although much progress has been made towards understanding the respective roles of effector and regulatory T cells in this beta cell destruction, the development of autoantibodies to beta cell proteins is widely considered simply a by-product of the autoimmune destruction of the beta cells, rather than having an active role in the pathogenesis. This view is starting to change based on increasing recognition that autoantibodies can have defined roles in other autoimmune diseases, and the emergence of new data on their role in T1D. This exploration of the role of autoantibodies in autoimmune disease has been spurred, in part, by increasing recognition that development of autoimmune diseases is influenced by regulatory antibodies (anti-idiotypic antibodies) directed against the unique binding site of autoantibodies. This review provides an overview of the development and function of these anti-idiotypic antibodies, and present evidence supporting their role in the development of autoimmune diseases. Finally, we conclude this review with a model of the events that may cause loss of anti-idiotypic antibodies and the implications for the development of T1D.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
228
|
Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, Suzumura A. Immunoglobulin G(1) immune complex upregulates interferon-γ-induced nitric oxide production via ERK1/2 activation in murine microglia. J Neuroimmunol 2012; 244:57-62. [PMID: 22306300 DOI: 10.1016/j.jneuroim.2012.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 01/05/2023]
Abstract
Intrathecal Immunoglobulin G (IgG) is elevated in some central nervous system (CNS) diseases and microglia upregulate Fcγ receptors in various neurological disorders. However, the interaction between IgG or IgG immune complexes and microglial Fcγ receptors is not fully understood. In this study, the effect of IgG(1) immune complexes on microglia was investigated. IgG(1) immune complexes increased nitric oxide production in murine microglia in the presence of interferon (IFN)-γ. These effects were dependent upon IgG(1) immune complex-induced activation of spleen tyrosine kinase with subsequent activation of extracellular signal regulated kinase1/2. Collectively, these results indicate that IgG(1) immune complexes can exert immunomodulatory effects in various central nervous system disorders.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Machino Y, Suzuki E, Higurashi S, Ohta H, Suzuki M, Kohroki J, Masuho Y. Chemically dimerized intravenous immunoglobulin has potent ameliorating activity in a mouse immune thrombocytopenic purpura model. Biochem Biophys Res Commun 2012; 418:748-53. [DOI: 10.1016/j.bbrc.2012.01.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 01/21/2023]
|
230
|
Hatayama K, Asaoka Y, Hoya M, Ide T. Effective expression of soluble aglycosylated recombinant human Fcγ receptor I by low translational efficiency in Escherichia coli. Appl Microbiol Biotechnol 2012; 94:1051-9. [DOI: 10.1007/s00253-012-3902-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 01/28/2023]
|
231
|
Garbe J, Collin M. Bacterial hydrolysis of host glycoproteins - powerful protein modification and efficient nutrient acquisition. J Innate Immun 2012; 4:121-31. [PMID: 22222876 DOI: 10.1159/000334775] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022] Open
Abstract
Glycoproteins are ubiquitous in nature and fundamental to most biological processes, including the human immune system. The glycoprotein carbohydrate moieties, or glycans, are very diverse in their structure and composition, and have major effects on the chemical, physical and biological properties of these glycoproteins. The hydrolysis of glycoprotein glycans by bacterial glycosidases can have dramatic effects on glycoprotein function and, thereby, be beneficial for the bacteria in different ways. This review gives an introduction to the expanding field of extracellular glycosidases from bacterial pathogens with activity on host glycoproteins, describes some known and proposed consequences for the host and the bacteria and discusses some evolutionary and regulatory aspects of bacterial glycosidases.
Collapse
Affiliation(s)
- Julia Garbe
- Department of Clinical Sciences, Division of Infection Medicine, Lund University Biomedical Center B14, Lund, Sweden. julia.garbe @ med.lu.se
| | | |
Collapse
|
232
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
233
|
Higurashi S, Machino Y, Suzuki E, Suzuki M, Kohroki J, Masuho Y. Both the Fab and Fc domains of IgG are essential for ROS emission from TNF-α-primed neutrophils by IVIG. Biochem Biophys Res Commun 2012; 417:794-9. [DOI: 10.1016/j.bbrc.2011.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/25/2023]
|
234
|
Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 2012; 27:79-92. [PMID: 21987375 PMCID: PMC3304467 DOI: 10.1002/jbmr.531] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 11/06/2022]
Abstract
Osteoclasts (OC) are bone-resorbing, multinucleated cells that are generated via fusion of OC precursors (OCP). The frequency of OCP is elevated in patients with erosive inflammatory arthritis and metabolic bone diseases. Although many cytokines and cell surface receptors are known to participate in osteoclastogenesis, the molecular mechanisms underlying the regulation of this cellular transformation are poorly understood. Herein, we focused our studies on the dendritic cell-specific transmembrane protein (DC-STAMP), a seven-pass transmembrane receptor-like protein known to be essential for cell-to-cell fusion during osteoclastogenesis. We identified an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic tail of DC-STAMP, and developed an anti-DC-STAMP monoclonal antibody 1A2 that detected DC-STAMP expression on human tumor giant cells, blocked OC formation in vitro, and distinguished four patterns of human PBMC with a positive correlation to OC potential. In freshly isolated monocytes, DC-STAMP(high) cells produced a higher number of OC in culture than DC-STAMP(low) cells and the surface expression of DC-STAMP gradually declined during osteoclastogenesis. Importantly, we showed that DC-STAMP is phosphorylated on its tyrosine residues and physically interacts with SHP-1 and CD16, an SH2-domain-containing tyrosine phosphatase and an ITAM-associated protein, respectively. Taken together, these data show that DC-STAMP is a potential OCP biomarker in inflammatory arthritis. Moreover, in addition to its effect on cell fusion, DC-STAMP dynamically regulates cell signaling during osteoclastogenesis.
Collapse
Affiliation(s)
- Ya-Hui Chiu
- Allergy/Immunology & Rheumatology Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Santer DM, Wiedeman AE, Teal TH, Ghosh P, Elkon KB. Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes. THE JOURNAL OF IMMUNOLOGY 2011; 188:902-15. [PMID: 22147767 DOI: 10.4049/jimmunol.1102797] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE). Yet, it remains unclear what the dominant blood cell type(s) and inflammation-related gene programs stimulated by lupus ICs are. To address these questions, we exposed normal human PBMCs or CD14(+) isolated monocytes to SLE ICs in the presence or absence of C1q and performed microarray analysis and other tests for cell activation. By microarray analysis, we identified genes and pathways regulated by SLE ICs that are both type I IFN dependent and independent. We also found that C1q-containing ICs markedly reduced expression of the majority of IFN-response genes and also influenced the expression of multiple other genes induced by SLE ICs. Surprisingly, IC activation of isolated CD14(+) monocytes did not upregulate CD40 and CD86 and only modestly stimulated inflammatory gene expression. However, when monocyte subsets were purified and analyzed separately, the low-abundance CD14(dim) ("patrolling") subpopulation was more responsive to ICs. These observations demonstrate the importance of plasmacytoid dendritic cells, CD14(dim) monocytes, and C1q as key regulators of inflammatory properties of ICs and identify many pathways through which they act.
Collapse
Affiliation(s)
- Deanna M Santer
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
236
|
Monocyte Subsets Responsible for Immunoglobulin G-Dependent Effector Functions In Vivo. Immunity 2011; 35:932-44. [DOI: 10.1016/j.immuni.2011.11.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2011] [Accepted: 11/07/2011] [Indexed: 12/24/2022]
|
237
|
Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, Wright VJ, Yeung RSM, Tan DEK, Sim KS, Wang JJ, Wong TY, Pang J, Mitchell P, Cimaz R, Dahdah N, Cheung YF, Huang GY, Yang W, Park IS, Lee JK, Wu JY, Levin M, Burns JC, Burgner D, Kuijpers TW, Hibberd ML. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 2011; 43:1241-6. [PMID: 22081228 DOI: 10.1038/ng.981] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/22/2011] [Indexed: 12/16/2022]
|
238
|
Fcγ receptor IIB (FcγRIIB) maintains humoral tolerance in the human immune system in vivo. Proc Natl Acad Sci U S A 2011; 108:18772-7. [PMID: 22065769 DOI: 10.1073/pnas.1111810108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of immunological tolerance is crucial to prevent development of autoimmune disease. The production of autoantibodies is a hallmark of many autoimmune diseases and studies in mouse model systems suggest that inhibitory signaling molecules may be important checkpoints of humoral tolerance. By generating humanized mice with normal and functionally impaired Fcγ receptor IIB (FcγRIIB) variants, we show that the inhibitory Fcγ-receptor is a checkpoint of humoral tolerance in the human immune system in vivo. Impaired human FcγRIIB function resulted in the generation of higher levels of serum immunoglobulins, the production of different autoantibody specificities, and a higher proportion of human plasmablasts and plasma cells in vivo. Our results suggest that the inhibitory FcγRIIB may be an important checkpoint of humoral tolerance in the human immune system.
Collapse
|
239
|
Gragnani L, Piluso A, Giannini C, Caini P, Fognani E, Monti M, Petrarca A, Ranieri J, Razzolini G, Froio V, Laffi G, Zignego AL. Genetic determinants in hepatitis C virus-associated mixed cryoglobulinemia: role of polymorphic variants of BAFF promoter and Fcγ receptors. ACTA ACUST UNITED AC 2011; 63:1446-51. [PMID: 21538321 DOI: 10.1002/art.30274] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mixed cryoglobulinemia (MC) is a hepatitis C virus (HCV)-related immune complex disorder. Only some HCV-infected patients develop MC, which suggests that the genetic background of the host plays a key role. This study was undertaken to evaluate the contribution of host genetic factors in the pathogenesis of HCV-associated MC (HCV-MC) by analyzing allelic variants of low-affinity Fcγ receptor (FcγR) genes and BAFF promoter. METHODS FcγR polymorphisms (FCGR2A 131 R/H, FCGR2B 232 I/T, FCGR3A 176 V/F, and FCGR3B NA1/NA2) and BAFF promoter polymorphism -871 C/T were analyzed in 102 patients with HCV-MC and 108 patients with HCV without MC, using polymerase chain reaction-based techniques. RESULTS A higher prevalence of -871 T/T homozygosity (31% versus 16%; P = 0.001) and a greater frequency of T alleles of the BAFF promoter (80% versus 57%; P = 0.004) were found in the HCV-MC group than in the HCV group. A significant increase in serum BAFF concentration was significantly associated with the higher frequency of the T allele in HCV-MC (mean ± SD 4.12 ± 1.29 versus 2.09 ± 0.81 ng/ml; P < 0.0005). The distribution of the FcγR genotypes was not significantly different. In the 21 HCV-MC patients treated with rituximab, the response was strictly related to F allele homozygosity (significantly reduced in 5 of 5 patients with the FCGR3A F/F genotype versus 4 of 16 with V/V or V/F; P < 0.0005). CONCLUSION These results indicate the importance of host genetic background in the development of HCV-MC, suggesting that mechanisms enhancing Ig production and B cell survival may play a relevant role. Genetic FcγR variants seem to be crucial to the effectiveness of rituximab therapy.
Collapse
Affiliation(s)
- Laura Gragnani
- Centre for Systemic Manifestations of Hepatitis Viruses and University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P, Robinson WH, Buggy JJ. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011; 13:R115. [PMID: 21752263 PMCID: PMC3239353 DOI: 10.1186/ar3400] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/01/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The aim was to determine the effect of the Bruton tyrosine kinase (Btk)-selective inhibitor PCI-32765, currently in Phase I/II studies in lymphoma trials, in arthritis and immune-complex (IC) based animal models and describe the underlying cellular mechanisms. METHODS PCI-32765 was administered in a series of murine IC disease models including collagen-induced arthritis (CIA), collagen antibody-induced arthritis (CAIA), reversed passive anaphylactic reaction (RPA), and passive cutaneous anaphylaxis (PCA). Clinical and pathologic features characteristic of each model were examined following treatment. PCI-32765 was then examined in assays using immune cells relevant to the pathogenesis of arthritis, and where Btk is thought to play a functional role. These included proliferation and calcium mobilization in B cells, cytokine and chemokine production in monocytes/macrophages, degranulation of mast cells and its subsequent cytokine/chemokine production. RESULTS PCI-32765 dose-dependently and potently reversed arthritic inflammation in a therapeutic CIA model with an ED(50) of 2.6 mg/kg/day. PCI-32765 also prevented clinical arthritis in CAIA models. In both models, infiltration of monocytes and macrophages into the synovium was completely inhibited and importantly, the bone and cartilage integrity of the joints were preserved. PCI-32765 reduced inflammation in the Arthus and PCA assays. In vitro, PCI-32765 inhibited BCR-activated primary B cell proliferation (IC(50) = 8 nM). Following FcγR stimulation, PCI-32765 inhibited TNFα, IL-1β and IL-6 production in primary monocytes (IC(50) = 2.6, 0.5, 3.9 nM, respectively). Following FcεRI stimulation of cultured human mast cells, PCI-32765 inhibited release of histamine, PGD(2), TNF-α, IL-8 and MCP-1. CONCLUSIONS PCI-32765 is efficacious in CIA, and in IC models that do not depend upon autoantibody production from B cells. Thus PCI-32765 targets not only B lymphocytes but also monocytes, macrophages and mast cells, which are important Btk-expressing effector cells in arthritis.
Collapse
Affiliation(s)
- Betty Y Chang
- Pharmacyclics, Inc, Research Department, Sunnyvale, CA 94085-4521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Zúñiga J, Buendía-Roldán I, Zhao Y, Jiménez L, Torres D, Romo J, Ramírez G, Cruz A, Vargas-Alarcon G, Sheu CC, Chen F, Su L, Tager AM, Pardo A, Selman M, Christiani DC. Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur Respir J 2011; 39:604-10. [PMID: 21737555 DOI: 10.1183/09031936.00020611] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The A/H1N1 influenza strain isolated in Mexico in 2009 caused severe pulmonary illness in a small number of exposed individuals. Our objective was to determine the influence of genetic factors on their susceptibility. We carried out a case-control association study genotyping 91 patients with confirmed severe pneumonia from A/H1N1 infection and 98 exposed but asymptomatic household contacts, using the HumanCVD BeadChip (Illumina, San Diego, CA, USA). Four risk single-nucleotide polymorphisms were significantly (p<0.0001) associated with severe pneumonia: rs1801274 (Fc fragment of immunoglobulin G, low-affinity IIA, receptor (FCGR2A) gene, chromosome 1; OR 2.68, 95% CI 1.69-4.25); rs9856661 (gene unknown, chromosome 3; OR 2.62, 95% CI 1.64-4.18); rs8070740 (RPA interacting protein (RPAIN) gene, chromosome 17; OR 2.67, 95% CI 1.63-4.39); and rs3786054 (complement component 1, q subcomponent binding protein (C1QBP) gene, chromosome 17; OR 3.13, 95% CI 1.89-5.17). All SNP associations remained significant after adjustment for sex and comorbidities. The SNPs on chromosome 17 were in linkage disequilibrium. These findings revealed that gene polymorphisms located in chromosomes 1 and 17 might influence susceptibility to development of severe pneumonia in A/H1N1 infection. Two of these SNPs are mapped within genes (FCGR2A, C1QBP) involved in the handling of immune complexes and complement activation, respectively, suggesting that these genes may confer risk due to increased activation of host immunity.
Collapse
Affiliation(s)
- J Zúñiga
- Instituto Nacional deEnfermedades Respiratorias IsmaelCosio Villegas, Universidad Nacional Autónoma de México, México City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Stasi R. Pathophysiology and therapeutic options in primary immune thrombocytopenia. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2011; 9:262-73. [PMID: 21251458 PMCID: PMC3136592 DOI: 10.2450/2010.0080-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/11/2010] [Indexed: 01/11/2023]
Affiliation(s)
- Roberto Stasi
- Department of Haematology, St George's Hospital, Blackshaw Road, London, United Kingdom.
| |
Collapse
|
243
|
Origin of the apical transcytic membrane system in jejunal absorptive cells of neonates. Med Mol Morphol 2011; 44:71-8. [PMID: 21717309 DOI: 10.1007/s00795-010-0506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 03/12/2010] [Indexed: 01/15/2023]
Abstract
We investigated the origin of the apical transcytic membrane system in jejunal absorptive cells of neonatal rats using light, electron, and immunofluorescence microscopy. In rats just after birth, intraluminally injected horseradish peroxidase (HRP), used as a macromolecular tracer, was observed only in the apical endocytic membrane system including the lysosomes, of jejunal absorptive cells in vivo. No tracer, however, was found in the intercellular space between the jejunal absorptive cells and the submucosa. Immunoreactive neonatal Fc receptor (FcRn) was localized in the perinuclear region of these absorptive cells whereas immunoglobulin G (IgG) was not found in these absorptive cells. In contrast, in rats 2 h after breast-feeding, intraluminally injected HRP was observed in the apical endocytic membrane system and in the apical transcytic membrane system of the absorptive cells. Moreover, HRP was found in the intercellular space between the jejunal absorptive cells and the submucosa. Furthermore, FcRn and IgG were widely distributed throughout the absorptive cells, and IgG was detected in both the intercellular space and the submucosa. These data suggest that initiation of breast-feeding induces the transportation of membrane-incorporated FcRn from its perinuclear localization to the apical plasma membrane domain. This transportation is achieved through the membrane system, which mediates apical receptor-mediated transcytosis via the trans-Golgi network. Subsequently, the apical plasma membrane containing the FcRn binds to maternal IgG, is endocytosed into the absorptive cells, and is transported to the basolateral membrane domain.
Collapse
|
244
|
Ahlqvist E, Ekman D, Lindvall T, Popovic M, Förster M, Hultqvist M, Klaczkowska D, Teneva I, Johannesson M, Flint J, Valdar W, Nandakumar KS, Holmdahl R. High-resolution mapping of a complex disease, a model for rheumatoid arthritis, using heterogeneous stock mice. Hum Mol Genet 2011; 20:3031-41. [PMID: 21565963 DOI: 10.1093/hmg/ddr206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Resolving the genetic basis of complex diseases like rheumatoid arthritis will require knowledge of the corresponding diseases in experimental animals to enable translational functional studies. Mapping of quantitative trait loci in mouse models of arthritis, such as collagen-induced arthritis (CIA), using F(2) crosses has been successful, but can resolve loci only to large chromosomal regions. Using an inbred-outbred cross design, we identified and fine-mapped CIA loci on a genome-wide scale. Heterogeneous stock mice were first intercrossed with an inbred strain, B10.Q, to introduce an arthritis permitting MHCII haplotype. Homozygous H2(q) mice were then selected to set up an F(3) generation with fixed major histocompatibility complex that was used for arthritis experiments. We identified 26 loci, 18 of which are novel, controlling arthritis traits such as incidence of disease, severity and time of onset and fine-mapped a number of previously mapped loci.
Collapse
Affiliation(s)
- Emma Ahlqvist
- Division of Medical Inflammation Research, Department of Medical Biochemistry, Biophysics Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Arita K, Endo S, Kaifu T, Kitaguchi K, Nakamura A, Ohmori H, Kohu K, Satake M, Takai T. Transcriptional Activation of thePirbGene in B Cells by PU.1 and Runx3. THE JOURNAL OF IMMUNOLOGY 2011; 186:7050-9. [DOI: 10.4049/jimmunol.1001302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
246
|
Neumann K, Oellerich T, Heine I, Urlaub H, Engelke M. Fc gamma receptor IIb modulates the molecular Grb2 interaction network in activated B cells. Cell Signal 2011; 23:893-900. [DOI: 10.1016/j.cellsig.2011.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/14/2011] [Indexed: 12/13/2022]
|
247
|
Ishikawa Y, Kobayashi K, Yamamoto M, Nakata K, Takagawa T, Funada Y, Kotani Y, Karasuyama H, Yoshida M, Nishimura Y. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells. Respir Res 2011; 12:42. [PMID: 21477339 PMCID: PMC3079623 DOI: 10.1186/1465-9921-12-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/10/2011] [Indexed: 12/12/2022] Open
Abstract
Background There have been few reports on the role of Fc receptors (FcRs) and immunoglobulin G (IgG) in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs) in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO) and C57BL/6 (WT) mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA). Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs) in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs) differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL). Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates allergic airway inflammation via FcγRIIB on DCs.
Collapse
Affiliation(s)
- Yumiko Ishikawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Nagashima H, Ootsubo M, Fukazawa M, Motoi S, Konakahara S, Masuho Y. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains. J Biosci Bioeng 2011; 111:391-6. [DOI: 10.1016/j.jbiosc.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/26/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
|
249
|
Amano H. [Fcγ receptor and systemic autoimmune disease]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2011; 34:1-7. [PMID: 21372507 DOI: 10.2177/jsci.34.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The systemic autoimmune disease such as systemic lupus erythematosus (SLE) is characterized by the deposition of immune complexes in multiple organs. Fcγ receptors (FcγR) recognize the Fc portion of IgG and are important in determining the response of leukocytes to deposited immune complexes. FcγR also provide positive and negative regulation of immune cell responses. The activatory FcγR including the FcR common γ chain take balance with Fcγ RIIB, the only inhibitory FcγR. Development of lupus-like autoimmune disease as well as monocytosis in BXSB mice is dependent on the activatory and inhibitory FcγR. In human SLE, dysregulated expression of FcγRIIB on memory B cells is reported and numbers of associations with genetic polymorphism are also reported. The cell-specific modulation of these activatory or inhibitory FcγRs are expected for the new therapeutic strategy in autoimmune diseases.
Collapse
Affiliation(s)
- Hirofumi Amano
- Department of Rheumatology and Internal Medicine, Juntendo University School of Medicine, Japan
| |
Collapse
|
250
|
Iwanaga R, Sugita N, Hirano E, Sasahara J, Kikuchi A, Tanaka K, Yoshie H. FcγRIIB polymorphisms, periodontitis and preterm birth in Japanese pregnant women. J Periodontal Res 2011; 46:292-302. [DOI: 10.1111/j.1600-0765.2010.01338.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|