201
|
Tkachenko AG, Fedotova MV. Dependence of protective functions of Escherichia coli polyamines on strength of stress caused by superoxide radicals. BIOCHEMISTRY (MOSCOW) 2007; 72:109-16. [PMID: 17309444 DOI: 10.1134/s0006297907010130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms of antioxidant effect of polyamines were studied in dependence on the strength of superoxide stress. Under conditions of weak stress, polyamines from Escherichia coli cultures were shown to function mainly as a scavenger of free superoxide radicals, whereas under conditions of strong stress they mainly acted as positive modulators of antioxidant genes. Spectrofluorimetry was used to show that both polyamine-dependent mutants and wild type cells treated with inhibitors of polyamine synthesis contained an elevated amount of free oxygen radicals, which could be decreased to the normal level by addition of exogenous polyamines. Under conditions of strong stress, polyamines positively influenced expression of the soxRS regulon genes of antioxidant defense, which was accompanied by an increase in the quantity (activity) of their gene products, such as glucose-6-phosphate dehydrogenase (Zwf) and fumarase (FumC). These effects led to an increase in the number of live cells in the cultures subjected to superoxide stress.
Collapse
Affiliation(s)
- A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081, Russia.
| | | |
Collapse
|
202
|
Abstract
Information theory was used to build a promoter model that accounts for the -10, the -35 and the uncertainty of the gap between them on a common scale. Helical face assignment indicated that base -7, rather than -11, of the -10 may be flipping to initiate transcription. We found that the sequence conservation of sigma70 binding sites is 6.5 +/- 0.1 bits. Some promoters lack a -35 region, but have a 6.7 +/- 0.2 bit extended -10, almost the same information as the bipartite promoter. These results and similarities between the contacts in the extended -10 binding and the -35 suggest that the flexible bipartite sigma factor evolved from a simpler polymerase. Binding predicted by the bipartite model is enriched around 35 bases upstream of the translational start. This distance is the smallest 5' mRNA leader necessary for ribosome binding, suggesting that selective pressure minimizes transcript length. The promoter model was combined with models of the transcription factors Fur and Lrp to locate new promoters, to quantify promoter strengths, and to predict activation and repression. Finally, the DNA-bending proteins Fis, H-NS and IHF frequently have sites within one DNA persistence length from the -35, so bending allows distal activators to reach the polymerase.
Collapse
Affiliation(s)
| | | | | | - Thomas D. Schneider
- To whom correspondence should be addressed. Tel: +1 301 846 5581; Fax: +1 301 846 5598;
| |
Collapse
|
203
|
Yu JS, Kokoska RJ, Khemici V, Steege DA. In‐frame overlapping genes: the challenges for regulating gene expression. Mol Microbiol 2006; 63:1158-72. [PMID: 17238928 DOI: 10.1111/j.1365-2958.2006.05572.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In-frame overlapping genes in phage, plasmid and bacterial genomes permit synthesis of more than one form of protein from the same gene. Having one gene entirely within another rather than two separate genes presumably precludes recombination events between the identical sequences. However, studies of such gene pairs indicate that the overlapping arrangement can make regulation of the genes more difficult. Here, we extend studies of in-frame overlapping genes II and X from filamentous phage f1 to determine if translational controls are required to regulate the gene properly. These genes encode proteins (pII and pX) with essential but opposing roles in phage DNA replication. They must be tightly regulated to maintain production of the proteins at relative steady state levels that permit continuous replication without killing the host. To determine why little or no pX appears to be made on the gene II/X mRNA, gene II translation was lowered by progressively deleting into the gene II initiator region. Increased pX translation resulted, suggesting that elongating ribosomes on the gene II mRNA interfere with internal initiation on the gene X ribosome binding site and limit gene X translation. As judged from systematically lowering the efficiency of suppression at a gene II amber codon upstream from the gene X start, the already modest level of gene II translation would have to be reduced by more than twofold to relieve all interference with internal initiation. Further downregulation of gene X expression proved to be required to maintain pX at levels relative to pII that are tolerated by the cell. Site-directed mutagenesis and nuclease mapping revealed that the gene X initiation site is sequestered in an extended RNA secondary structure that lowers gene X translation on the two mRNAs encoding it. The more general implications of the results for expression of in-frame overlapping genes are discussed.
Collapse
Affiliation(s)
- Jae-Sung Yu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
204
|
Beaurepaire C, Chaconas G. Topology-dependent transcription in linear and circular plasmids of the segmented genome ofBorrelia burgdorferi. Mol Microbiol 2006; 63:443-53. [PMID: 17241200 DOI: 10.1111/j.1365-2958.2006.05533.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The segmented genome of Borrelia burgdorferi, a causative agent of Lyme disease, contains a mixture of over 20 linear and circular plasmids. Genes encoding five paralogous families of plasmid replication proteins are located on both circular and linear DNA molecules. The effect of DNA topology on the transcription of replication proteins from two B. burgdorferi plasmids, cp9 and lp17, was examined using quantitative reverse transcription polymerase chain reaction. Circular to linear conversion of a cp9-derived plasmid resulted in a 160-fold decrease in transcript levels of bbc01, believed to encode the replication initiator. A 14.9-fold reduction in plasmid copy number was also observed, resulting in a net 10.7-fold lower transcription level per gene copy on a linear versus a circular plasmid. In contrast, expression of the bbd14 replication initiator for the linear plasmid lp17 was 7.2 times higher per gene copy on a linear versus a circular plasmid. Topology-dependent transcription of these genes may help to block topological interconversions during genome evolution, offers a new avenue for global gene regulation and also has important implications for the design of genetic complementation experiments in B. burgdorferi.
Collapse
Affiliation(s)
- Cécile Beaurepaire
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
205
|
Madrid C, Balsalobre C, García J, Juárez A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 2006; 63:7-14. [PMID: 17116239 DOI: 10.1111/j.1365-2958.2006.05497.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Hha/YmoA family of proteins is a group of conserved, low-molecular-weight proteins involved in the regulation of gene expression. Studies performed in Escherichia coli, Salmonella sp. and Yersinia sp. highlight the contribution of these proteins in regulating bacterial virulence, horizontal gene transfer and cell physiology. Genes encoding such proteins are located on chromosomes and plasmids in different genera of Gram-negative bacteria. Their mode of action is currently being analysed by studying direct binding of Hha to DNA and as a component of protein complexes with regulatory functions. Recent data on the interaction of Hha with the H-NS family of proteins and structural information suggest a physiological role for such protein complexes in many aspects of gene regulation.
Collapse
Affiliation(s)
- Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
206
|
O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869-82. [PMID: 16999831 DOI: 10.1111/j.1365-2958.2006.05416.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of bacterial pathogens to an intracellular environment requires resetting of the expression levels of a wide range of both virulence and housekeeping genes. We investigated the possibility that changes in DNA supercoiling could modulate the expression of genes known to be important in the intracellular growth of the pathogen Salmonella enterica serovar Typhimurium. Our data show that DNA becomes relaxed when Salmonella grows in murine macrophage but not in epithelial cells, indicating that DNA supercoiling plays a role in discrimination between two types of intracellular environment. The ssrA regulatory gene within the SPI-2 pathogenicity island that is required for survival in macrophage was found to be upregulated by DNA relaxation. This enhancement of expression also required the Fis nucleoid-associated protein. Manipulating the level of the Fis protein modulated both the level of DNA supercoiling and ssrA transcription. We discuss a model of bacterial intracellular adaptation in which Fis and DNA supercoiling collaborate to fine-tune virulence gene expression.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
207
|
Edwards JC, Johnson MS, Taylor BL. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 2006; 62:823-37. [PMID: 16995896 PMCID: PMC1858650 DOI: 10.1111/j.1365-2958.2006.05411.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aerotaxis (oxygen-seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46+/-0.18-3.04+/-0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2=0.986-0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2=0.988), but Aer-mediated responses did not correlate with either PMF changes (r2=0.297) or the rate of electron transport (r2=0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I.
Collapse
Affiliation(s)
- Jessica C Edwards
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
208
|
Partridge JD, Scott C, Tang Y, Poole RK, Green J. Escherichia coli Transcriptome Dynamics during the Transition from Anaerobic to Aerobic Conditions. J Biol Chem 2006; 281:27806-15. [PMID: 16857675 DOI: 10.1074/jbc.m603450200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli is a metabolically versatile bacterium that is able to grow in the presence and absence of oxygen. Several previous transcript-profiling experiments have compared separate anaerobic and aerobic cultures. Here the process of adaptation was investigated by determining changes in transcript profiles when anaerobic steady-state cultures were perturbed by the introduction of air. Within 5 min of culture aeration the abundances of transcripts associated with anaerobic metabolism were decreased, whereas transcripts associated with aerobic metabolism were increased. In addition to the rapid switch to aerobic central metabolism, transcript profiling, supported by experiments with relevant mutants, revealed transient changes suggesting that the peroxide stress response, methionine biosynthesis, and degradation of putrescine play important roles during the adaptation to aerobic conditions.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
209
|
Zhang W, Allen S, Roberts CJ, Soultanas P. The Bacillus subtilis primosomal protein DnaD untwists supercoiled DNA. J Bacteriol 2006; 188:5487-93. [PMID: 16855238 PMCID: PMC1540042 DOI: 10.1128/jb.00339-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential Bacillus subtilis DnaD and DnaB proteins have been implicated in the initiation of DNA replication. Recently, DNA remodeling activities associated with both proteins were discovered that could provide a link between global or local nucleoid remodeling and initiation of replication. DnaD forms scaffolds and opens up supercoiled plasmids without nicking to form open circular complexes, while DnaB acts as a lateral compaction protein. Here we show that DnaD-mediated opening of supercoiled plasmids is accompanied by significant untwisting of DNA. The net result is the conversion of writhe (Wr) into negative twist (Tw), thus maintaining the linking number (Lk) constant. These changes in supercoiling will reduce the considerable energy required to open up closed circular plectonemic DNA and may be significant in the priming of DNA replication. By comparison, DnaB does not affect significantly the supercoiling of plasmids. Binding of the DnaD C-terminal domain (Cd) to DNA is not sufficient to convert Wr into negative Tw, implying that the formation of scaffolds is essential for duplex untwisting. Overall, our data suggest that the topological effects of the two proteins on supercoiled DNA are different; DnaD opens up, untwists and converts plectonemic DNA to a more paranemic form, whereas DnaB does not affect supercoiling significantly and condenses DNA only via its lateral compaction activity. The significance of these findings in the initiation of DNA replication is discussed.
Collapse
Affiliation(s)
- Wenke Zhang
- Centre for Biomolecular Sciences School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
210
|
Blot N, Mavathur R, Geertz M, Travers A, Muskhelishvili G. Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 2006; 7:710-5. [PMID: 16799466 PMCID: PMC1500834 DOI: 10.1038/sj.embor.7400729] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 11/09/2022] Open
Abstract
Regulation of cellular growth implies spatiotemporally coordinated programmes of gene transcription. A central question, therefore, is how global transcription is coordinated in the genome. The growth of the unicellular organism Escherichia coli is associated with changes in both the global superhelicity modulated by cellular topoisomerase activity and the relative proportions of the abundant DNA-architectural chromatin proteins. Using a DNA-microarray-based approach that combines mutations in the genes of two important chromatin proteins with induced changes of DNA superhelicity, we demonstrate that genomic transcription is tightly associated with the spatial distribution of supercoiling sensitivity, which in turn depends on chromatin proteins. We further demonstrate that essential metabolic pathways involved in the maintenance of growth respond distinctly to changes of superhelicity. We infer that a homeostatic mechanism organizing the supercoiling sensitivity is coordinating the growth-phase-dependent transcription of the genome.
Collapse
Affiliation(s)
- Nicolas Blot
- International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ramesh Mavathur
- International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Marcel Geertz
- International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Georgi Muskhelishvili
- International University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Tel: +49 421 200 3143; Fax: +49 421 200 3249; E-mail:
| |
Collapse
|
211
|
Abstract
In transcription initiation, all RNA polymerase molecules bound to a promoter have been conventionally supposed to proceed into elongation of transcript. However, for Escherichia coli RNA polymerase, evidence has been accumulated for a view that only its fraction can proceed into elongation and the rest is retained at a promoter in non-productive form: a pathway branching in transcription initiation. Proteins such as GreA and GreB affect these fractions at several promoters in vitro. To reveal the ubiquitous existence of the branched mechanism in E. coli, we searched for candidate genes whose transcription decreased by disruption of greA and greB using a DNA array. Among the arbitrarily selected 11 genes from over 100, the atpC, cspA and rpsA passed the test by Northern blotting. The Gre factors activated transcription initiation from their promoters in vitro, and the results demonstrated that the branched mechanism is exploited in vivo regulation. Consistently, decrease in the level of the GreA in an anaerobic stationary condition accompanied a decrease in the levels of transcripts of these genes.
Collapse
Affiliation(s)
- Motoki Susa
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
| | - Tomoko Kubori
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
| | - Nobuo Shimamoto
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
- *For correspondence. E-mail ; Tel. (+81) 55 981 6843; Fax (+81) 55 981 6844
| |
Collapse
|
212
|
Abstract
Our information about the gene content of organisms continues to grow as more genomes are sequenced and gene products are characterized. Sequence-based annotation efforts have led to a list of cellular components, which can be thought of as a one-dimensional annotation. With growing information about component interactions, facilitated by the advancement of various high-throughput technologies, systemic, or two-dimensional, annotations can be generated. Knowledge about the physical arrangement of chromosomes will lead to a three-dimensional spatial annotation of the genome and a fourth dimension of annotation will arise from the study of changes in genome sequences that occur during adaptive evolution. Here we discuss all four levels of genome annotation, with specific emphasis on two-dimensional annotation methods.
Collapse
Affiliation(s)
- Jennifer L Reed
- Department of Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
| | | | | | | |
Collapse
|
213
|
Blumberg S, Pennington MW, Meiners JC. Do femtonewton forces affect genetic function? A review. J Biol Phys 2006; 32:73-95. [PMID: 19669453 DOI: 10.1007/s10867-005-9002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022] Open
Abstract
Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a 'substrate tension switch' could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo. We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics and Biophysics Research Division, Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA.
| | | | | |
Collapse
|
214
|
Drolet M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 2006; 59:723-30. [PMID: 16420346 DOI: 10.1111/j.1365-2958.2005.05006.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been known for a long time that supercoiling can affect gene expression at the level of promoter activity. Moreover, the results of a genome-wide analysis have recently led to the proposal that supercoiling could play a role in the regulation of gene expression at this level by acting as a second messenger, relaying environmental signals to regulatory networks. Although evidence is lacking for a regulatory role of supercoiling following transcription initiation, recent results from both yeast and bacteria suggest that the effect of supercoiling on gene expression can be considerably more dramatic after this initiation step. Transcription-induced supercoiling and its associated R-loops seem to be involved in this effect. In this context, one major function of topoisomerases would be to prevent the generation of excess negative supercoiling by transcription elongation, to inhibit R-loop formation and allow gene expression. This function would be especially evident when substantial and rapid gene expression is required for stress resistance, and it may explain, at least in part, why topoisomerase I synthesis is directed from stress-induced promoters in Escherichia coli. Growth inhibition mediated by excess negative supercoiling might be related to this interplay between transcription elongation and supercoiling.
Collapse
Affiliation(s)
- Marc Drolet
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada H3C 3J7.
| |
Collapse
|
215
|
Bae SH, Yun SH, Sun D, Lim HM, Choi BS. Structural and dynamic basis of a supercoiling-responsive DNA element. Nucleic Acids Res 2006; 34:254-61. [PMID: 16414956 PMCID: PMC1326020 DOI: 10.1093/nar/gkj428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In both eukaryotes and prokaryotes, negative supercoiling of chromosomal DNA acts locally to regulate a variety of cellular processes, such as transcription, replication, recombination and response to environmental stresses. While studying the interaction between the Hin recombinase and mutated versions of its cognate DNA-binding site, we identified a mutated DNA site that binds Hin only when the DNA is supercoiled. To understand the mechanism of this supercoiling-responsive DNA site, we used NMR spectroscopy and fluorescence resonance energy transfer to determine the solution structures and dynamics of three related DNA oligonucleotides. The supercoiling-responsive DNA site formed a partially unwound and stretched helix and showed significant flexibility and base pair opening kinetics. The single CAG/CTG triplet contained in this DNA sequence displayed the same characteristics as do multiple CAG/CTG repeats, which are associated with several hereditary neuromuscular diseases. It is known that short DNA sequence motifs that have either very high or low bending flexibility occur preferentially at supercoiling-sensitive bacterial and eukaryotic promoters. From our results and these previous data, we propose a model in which supercoiling utilizes the intrinsic flexibility of a short DNA site to switch the local DNA structure from an inefficient conformation for protein binding to an efficient one, or vice versa.
Collapse
Affiliation(s)
| | - Sang Hoon Yun
- Department of Biology, School of Biological Science and Biotechnology, Chungnam National UniversityDaejeon 305-764, Republic of Korea
| | | | - Heon M. Lim
- Department of Biology, School of Biological Science and Biotechnology, Chungnam National UniversityDaejeon 305-764, Republic of Korea
| | - Byong-Seok Choi
- To whom correspondence should be addressed. Tel: +82 42 869 2828; Fax: +82 42 869 8120;
| |
Collapse
|
216
|
Abstract
DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell.
Collapse
|
217
|
Browning DF, Grainger DC, Beatty CM, Wolfe AJ, Cole JA, Busby SJW. Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol Microbiol 2005; 57:496-510. [PMID: 15978080 DOI: 10.1111/j.1365-2958.2005.04701.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression from the Escherichia coli nrf operon promoter is activated by the anaerobically triggered transcription factor, FNR, and by the nitrate/nitrite ion-controlled response regulators, NarL or NarP, but is repressed by the IHF and Fis proteins. Here, we present in vitro studies on the nrf promoter, using permanganate footprinting to measure open complex formation, and DNase I footprinting to monitor binding of the different regulators and the interactions between them. Our results show that open complex formation is completely dependent on FNR and is enhanced by NarL, but is repressed by IHF or Fis. NarL counteracts repression by IHF but is unable to alter repression by Fis. These results suggest mechanisms by which nrf promoter activity is modulated by the different factors. Expression from the nrf promoter is known to be repressed in rich media, especially in the presence of glucose, but the molecular basis of this is not understood. Here, we show that this catabolite repression is relieved by mutations that weaken the DNA site for Fis, improve the DNA site for FNR or improve the promoter -10 or -35 elements. Hence, Fis protein is a major factor responsible for catabolite repression at the nrf promoter, and Fis can override activation by FNR and NarL or NarP.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
What is biological complexity? How many sorts exist? Are there levels of complexity? How are they related to one another? How is complexity related to the emergence of new phenotypes? To try to get to grips with these questions, we consider the archetype of a complex biological system, Escherichia coli. We take the position that E. coli has been selected to survive adverse conditions and to grow in favourable ones and that many other complex systems undergo similar selection. We invoke the concept of hyperstructures which constitute a level of organisation intermediate between macromolecules and cells. We also invoke a new concept, competitive coherence, to describe how phenotypes are created by a competition between maintaining a consistent story over time and creating a response that is coherent with respect to both internal and external conditions. We suggest how these concepts lead to parameters suitable for describing the rich form of complexity termed hypercomplexity and we propose a relationship between competitive coherence and emergence.
Collapse
Affiliation(s)
- Vic Norris
- Assemblages Moléculaires, Modélisation et Imagerie SIMS, FRE CNRS 2829, Faculté de Sciences et Techniques de Rouen, 76821, Mont Saint Aignan, France.
| | | | | |
Collapse
|
219
|
Abstract
During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems.
Collapse
Affiliation(s)
| | | | - N. Patrick Higgins
- *For correspondence. E-mail; Tel. (+1) 205 934 3299; Fax (+1) 205 975 5955
| |
Collapse
|
220
|
Stewart N, Feng J, Liu X, Chaudhuri D, Foster JW, Drolet M, Tse-Dinh YC. Loss of topoisomerase I function affects the RpoS-dependent and GAD systems of acid resistance in Escherichia coli. MICROBIOLOGY-SGM 2005; 151:2783-2791. [PMID: 16079354 PMCID: PMC1361560 DOI: 10.1099/mic.0.28022-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acid resistance (AR) in Escherichia coli is important for its survival in the human gastrointestinal tract and involves three systems. The first AR system is dependent on the sigma factor RpoS. The second system (the GAD system) requires the glutamate decarboxylase isoforms encoded by the gadA and gadB genes. The third system (the ARG system) requires the arginine decarboxylase encoded by adiA. Loss of topoisomerase I function from topA deletion or Tn10 insertion mutations lowered the resistance to killing by pH 2 or 2.5 treatment by 10-fold to >100-fold. The RpoS and GAD systems were both affected by the topA mutation, but the ARG system of AR was not affected. Northern blot analysis showed that induction of gadA and gadB transcription in stationary phase and at pH 5.5 was decreased in the topA mutant. Western blot analysis showed that the topA mutation did not affect accumulation of RpoS, GadX or GadW proteins. Topoisomerase I might have a direct influence on the transcription of AR genes. This influence does not involve R-loop formation as the overexpression of RNase H did not alleviate the decrease of AR caused by the topA mutation. The effect of the topA mutation could be suppressed by an hns mutation, so topoisomerase I might be required to counteract the effect of H-NS protein on gene expression, in addition to its influence on RpoS-dependent transcription.
Collapse
Affiliation(s)
- Natalee Stewart
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Jingyang Feng
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Xiaoping Liu
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Devyani Chaudhuri
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - John W. Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688
| | - Marc Drolet
- Départment de Microbiologie et Immunologie, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Yuk-Ching Tse-Dinh
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595
- Author for correspondence: Yuk-Ching Tse-Dinh. Tel: +1-914-594-4061. Fax: +1-914-594-4058.
| |
Collapse
|
221
|
Kar S, Edgar R, Adhya S. Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci U S A 2005; 102:16397-402. [PMID: 16258062 PMCID: PMC1283455 DOI: 10.1073/pnas.0508032102] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial nucleoid organization is believed to have minimal influence on the global transcription program. Using an altered bacterial histone-like protein, HUalpha, we show that reorganization of the nucleoid configuration can dynamically modulate the cellular transcription pattern. The mutant protein transformed the loosely packed nucleoid into a densely condensed structure. The nucleoid compaction, coupled with increased global DNA supercoiling, generated radical changes in the morphology, physiology, and metabolism of wild-type K-12 Escherichia coli. Many constitutive housekeeping genes involved in nutrient utilization were repressed, whereas many quiescent genes associated with virulence were activated in the mutant. We propose that, as in eukaryotes, the nucleoid architecture dictates the global transcription profile and, consequently, the behavior pattern in bacteria.
Collapse
Affiliation(s)
- Sudeshna Kar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | |
Collapse
|
222
|
Travers A, Muskhelishvili G. Bacterial chromatin. Curr Opin Genet Dev 2005; 15:507-14. [PMID: 16099644 DOI: 10.1016/j.gde.2005.08.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/03/2005] [Indexed: 12/20/2022]
Abstract
Recent studies have revealed that the bacterial nucleoid is a dynamic entity that alters its overall structure in response to changes in both growth rate and growth phase. These structural changes are correlated with, and might be driven by, changes in the distribution and utilization of DNA supercoiling. In turn, these parameters in addition to the delimitation of topological domains are dependent both on the relative proportions of the abundant nucleoid-associated proteins and on transcriptional activity. The domain structure itself is dynamic.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
223
|
Larsabal E, Danchin A. Genomes are covered with ubiquitous 11 bp periodic patterns, the "class A flexible patterns". BMC Bioinformatics 2005; 6:206. [PMID: 16120222 PMCID: PMC1242344 DOI: 10.1186/1471-2105-6-206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/24/2005] [Indexed: 11/17/2022] Open
Abstract
Background The genomes of prokaryotes and lower eukaryotes display a very strong 11 bp periodic bias in the distribution of their nucleotides. This bias is present throughout a given genome, both in coding and non-coding sequences. Until now this bias remained of unknown origin. Results Using a technique for analysis of auto-correlations based on linear projection, we identified the sequences responsible for the bias. Prokaryotic and lower eukaryotic genomes are covered with ubiquitous patterns that we termed "class A flexible patterns". Each pattern is composed of up to ten conserved nucleotides or dinucleotides distributed into a discontinuous motif. Each occurrence spans a region up to 50 bp in length. They belong to what we named the "flexible pattern" type, in that there is some limited fluctuation in the distances between the nucleotides composing each occurrence of a given pattern. When taken together, these patterns cover up to half of the genome in the majority of prokaryotes. They generate the previously recognized 11 bp periodic bias. Conclusion Judging from the structure of the patterns, we suggest that they may define a dense network of protein interaction sites in chromosomes.
Collapse
Affiliation(s)
- Etienne Larsabal
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
224
|
Liu D, Crellin P, Chalmers R. Cyclic changes in the affinity of protein-DNA interactions drive the progression and regulate the outcome of the Tn10 transposition reaction. Nucleic Acids Res 2005; 33:1982-92. [PMID: 15814815 PMCID: PMC1074725 DOI: 10.1093/nar/gki348] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tn10 transpososome is a DNA processing machine in which two transposon ends, a transposase dimer and the host protein integration host factor (IHF), are united in an asymmetrical complex. The transitions that occur during one transposition cycle are not limited to chemical cleavage events at the transposon ends, but also involve a reorganization of the protein and DNA components. Here, we demonstrate multiple pathways for Tn10 transposition. We show that one series of events is favored over all others and involves cyclic changes in the affinity of IHF for its binding site. During transpososome assembly, IHF is bound with high affinity. However, the affinity for IHF drops dramatically after cleavage of the first transposon end, leading to IHF ejection and unfolding of the complex. The ejection of IHF promotes cleavage of the second end, which is followed by restoration of the high affinity state which in turn regulates target interactions.
Collapse
Affiliation(s)
| | | | - Ronald Chalmers
- To whom correspondence should be addressed. Tel: +44 01865 275307; Fax: +44 01865 275297;
| |
Collapse
|
225
|
Mora L, Heurgué-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH. The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 2003; 47:267-75. [PMID: 12492870 DOI: 10.1046/j.1365-2958.2003.03301.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Release factors RF1 and RF2 are required in bacteria for the cleavage of peptidyl-tRNA. A single sequence motif, GGQ, is conserved in all eubacterial, archaebacterial and eukaryotic release factors and may mimic the CCA end of tRNA, although the position of the motif in the crystal structures of human eRF1 and Escherichia coli RF2 is strikingly different. Mutations have been introduced at each of the three conserved positions. Changing the Gln residue to Ala or Glu allowed the factors to retain about 22% of tetrapeptide release activity in vitro, but these mutants could not complement thermosensitive RF mutants in vivo. None of several mutants with altered Gly residues retained activity in vivo or in vitro. Many GGQ mutants were poorly expressed and are presumably unstable; many were also toxic to the cell. The toxic mutant factors or their degradation products may bind to ribosomes inhibiting the action of the normal factor. These data are consistent with a common role for the GGQ motif in bacterial and eukaryotic release factors, despite strong divergence in primary, secondary and tertiary structure, but are difficult to reconcile with the hypothesis that the amide nitrogen of the Gln plays a vital role in peptidyl-tRNA hydrolysis.
Collapse
Affiliation(s)
- Liliana Mora
- UPR9073 du CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | | | | | | | | | |
Collapse
|