201
|
Costin JM, Zaitseva E, Kahle KM, Nicholson CO, Rowe DK, Graham AS, Bazzone LE, Hogancamp G, Figueroa Sierra M, Fong RH, Yang ST, Lin L, Robinson JE, Doranz BJ, Chernomordik LV, Michael SF, Schieffelin JS, Isern S. Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop. J Virol 2013; 87:52-66. [PMID: 23077306 PMCID: PMC3536401 DOI: 10.1128/jvi.02273-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/10/2012] [Indexed: 11/20/2022] Open
Abstract
There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Joshua M. Costin
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Cindo O. Nicholson
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Dawne K. Rowe
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Amanda S. Graham
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Lindsey E. Bazzone
- Section of Pediatric Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Greg Hogancamp
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | | | - Rachel H. Fong
- Integral Molecular, Inc., Philadelphia, Pennsylvania, USA
| | - Sung-Tae Yang
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Lin
- Communicable Disease Center, Tan Tock Seng Hospital, Singapore
| | - James E. Robinson
- Section of Pediatric Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott F. Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - John S. Schieffelin
- Section of Pediatric Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
202
|
Alhoot MA, Rathinam AK, Wang SM, Manikam R, Sekaran SD. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Int J Med Sci 2013; 10:719-29. [PMID: 23630436 PMCID: PMC3638295 DOI: 10.7150/ijms.5037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 03/07/2013] [Indexed: 11/05/2022] Open
Abstract
Despite the importance of DENV as a human pathogen, there is no specific treatment or protective vaccine. Successful entry into the host cells is necessary for establishing the infection. Recently, the virus entry step has become an attractive therapeutic strategy because it represents a barrier to suppress the onset of the infection. Four putative antiviral peptides were designed to target domain III of DENV-2 E protein using BioMoDroid algorithm. Two peptides showed significant inhibition of DENV when simultaneously incubated as shown by plaque formation assay, RT-qPCR, and Western blot analysis. Both DET4 and DET2 showed significant inhibition of virus entry (84.6% and 40.6% respectively) using micromolar concentrations. Furthermore, the TEM images showed that the inhibitory peptides caused structural abnormalities and alteration of the arrangement of the viral E protein, which interferes with virus binding and entry. Inhibition of DENV entry during the initial stages of infection can potentially reduce the viremia in infected humans resulting in prevention of the progression of dengue fever to the severe life-threatening infection, reduce the infected vector numbers, and thus break the transmission cycle. Moreover these peptides though designed against the conserved region in DENV-2 would have the potential to be active against all the serotypes of dengue and might be considered as Hits to begin designing and developing of more potent analogous peptides that could constitute as promising therapeutic agents for attenuating dengue infection.
Collapse
Affiliation(s)
- Mohammed Abdelfatah Alhoot
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
203
|
Heinz F, Stiasny K. Flaviviruses and their antigenic structure. J Clin Virol 2012; 55:289-95. [DOI: 10.1016/j.jcv.2012.08.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/25/2012] [Indexed: 12/13/2022]
|
204
|
Lok SM, Costin JM, Hrobowski YM, Hoffmann AR, Rowe DK, Kukkaro P, Holdaway H, Chipman P, Fontaine KA, Holbrook MR, Garry RF, Kostyuchenko V, Wimley WC, Isern S, Rossmann MG, Michael SF. Release of dengue virus genome induced by a peptide inhibitor. PLoS One 2012; 7:e50995. [PMID: 23226444 PMCID: PMC3511436 DOI: 10.1371/journal.pone.0050995] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022] Open
Abstract
Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E) glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles were largely empty, concurrent with the formation of holes at the five-fold vertices. The release of RNA from the viral particle following incubation with DN59 was confirmed by increased sensitivity of the RNA genome to exogenous RNase and separation of the genome from the E protein in a tartrate density gradient. DN59 interacted strongly with synthetic lipid vesicles and caused membrane disruptions, but was found to be non-toxic to mammalian and insect cells. Thus DN59 inhibits flavivirus infectivity by interacting directly with virus particles resulting in release of the genomic RNA.
Collapse
Affiliation(s)
- Shee-Mei Lok
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Joshua M. Costin
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Yancey M. Hrobowski
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- Department of Microbiology and Immunology and Graduate Program in Cellular and Molecular Biology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Andrew R. Hoffmann
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dawne K. Rowe
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Petra Kukkaro
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Heather Holdaway
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Paul Chipman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Krystal A. Fontaine
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Michael R. Holbrook
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert F. Garry
- Department of Microbiology and Immunology and Graduate Program in Cellular and Molecular Biology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Victor Kostyuchenko
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - William C. Wimley
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott F. Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- * E-mail:
| |
Collapse
|
205
|
Degrève L, Fuzo CA, Caliri A. Extensive structural change of the envelope protein of dengue virus induced by a tuned ionic strength: conformational and energetic analyses. J Comput Aided Mol Des 2012; 26:1311-25. [PMID: 23160852 PMCID: PMC3532723 DOI: 10.1007/s10822-012-9616-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 10/25/2012] [Indexed: 01/21/2023]
Abstract
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Collapse
Affiliation(s)
- Léo Degrève
- Departamento de Química, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
| | | | | |
Collapse
|
206
|
Flipse J, Wilschut J, Smit JM. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic 2012; 14:25-35. [PMID: 22998156 DOI: 10.1111/tra.12012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/19/2022]
Abstract
Dengue is the most common arthropod-borne viral infection in humans with ∼50 million cases annually worldwide. In recent decades, a steady increase in the number of severe dengue cases has been seen. Severe dengue disease is most often observed in individuals that have pre-existing immunity against heterotypic dengue subtypes and in infants with low levels of maternal dengue antibodies. The generally accepted hypothesis explaining the immunopathogenesis of severe dengue is called antibody-dependent enhancement of dengue infection. Here, circulating antibodies bind to the newly infecting virus but do not neutralize infection. Rather, these antibodies increase the infected cell mass and virus production. Additionally, antiviral responses are diminished allowing massive virus particle production early in infection. The large infected cell mass and the high viral load are prelude for severe disease development. In this review, we discuss what is known about the trafficking of dengue virus in its human host cells, and the signalling pathways activated after virus detection, both in the absence and presence of antibodies against the virus. This review summarizes work that aims to better understand the complex immunopathogenesis of severe dengue disease.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
207
|
Teoh EP, Kukkaro P, Teo EW, Lim APC, Tan TT, Yip A, Schul W, Aung M, Kostyuchenko VA, Leo YS, Chan SH, Smith KGC, Chan AHY, Zou G, Ooi EE, Kemeny DM, Tan GK, Ng JKW, Ng ML, Alonso S, Fisher D, Shi PY, Hanson BJ, Lok SM, MacAry PA. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci Transl Med 2012; 4:139ra83. [PMID: 22723463 DOI: 10.1126/scitranslmed.3003888] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that affects 2.5 billion people worldwide. There are four dengue serotypes (DENV1 to DENV4), and infection with one elicits lifelong immunity to that serotype but offers only transient protection against the other serotypes. Identification of the protective determinants of the human antibody response to DENV is a vital requirement for the design and evaluation of future preventative therapies and treatments. Here, we describe the isolation of a neutralizing antibody from a DENV1-infected patient. The human antibody 14c10 (HM14c10) binds specifically to DENV1. HM14c10 neutralizes the virus principally by blocking virus attachment; at higher concentrations, a post-attachment step can also be inhibited. In vivo studies show that the HM14c10 antibody has antiviral activity at picomolar concentrations. A 7 Å resolution cryoelectron microscopy map of Fab fragments of HM14c10 in a complex with DENV1 shows targeting of a discontinuous epitope that spans the adjacent surface of envelope protein dimers. As found previously, a human antibody specific for the related West Nile virus binds to a similar quaternary structure, suggesting that this could be an immunodominant epitope. These findings provide a structural and molecular context for durable, serotype-specific immunity to DENV infection.
Collapse
Affiliation(s)
- Ee Ping Teoh
- Department of Microbiology and Life Sciences Institute Immunology Programme, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Heinz FX, Stiasny K. Flaviviruses and flavivirus vaccines. Vaccine 2012; 30:4301-6. [PMID: 22682286 DOI: 10.1016/j.vaccine.2011.09.114] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/28/2022]
Abstract
Several human-pathogenic flaviviruses (including yellow fever, dengue, Japanese encephalitis, West Nile and tick-borne encephalitis viruses) have a significant public health impact in different parts of the world and the potential of emerging in previously non-endemic regions. For some viruses, the structure of the most important immunogen, the envelope protein E, has been determined to atomic resolution by X-ray crystallography, and the architecture of virus particles has been resolved by cryo-electron microscopy. Through the combination of structural and immunological investigations, we now have a detailed understanding of the mechanisms of virus neutralization and antibody-dependent enhancement (ADE) of infectivity at a molecular level. The latter phenomenon has been proposed to play an important role in the immunopathology of severe forms of dengue virus infections (hemorrhagic dengue fever and dengue shock syndrome) and is therefore of special relevance in the context of dengue vaccines. Effective human vaccines are in use for the prophylaxis of yellow fever (live attenuated), Japanese encephalitis (live attenuated and inactivated whole virus), and tick-borne encephalitis (inactivated whole virus). Although dengue is the most important flavivirus with respect to global disease incidence, the development and use of vaccines has been hampered so far by the theoretical risk of vaccine-related adverse events such as immune enhancement of infection and the requirement to induce a long-lasting protective immune response against all four dengue serotypes simultaneously. Currently, several kinds of dengue vaccines are in development, but only one of these candidates (a chimeric dengue-yellow fever live attenuated vaccine) has reached the stage of phase 3 clinical trials.
Collapse
Affiliation(s)
- Franz X Heinz
- Department of Virology, Medical University of Vienna, Kinderspitalgasse 15, 1095 Vienna, Austria.
| | | |
Collapse
|
209
|
Austin SK, Dowd KA, Shrestha B, Nelson CA, Edeling MA, Johnson S, Pierson TC, Diamond MS, Fremont DH. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope. PLoS Pathog 2012; 8:e1002930. [PMID: 23055922 PMCID: PMC3464233 DOI: 10.1371/journal.ppat.1002930] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023] Open
Abstract
We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV)-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC' loop epitope on domain III (DIII) of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC' loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development.
Collapse
Affiliation(s)
- S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bimmi Shrestha
- Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Rockville, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (MSD); (DHF)
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (MSD); (DHF)
| |
Collapse
|
210
|
Singharoy A, Joshi H, Ortoleva PJ. Multiscale macromolecular simulation: role of evolving ensembles. J Chem Inf Model 2012; 52:2638-49. [PMID: 22978601 DOI: 10.1021/ci3002952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.
Collapse
Affiliation(s)
- A Singharoy
- Center for Cell and Virus Theory, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
211
|
Soares ROS, Caliri A. Stereochemical features of the envelope protein Domain III of dengue virus reveals putative antigenic site in the five-fold symmetry axis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:221-30. [PMID: 23009809 DOI: 10.1016/j.bbapap.2012.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022]
Abstract
We bring to attention a characteristic parasitic pattern present in the dengue virus: it undergoes several intensive thermodynamic variations due to host environmental changes, from a vector's digestive tract, through the human bloodstream and intracellular medium. Comparatively, among the known dengue serotypes, we evaluate the effects that these medium variations may induce to the overall structural characteristics of the Domain III of the envelope (E) protein, checking for stereochemical congruences that could lead to the identification of immunologic relevant regions. We used molecular dynamics and principal component analysis to study the protein in solution, for all four dengue serotypes, under distinct pH and temperature. We stated that, while the core of Domain III is remarkably rigid and effectively unaffected by most of the mentioned intensive variations, the loops account for major and distinguishable flexibilities. Therefore, the rigidity of the Domain III core provides a foothold that projects specifically two of these high flexible loop regions towards the inner face of the envelope pores, which are found at every five-fold symmetry axis of the icosahedron-shaped mature virus. These loops bear a remarkable low identity though with high occurrence of ionizable residues, including histidines. Such stereochemical properties can provide very particular serotype-specific electrostatic surface patterns, suggesting a viral fingerprint region, on which other specific molecules and ions can establish chemical interactions in an induced fit mechanism. We assert that the proposed regions share enough relevant features to qualify for further immunologic and pharmacologic essays, such as target peptide synthesis and phage display using dengue patients' sera.
Collapse
Affiliation(s)
- R O S Soares
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, S/N. 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | | |
Collapse
|
212
|
Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Res 2012; 95:216-23. [DOI: 10.1016/j.antiviral.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
|
213
|
Bowen DM, Lewis JA, Lu W, Schein CH. Simplifying complex sequence information: a PCP-consensus protein binds antibodies against all four Dengue serotypes. Vaccine 2012; 30:6081-7. [PMID: 22863657 DOI: 10.1016/j.vaccine.2012.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022]
Abstract
Designing proteins that reflect the natural variability of a pathogen is essential for developing novel vaccines and drugs. Flaviviruses, including Dengue (DENV) and West Nile (WNV), evolve rapidly and can "escape" neutralizing monoclonal antibodies by mutation. Designing antigens that represent many distinct strains is important for DENV, where infection with a strain from one of the four serotypes may lead to severe hemorrhagic disease on subsequent infection with a strain from another serotype. Here, a DENV physicochemical property (PCP)-consensus sequence was derived from 671 unique sequences from the Flavitrack database. PCP-consensus proteins for domain 3 of the envelope protein (EdomIII) were expressed from synthetic genes in Escherichia coli. The ability of the purified consensus proteins to bind polyclonal antibodies generated in response to infection with strains from each of the four DENV serotypes was determined. The initial consensus protein bound antibodies from DENV-1-3 in ELISA and Western blot assays. This sequence was altered in 3 steps to incorporate regions of maximum variability, identified as significant changes in the PCPs, characteristic of DENV-4 strains. The final protein was recognized by antibodies against all four serotypes. Two amino acids essential for efficient binding to all DENV antibodies are part of a discontinuous epitope previously defined for a neutralizing monoclonal antibody. The PCP-consensus method can significantly reduce the number of experiments required to define a multivalent antigen, which is particularly important when dealing with pathogens that must be tested at higher biosafety levels.
Collapse
Affiliation(s)
- David M Bowen
- Computational Biology, Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0857, United States
| | | | | | | |
Collapse
|
214
|
Hughes HR, Crill WD, Chang GJJ. Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement. Virol J 2012; 9:115. [PMID: 22709350 PMCID: PMC3424142 DOI: 10.1186/1743-422x-9-115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/25/2012] [Indexed: 12/12/2022] Open
Abstract
Background Dengue viruses (DENV) are the most important arboviruses of humans and cause significant disease. Infection with DENV elicits antibody responses to the envelope glycoprotein, predominantly against immunodominant, cross-reactive, weakly-neutralizing epitopes. These weakly-neutralizing antibodies are implicated in enhancing infection via Fcγ receptor bearing cells and can lead to increased viral loads that are associated with severe disease. Here we describe results from the development and testing of cross-reactivity reduced DENV-2 DNA vaccine candidates that contain substitutions in immunodominant B cell epitopes of the fusion peptide and domain III of the envelope protein. Results Cross-reactivity reduced and wild-type vaccine candidates were similarly immunogenic in outbred mice and elicited high levels of neutralizing antibody, however mice immunized with cross-reactivity reduced vaccines produced significantly reduced levels of immunodominant cross-reactive antibodies. Sera from mice immunized with wild-type, fusion peptide-, or domain III- substitution containing vaccines enhanced heterologous DENV infection in vitro, unlike sera from mice immunized with a vaccine containing a combination of both fusion peptide and domain III substitutions. Passive transfer of immune sera from mice immunized with fusion peptide and domain III substitutions also reduced the development of severe DENV disease in AG129 mice when compared to mice receiving wild type immune sera. Conclusions Reducing cross-reactivity in the envelope glycoprotein of DENV may be an approach to improve the quality of the anti-DENV immune response.
Collapse
Affiliation(s)
- Holly R Hughes
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Fort Collins, CO 80521, USA
| | | | | |
Collapse
|
215
|
Xu Y, Rahman NA, Othman R, Hu P, Huang M. Computational identification of self-inhibitory peptides from envelope proteins. Proteins 2012; 80:2154-68. [DOI: 10.1002/prot.24105] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/28/2012] [Accepted: 04/12/2012] [Indexed: 11/11/2022]
|
216
|
Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J Virol 2012; 86:8546-58. [PMID: 22647702 DOI: 10.1128/jvi.00736-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ∼75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.
Collapse
|
217
|
Midgley CM, Flanagan A, Tran HB, Dejnirattisai W, Chawansuntati K, Jumnainsong A, Wongwiwat W, Duangchinda T, Mongkolsapaya J, Grimes JM, Screaton GR. Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:4971-9. [PMID: 22491255 PMCID: PMC3364712 DOI: 10.4049/jimmunol.1200227] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dengue virus infections are still increasing at an alarming rate in tropical and subtropical countries, underlying the need for a dengue vaccine. Although it is relatively easy to generate Ab responses to dengue virus, low avidity or low concentrations of Ab may enhance infection of FcR-bearing cells with clinical impact, posing a challenge to vaccine production. In this article, we report the characterization of a mAb, 2H12, which is cross-reactive to all four serotypes in the dengue virus group. Crystal structures of 2H12-Fab in complex with domain III of the envelope protein from three dengue serotypes have been determined. 2H12 binds to the highly conserved AB loop of domain III of the envelope protein that is poorly accessible in the mature virion. 2H12 neutralization varied between dengue serotypes and strains; in particular, dengue serotype 2 was not neutralized. Because the 2H12-binding epitope was conserved, this variation in neutralization highlights differences between dengue serotypes and suggests that significant conformational changes in the virus must take place for Ab binding. Surprisingly, 2H12 facilitated little or no enhancement of infection. These data provide a structural basis for understanding Ab neutralization and enhancement of infection, which is crucial for the development of future dengue vaccines.
Collapse
Affiliation(s)
- Claire M. Midgley
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, UK
| | - Aleksandra Flanagan
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hai Bac Tran
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, UK
| | | | | | - Amonrat Jumnainsong
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, UK
| | - Wiyada Wongwiwat
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, UK
| | - Thaneeya Duangchinda
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Juthathip Mongkolsapaya
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jonathan M. Grimes
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Gavin R. Screaton
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, UK
| |
Collapse
|
218
|
Li PC, Liao MY, Cheng PC, Liang JJ, Liu IJ, Chiu CY, Lin YL, Chang GJJ, Wu HC. Development of a humanized antibody with high therapeutic potential against dengue virus type 2. PLoS Negl Trop Dis 2012; 6:e1636. [PMID: 22563515 PMCID: PMC3341331 DOI: 10.1371/journal.pntd.0001636] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/20/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control. METHODOLOGY/PRINCIPAL FINDINGS We generated seventeen novel mouse monoclonal antibodies (mAbs) with high reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2 infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6 binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by different strains of DENV-2 in two mouse models even in post-exposure trials. CONCLUSIONS/SIGNIFICANCE We used novel epitope mapping strategies, by combining phage display with VLPs, to identify the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in humans.
Collapse
Affiliation(s)
- Pi-Chun Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ping-Chang Cheng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Gwong-Jen J. Chang
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, United States Department of Health and Human Services, Fort Collins, Colorado, United States of America
| | - Han-Chung Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
219
|
Williams KL, Wahala WMPB, Orozco S, de Silva AM, Harris E. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo. Virology 2012; 429:12-20. [PMID: 22537810 DOI: 10.1016/j.virol.2012.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/17/2012] [Accepted: 03/13/2012] [Indexed: 02/08/2023]
Abstract
The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mice. We demonstrate that EDIII-depleted human DENV-immune serum was protective against homologous DENV infection in vivo. Although EDIII-depleted DENV-immune mouse serum demonstrated decreased neutralization potency in vitro, reduced protection in some organs, and enhanced disease in vivo, administration of increased volumes of EDIII-depleted serum abrogated these effects. These data indicate that anti-EDIII antibodies contribute to protection and minimize enhancement when present, but can be replaced by neutralizing antibodies targeting other epitopes on the dengue virion.
Collapse
Affiliation(s)
- Katherine L Williams
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | | | | | | |
Collapse
|
220
|
Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc Natl Acad Sci U S A 2012; 109:7439-44. [PMID: 22499787 DOI: 10.1073/pnas.1200566109] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dengue is a mosquito-borne flavivirus that is spreading at an unprecedented rate and has developed into a major health and economic burden in over 50 countries. Even though infected individuals develop potent and long-lasting serotype-specific neutralizing antibodies (Abs), the epitopes engaged by human neutralizing Abs have not been identified. Here, we demonstrate that the dengue virus (DENV)-specific serum Ab response in humans consists of a large fraction of cross-reactive, poorly neutralizing Abs and a small fraction of serotype-specific, potently inhibitory Abs. Although many mouse-generated, strongly neutralizing monoclonal antibodies (mAbs) recognize epitopes that are present on recombinant DENV envelope (E) proteins, unexpectedly, the majority of neutralizing Abs in human immune sera bound to intact virions but not to the ectodomain of purified soluble E proteins. These conclusions with polyclonal Abs were confirmed with newly generated human mAbs derived from DENV-immune individuals. Two of three strongly neutralizing human mAbs bound to E protein epitopes that were preserved on the virion but not on recombinant E (rE) protein. We propose that humans produce Abs that neutralize DENV infection by binding a complex, quaternary structure epitope that is expressed only when E proteins are assembled on a virus particle. Mapping studies indicate that this epitope has a footprint that spans adjacent E protein dimers and includes residues at the hinge between domains I and II of E protein. These results have significant implications for the DENV Ab and vaccine field.
Collapse
|
221
|
Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2012; 2:168-75. [PMID: 22445964 DOI: 10.1016/j.coviro.2012.02.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 11/21/2022]
Abstract
Flaviviruses are small enveloped virions that enter target cells in a pH-dependent fashion. Virus attachment, entry, and membrane fusion are orchestrated by the envelope (E) and pre-membrane (prM) proteins, the two structural proteins displayed on the surface of virions. Flaviviruses assemble as an immature non-infectious form onto which prM and E form trimeric spikes. During egress from infected cells, flaviviruses undergo dramatic structural changes characterized by the formation of a herringbone arrangement of E proteins that lie flat against the surface of the virion and cleavage of the prM protein by the cellular protease furin. The result is a relatively smooth, infectious mature virion. This dynamic process is now understood in structural detail at the atomic level. However, recent studies indicate that many of the virions released from cells share structural features of both immature and mature virus particles. These mosaic partially mature virions are infectious and interact uniquely with target cells and the host immune response. Here, we will discuss recent advances in our understanding of the biology and significance of partially mature flaviviruses.
Collapse
|
222
|
Moi ML, Lim CK, Chua KB, Takasaki T, Kurane I. Dengue virus infection-enhancing activity in serum samples with neutralizing activity as determined by using FcγR-expressing cells. PLoS Negl Trop Dis 2012; 6:e1536. [PMID: 22389741 PMCID: PMC3289619 DOI: 10.1371/journal.pntd.0001536] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/05/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo. METHODS AND FINDINGS We evaluated serum samples from 80 residents of a dengue endemic country, Malaysia, for neutralizing activity, and infection-enhancing activity at 1∶10 serum dilution by using FcγR-negative BHK cells and FcγR-expressing BHK cells. The serum samples consisted of a panel of patients with acute DENV infection (31%, 25/80) and a panel of donors without acute DENV infection (69%, 55/80). A high proportion of the tested serum samples (75%, 60/80) demonstrated DENV neutralizing activity (PRNT(50)≥10) and infection-enhancing activity. Eleven of 18 serum samples from patients with acute secondary DENV infection demonstrated neutralizing activity to the infecting serotype determined by using FcγR-negative BHK cells (PRNT(50)≥10), but not when determined by using FcγR-expressing cells. CONCLUSION Human serum samples with low neutralizing activity determined by using FcγR-negative cells showed DENV infection-enhancing activity using FcγR-expressing cells, whereas those with high neutralizing activity determined by using FcγR-negative cells demonstrate low or no infection-enhancing activity using FcγR-expressing cells. The results suggest an inverse relationship between neutralizing antibody titer and infection-enhancing activity, and that neutralizing activity determined by using FcγR-expressing cells, and not the activity determined by using FcγR-negative cells, may better reflect protection to DENV infection in vivo.
Collapse
Affiliation(s)
- Meng Ling Moi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaw Bing Chua
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Selangor, Malaysia
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ichiro Kurane
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
223
|
Abstract
The four serotypes of dengue virus present a formidable challenge for the development of efficacious human vaccines. Cockburn and colleagues, in this issue of Structure, describe the structural basis of a cross-reactive neutralizing antibody, providing greater insight into immune protection and pathogenesis.
Collapse
Affiliation(s)
- Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
224
|
Luca VC, AbiMansour J, Nelson CA, Fremont DH. Crystal structure of the Japanese encephalitis virus envelope protein. J Virol 2012; 86:2337-46. [PMID: 22156523 PMCID: PMC3302414 DOI: 10.1128/jvi.06072-11] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.
Collapse
Affiliation(s)
- Vincent C. Luca
- Department of Pathology and Immunology
- Program in Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Daved H. Fremont
- Department of Pathology and Immunology
- Program in Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
225
|
Cockburn J, Navarro Sanchez M, Fretes N, Urvoas A, Staropoli I, Kikuti C, Coffey L, Arenzana Seisdedos F, Bedouelle H, Rey F. Mechanism of Dengue Virus Broad Cross-Neutralization by a Monoclonal Antibody. Structure 2012; 20:303-14. [DOI: 10.1016/j.str.2012.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/09/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022]
|
226
|
Recombinant dengue type 2 viruses with altered e protein domain III epitopes are efficiently neutralized by human immune sera. J Virol 2012; 86:4019-23. [PMID: 22278250 DOI: 10.1128/jvi.06871-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Humans develop polyclonal, serotype-specific neutralizing antibody responses after dengue virus (DENV) infection. Many mouse antibodies that neutralize DENV bind to the lateral ridge or A strand epitopes on domain III of the viral envelope (EDIII) protein. It has been assumed that these epitopes are also the main target of human neutralizing antibodies. Using recombinant dengue serotype 2 viruses with altered EDIII epitopes, we demonstrate that EDIII epitopes are not the main target of human neutralizing antibody.
Collapse
|
227
|
Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occluded in the viral particle. J Virol 2012; 86:3635-46. [PMID: 22278249 DOI: 10.1128/jvi.06868-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are genetically and antigenically highly divergent. Monoclonal antibodies raised in mice against one kind of norovirus virus-like particle (VLP), however, were found to have broad recognition. In this study, we present the crystal structure of the antigen-binding fragment (Fab) for one of these broadly reactive monoclonal antibodies, 5B18, in complex with the capsid-protruding domain from a genogroup II genotype 10 (GII.10) norovirus at 3.3-Å resolution and, also, the cryo-electron microscopy structure of the GII.10 VLP at ∼10-Å resolution. The GII.10 VLP structure was more similar in overall architecture to the GV.1 murine norovirus virion than to the prototype GI.1 human norovirus VLP, with the GII.10 protruding domain raised ∼15 Å off the shell domain and rotated ∼40° relative to the GI.1 protruding domain. In the crystal structure, the 5B18 Fab bound to a highly conserved region of the protruding domain. Based on the VLP structure, this region is involved in interactions with other regions of the capsid and is buried in the virus particle. Despite the occluded nature of the recognized epitope in the VLP structure, enzyme-linked immunosorbent assay (ELISA) binding suggested that the 5B18 antibody was able to capture intact VLPs. Together, the results provide evidence that the norovirus particle is capable of extreme conformational flexibility, which may allow for antibody recognition of conserved surfaces that would otherwise be buried on intact particles.
Collapse
|
228
|
A novel approach for the rapid mutagenesis and directed evolution of the structural genes of west nile virus. J Virol 2012; 86:3501-12. [PMID: 22258236 DOI: 10.1128/jvi.06435-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular clone technology has proven to be a powerful tool for investigating the life cycle of flaviviruses, their interactions with the host, and vaccine development. Despite the demonstrated utility of existing molecular clone strategies, the feasibility of employing these existing approaches in large-scale mutagenesis studies is limited by the technical challenges of manipulating relatively large molecular clone plasmids that can be quite unstable when propagated in bacteria. We have developed a novel strategy that provides an extremely rapid approach for the introduction of mutations into the structural genes of West Nile virus (WNV). The backbone of this technology is a truncated form of the genome into which DNA fragments harboring the structural genes are ligated and transfected directly into mammalian cells, bypassing entirely the requirement for cloning in bacteria. The transfection of cells with this system results in the rapid release of WNV that achieves a high titer (∼10(7) infectious units/ml in 48 h). The suitability of this approach for large-scale mutagenesis efforts was established in two ways. First, we constructed and characterized a library of variants encoding single defined amino acid substitutions at the 92 residues of the "pr" portion of the precursor-to-membrane (prM) protein. Analysis of a subset of these variants identified a mutation that conferred resistance to neutralization by an envelope protein-specific antibody. Second, we employed this approach to accelerate the identification of mutations that allow escape from neutralizing antibodies. Populations of WNV encoding random changes in the E protein were produced in the presence of a potent monoclonal antibody, E16. Viruses resistant to neutralization were identified in a single passage. Together, we have developed a simple and rapid approach to produce infectious WNV that accelerates the process of manipulating the genome to study the structure and function of the structural genes of this important human pathogen.
Collapse
|
229
|
Lin HE, Tsai WY, Liu IJ, Li PC, Liao MY, Tsai JJ, Wu YC, Lai CY, Lu CH, Huang JH, Chang GJ, Wu HC, Wang WK. Analysis of epitopes on dengue virus envelope protein recognized by monoclonal antibodies and polyclonal human sera by a high throughput assay. PLoS Negl Trop Dis 2012; 6:e1447. [PMID: 22235356 PMCID: PMC3250511 DOI: 10.1371/journal.pntd.0001447] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/07/2011] [Indexed: 11/21/2022] Open
Abstract
Background The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. Methodology/Principal Findings We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. Conclusions/Significance Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level. Dengue virus is the leading cause of arboviral diseases worldwide. The envelope protein is the major target of neutralizing antibodies and vaccine development. While previous studies have reported several epitopes on envelope protein, the possibility of interdomain epitopes and the relationship of epitopes to neutralizing potency remain unexplored. We developed a high throughput dot blot assay by using 67 alanine mutants of surface-exposed envelope residues as a systematic approach to identify epitopes recognized by mouse monoclonal antibodies and polyclonal human sera. Our results suggested the presence of interdomain epitopes more frequent than previously appreciated. Compared with monoclonal antibodies generated by traditional protocol, the potent neutralizing monoclonal antibodies generated by a new protocol showed several unique features of their epitopes. Moreover, the predominant epitopes of antibodies against envelope protein in polyclonal sera can be identified by this assay. These findings have implications for future development of epitope-specific diagnostics and epitope-based dengue vaccine, and add to our understanding of humoral immune responses to dengue virus at the epitope level.
Collapse
Affiliation(s)
- Hong-En Lin
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pi-Chun Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center and Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chieh Wu
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chih-Hsuan Lu
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Hsiung Huang
- Department of Health, Center for Disease Control, Taipei, Taiwan
| | - Gwong-Jen Chang
- Division of Vector-Borne Diseases, Department of Health and Human Service, Center for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Kung Wang
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
230
|
Abstract
PURPOSE OF REVIEW Dengue is currently an expanding global health problem. Development of an effective tetravalent dengue vaccine is considered a high public health priority. The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection has made dengue vaccine development difficult. This review focuses on the current critical issues in dengue vaccine development. RECENT FINDINGS DENVs are arboviral flaviviruses transmitted by Aedes mosquitoes causing a spectrum of clinical disease. DENV infections are a significant global health problem; the WHO estimates that more than 120 countries have endemic DENV transmission resulting in 70-500 million infections, 2.1 million clinically severe cases, and 21 000 deaths annually. There are currently no licensed antivirals or vaccines to treat or prevent dengue. The DENV-host interaction of infection is unique with severe disease a consequence of sequential dengue infection, viral immune evasion, host antibody enhancement, host immune activation, and genetic predisposition. This unique pathogen-host interaction complicates dengue vaccine development and creates provocative questions in vaccine development such as identifying markers of protective immunogenicity, the potential role of antibody in vaccine failures, and the possible impact of large-scale vaccination on the evolution of wild-type DENV. SUMMARY Dengue is a unique and complex disease; developing a dengue vaccine has proven equally complex. In this review, the authors discuss issues that will prove to be critical to the success or failure of the dengue vaccine development effort.
Collapse
|
231
|
Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J Virol 2011; 86:2665-75. [PMID: 22171265 DOI: 10.1128/jvi.06335-11] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing, dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection, increasing viral replication and the release of cytokines and vasoactive mediators, culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development. Much of our understanding of this process has come from studies using mouse monoclonal antibodies (MAbs); however, antibody responses in mice typically exhibit less complexity than those in humans. A better understanding of the humoral immune response to natural dengue virus infection in humans is sorely needed. Using a high-efficiency human hybridoma technology, we isolated 37 hybridomas secreting human MAbs to dengue viruses from 12 subjects years or even decades following primary or secondary infection. The majority of the human antibodies recovered were broadly cross-reactive, directed against either envelope or premembrane proteins, and capable of enhancement of infection in vitro; few exhibited serotype-specific binding or potent neutralizing activity. Memory B cells encoding enhancing antibodies predominated in the circulation, even two or more decades following infection. Mapping the epitopes and activity of naturally occurring dengue antibodies should prove valuable in determining whether the enhancing and neutralizing activity of antibodies can be separated. Such principles could be used in the rational design of vaccines that enhance the induction of neutralizing antibodies, while lowering the risk of dengue shock syndrome.
Collapse
|
232
|
Abstract
Mannose-binding lectin (MBL) is a key soluble pathogen recognition protein of the innate immune system that binds specific mannose-containing glycans on the surfaces of microbial agents and initiates complement activation via the lectin pathway. Prior studies showed that MBL-dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains deficient in different complement components, we showed that inhibition of infection by insect cell- and mammalian cell-derived DENV was primarily dependent on the lectin pathway. Human MBL also bound to DENV and neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Experiments with human serum from naïve individuals with inherent variation in the levels of MBL in blood showed a direct correlation between the concentration of MBL and neutralization of DENV; samples with high levels of MBL in blood neutralized DENV more efficiently than those with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation, neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Moreover, we observed a direct correlation with the concentration of MBL in human serum and neutralization of DENV infection. Our studies suggest that common genetic polymorphisms that result in disparate levels and function of MBL in humans may impact DENV infection, pathogenesis, and disease severity.
Collapse
|
233
|
Conservation of the DENV-2 type-specific and DEN complex-reactive antigenic sites among DENV-2 genotypes. Virology 2011; 422:386-92. [PMID: 22153298 DOI: 10.1016/j.virol.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/29/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
The envelope (E) protein is composed of three domains (ED1, ED2 and ED3) with ED3 targeted by the most potent neutralizing antibodies. DENV-2 strains can be divided into six genotypes. Comparison of ED3 of representative strains of the six genotypes revealed that there are nine variable residues that are specific to a given genotype. Recombinant ED3s (rED3s) of six different DENV-2 strains representing all nine variable residues were expressed, and their reactivity against a panel of two DENV-2 type-specific and three DENV complex-reactive monoclonal antibodies (mAbs) were compared. The differences in binding affinity to the rED3s representing different DENV-2 genotypes were relatively small, with the exception of type-specific-mAb 3H5 that showed up to 10-fold differences in binding between genotypes. Overall the binding differences did not lead to detectable differences in neutralization. Based on these results, DENV-2 ED3-specific neutralizing antibodies will likely be effective against DENV-2 strains from all six genotypes.
Collapse
|
234
|
Cockburn JJB, Navarro Sanchez ME, Goncalvez AP, Zaitseva E, Stura EA, Kikuti CM, Duquerroy S, Dussart P, Chernomordik LV, Lai CJ, Rey FA. Structural insights into the neutralization mechanism of a higher primate antibody against dengue virus. EMBO J 2011; 31:767-79. [PMID: 22139356 DOI: 10.1038/emboj.2011.439] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/31/2011] [Indexed: 11/09/2022] Open
Abstract
The four serotypes of dengue virus (DENV-1 to -4) cause the most important emerging viral disease. Protein E, the principal viral envelope glycoprotein, mediates fusion of the viral and endosomal membranes during virus entry and is the target of neutralizing antibodies. However, the epitopes of strongly neutralizing human antibodies have not been described despite their importance to vaccine development. The chimpanzee Mab 5H2 potently neutralizes DENV-4 by binding to domain I of E. The crystal structure of Fab 5H2 bound to E from DENV-4 shows that antibody binding prevents formation of the fusogenic hairpin conformation of E, which together with in-vitro assays, demonstrates that 5H2 neutralizes by blocking membrane fusion in the endosome. Furthermore, we show that human sera from patients recovering from DENV-4 infection contain antibodies that bind to the 5H2 epitope region on domain I. This study, thus, provides new information and tools for effective vaccine design to prevent dengue disease.
Collapse
Affiliation(s)
- Joseph J B Cockburn
- Département de Virologie, Institut Pasteur, Unité de Virologie Structurale, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
The human antibody response to dengue virus infection. Viruses 2011; 3:2374-95. [PMID: 22355444 PMCID: PMC3280510 DOI: 10.3390/v3122374] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 12/11/2022] Open
Abstract
Dengue viruses (DENV) are the causative agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). Here we review the current state of knowledge about the human antibody response to dengue and identify important knowledge gaps. A large body of work has demonstrated that antibodies can neutralize or enhance DENV infection. Investigators have mainly used mouse monoclonal antibodies (MAbs) to study interactions between DENV and antibodies. These studies indicate that antibody neutralization of DENVs is a “multi-hit” phenomenon that requires the binding of multiple antibodies to neutralize a virion. The most potently neutralizing mouse MAbs bind to surface exposed epitopes on domain III of the dengue envelope (E) protein. One challenge facing the dengue field now is to extend these studies with mouse MAbs to better understand the human antibody response. The human antibody response is complex as it involves a polyclonal response to primary and secondary infections with 4 different DENV serotypes. Here we review studies conducted with immune sera and MAbs isolated from people exposed to dengue infections. Most dengue-specific antibodies in human immune sera are weakly neutralizing and bind to multiple DENV serotypes. The human antibodies that potently and type specifically neutralize DENV represent a small fraction of the total DENV-specific antibody response. Moreover, these neutralizing antibodies appear to bind to novel epitopes including complex, quaternary epitopes that are only preserved on the intact virion. These studies establish that human and mouse antibodies recognize distinct epitopes on the dengue virion. The leading theory proposed to explain the increased risk of severe disease in secondary cases is antibody dependent enhancement (ADE), which postulates that weakly neutralizing antibodies from the first infection bind to the second serotype and enhance infection of FcγR bearing myeloid cells such as monocytes and macrophages. Here we review results from human, animal and cell culture studies relevant to the ADE hypothesis. By understanding how human antibodies neutralize or enhance DENV, it will be possible to better evaluate existing vaccines and develop the next generation of novel vaccines.
Collapse
|
236
|
Sabo MC, Luca VC, Ray SC, Bukh J, Fremont DH, Diamond MS. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature. Virology 2011; 422:174-84. [PMID: 22078164 DOI: 10.1016/j.virol.2011.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 01/22/2023]
Abstract
A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation modulate epitope exposure on the conformational ensembles of HCV virions and thus, alter the potency of antibody neutralization.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
237
|
Fagundes CT, Costa VV, Cisalpino D, Souza DG, Teixeira MM. Therapeutic opportunities in dengue infection. Drug Dev Res 2011. [DOI: 10.1002/ddr.20455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
238
|
Lee TH, Song BH, Yun SI, Woo HR, Lee YM, Diamond MS, Chung KM. A cross-protective mAb recognizes a novel epitope within the flavivirus NS1 protein. J Gen Virol 2011; 93:20-26. [PMID: 21918007 DOI: 10.1099/vir.0.036640-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite a resurgence of flavivirus infections worldwide, no approved therapeutic agent exists for any member of the genus. While cross-reactive antibodies with therapeutic potential against flaviviruses have been generated, the majority of them are anti-E antibodies with the potential to cause antibody-dependent enhancement of flavivirus infection and disease. We described previously mAbs against the non-structural NS1 protein of the West Nile virus (WNV) that were protective in mice when administered pre- or post-infection of WNV. Here, we demonstrate that one of these mAbs (16NS1) cross-reacted with Japanese encephalitis virus (JEV) and exhibited protective activity against a lethal JEV infection. Overlapping peptide mapping analysis combined with site-specific mutations identified a novel epitope ¹¹⁶KAWGKSILFA¹²⁵ and critical amino acid residues (¹¹⁸W and ¹²²I) for 16NS1 mAb binding. These results may facilitate the development of a broadly therapeutic mAb that lacks enhancing potential and/or subunit-based vaccine against flaviviruses that target the NS1 protein.
Collapse
Affiliation(s)
- Tae Hee Lee
- Institute for Medical Science, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Republic of Korea.,Department of Microbiology and Immunology, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Republic of Korea
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences and Utah Science Technology and Research (USTAR), College of Agriculture, Utah State University, Logan, UT 84322-4815, USA.,Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences and Utah Science Technology and Research (USTAR), College of Agriculture, Utah State University, Logan, UT 84322-4815, USA.,Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hye Ryun Woo
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences and Utah Science Technology and Research (USTAR), College of Agriculture, Utah State University, Logan, UT 84322-4815, USA.,Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kyung Min Chung
- Institute for Medical Science, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Republic of Korea.,Department of Microbiology and Immunology, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Republic of Korea
| |
Collapse
|
239
|
Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 2011; 11:532-43. [PMID: 21760609 DOI: 10.1038/nri3014] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dengue is a mosquito-borne viral disease of expanding geographical range and incidence. The existence of four viral serotypes and the association of prior dengue virus infection with an increased risk for more severe disease have presented significant obstacles to vaccine development. An increased understanding of the adaptive immune response to natural dengue virus infection and candidate dengue vaccines has helped to define the specific antibody and T cell responses that are associated with either protective or pathological immunity during dengue infection. Further characterization of immunological correlates of disease outcome and the validation of these findings in vaccine trials will be invaluable for developing effective dengue vaccines.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island 02903, USA.
| |
Collapse
|
240
|
Abstract
BACKGROUND Infection by mosquito-borne flaviviruses (family Flaviviridae) is increasing in prevalence worldwide. The vast global, social and economic impact due to the morbidity and mortality associated with the diseases caused by these viruses necessitates therapeutic intervention. There is currently no effective clinical treatment for any flaviviral infection. Therefore, there is a great need for the identification of novel inhibitors to target the virus life cycle. DISCUSSION In this article, we discuss structural and nonstructural viral proteins that are the focus of current target validation and drug discovery efforts. Both inhibition of essential enzymatic activities and disruption of necessary protein–protein interactions are considered. In addition, we address promising new targets for future research. CONCLUSION As our molecular and biochemical understanding of the flavivirus life cycle increases, the number of targets for antiviral therapeutic discovery grows and the possibility for novel drug discovery continues to strengthen.
Collapse
|
241
|
Dowd KA, Jost CA, Durbin AP, Whitehead SS, Pierson TC. A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog 2011; 7:e1002111. [PMID: 21738473 PMCID: PMC3128118 DOI: 10.1371/journal.ppat.1002111] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/24/2011] [Indexed: 12/03/2022] Open
Abstract
Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization. Neutralizing antibodies are a critical aspect of protection from flavivirus infection. The primary targets of neutralizing antibodies are the envelope (E) proteins incorporated into virions. The neutralizing activity of antibodies is determined by the affinity with which they interact with the virion, and the total number of sites available for binding. In this study, we investigate the impact of dynamic motion of the viral E proteins on antibody-mediated neutralization. Using panels of monoclonal antibodies and immune sera, we demonstrate that the dynamic motion of virions significantly impacts antibody-mediated neutralization of West Nile and dengue viruses by modulating epitope accessibility. Increasing the length of the interactions between antibody and virus resulted in increased neutralization reflecting engagement of epitopes that are not exposed on the surface of the virion in its average state, but instead become accessible through the dynamic motion of E proteins. While examples of the impact of structural dynamics on antibody binding have been described previously, our data suggests this phenomenon plays a role in neutralization by all antibodies that bind the array of E proteins on the virion. Our data identifies epitope accessibility as a critical, yet dynamic, factor that governs the neutralizing activity of anti-flavivirus antibodies.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christiane A. Jost
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna P. Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
242
|
de Alwis R, Beltramello M, Messer WB, Sukupolvi-Petty S, Wahala WMPB, Kraus A, Olivarez NP, Pham Q, Brian J, Tsai WY, Wang WK, Halstead S, Kliks S, Diamond MS, Baric R, Lanzavecchia A, Sallusto F, de Silva AM. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis 2011; 5:e1188. [PMID: 21713020 PMCID: PMC3119640 DOI: 10.1371/journal.pntd.0001188] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/12/2011] [Indexed: 11/18/2022] Open
Abstract
Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization.
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | - William B. Messer
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and the Midwest Regional Center for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wahala M. P. B. Wahala
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Annette Kraus
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nicholas P. Olivarez
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Quang Pham
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - James Brian
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and the Midwest Regional Center for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Scott Halstead
- Pediatric Dengue Vaccine Initiative, International Vaccine Institute, Seoul, Korea
| | - Srisakul Kliks
- Pediatric Dengue Vaccine Initiative, International Vaccine Institute, Seoul, Korea
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and the Midwest Regional Center for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ralph Baric
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | | | - Aravinda M. de Silva
- Department of Microbiology and Immunology, and the Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
243
|
Structural basis for the neutralization and genotype specificity of hepatitis E virus. Proc Natl Acad Sci U S A 2011; 108:10266-71. [PMID: 21642534 DOI: 10.1073/pnas.1101309108] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) causes acute hepatitis in humans, predominantly by contamination of food and water, and is characterized by jaundice and flu-like aches and pains. To date, no vaccines are commercially available to prevent the disease caused by HEV. Previously, we showed that a monoclonal antibody, 8C11, specifically recognizes a neutralizing conformational epitope on HEV genotype I. The antibody 8C11 blocks the virus-like particle from binding to and penetrating the host cell. Here, we report the complex crystal structure of 8C11 Fab with HEV E2s(I) domain at 1.9 Å resolution. The 8C11 epitopes on E2s(I) were identified at Asp(496)-Thr(499), Val(510)-Leu(514), and Asn(573)-Arg(578). Mutations and cell-model assays identified Arg(512) as the most crucial residue for 8C11 interaction with and neutralization of HEV. Interestingly, 8C11 specifically neutralizes HEV genotype I, but not the other genotypes. Because HEV type I and IV are the most abundant genotypes, to understand this specificity further we determined the structure of E2s(IV) at 1.79 Å resolution and an E2s(IV) complex with 8C11 model was generated. The comparison between the 8C11 complexes with type I and IV revealed the key residues that distinguish these two genotypes. Of particular interest, the residue at amino acid position 497 at the 8C11 epitope region of E2s is distinct among these two genotypes. Swapping this residue from one genotype to another inversed the 8C11 reactivity, demonstrating the essential role played by amino acid 497 in the genotype recognition. These studies may lead to the development of antibody-based drugs for the specific treatment against HEV.
Collapse
|
244
|
Dowd KA, Pierson TC. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology 2011; 411:306-15. [PMID: 21255816 PMCID: PMC3100196 DOI: 10.1016/j.virol.2010.12.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 12/28/2022]
Abstract
Flaviviruses are a group of ~70 small RNA viruses responsible for significant morbidity and mortality across the globe. Efforts to develop effective vaccines for several clinically important flaviviruses are underway. Antibodies are a significant component of the host's protective response against flavivirus infection with the potential to contribute to immunity via several distinct mechanisms, including an ability to directly neutralize virus infection. Conversely, virus-reactive antibodies have been implicated in the increased risk of severe clinical manifestations following secondary dengue virus infection. In this review, we will discuss recent progress toward understanding the molecular basis of antibody-mediated neutralization of flaviviruses. Neutralization requires engagement of the virion with a stoichiometry that exceeds a required threshold. From this perspective, we will discuss viral and host factors that impact the number of antibody molecules bound to the virus particle and significantly modulate the potency of neutralizing antibodies.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
245
|
Zlatkovic J, Stiasny K, Heinz FX. Immunodominance and functional activities of antibody responses to inactivated West Nile virus and recombinant subunit vaccines in mice. J Virol 2011; 85:1994-2003. [PMID: 21147919 PMCID: PMC3067796 DOI: 10.1128/jvi.01886-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/01/2010] [Indexed: 12/30/2022] Open
Abstract
Factors controlling the dominance of antibody responses to specific sites in viruses and/or protein antigens are ill defined but can be of great importance for the induction of potent immune responses to vaccines. West Nile virus and other related important human-pathogenic flaviviruses display the major target of neutralizing antibodies, the E protein, in an icosahedral shell at the virion surface. Potent neutralizing antibodies were shown to react with the upper surface of domain III (DIII) of this protein. Using the West Nile virus system, we conducted a study on the immunodominance and functional quality of E-specific antibody responses after immunization of mice with soluble protein E (sE) and isolated DIII in comparison to those after immunization with inactivated whole virions. With both virion and sE, the neutralizing response was dominated by DIII-specific antibodies, but the functionality of these antibodies was almost four times higher after virion immunization. Antibodies induced by the isolated DIII had an at least 15-fold lower specific neutralizing activity than those induced by the virion, and only 50% of these antibodies were able to bind to virus particles. Our results suggest that immunization with the tightly packed E in virions focuses the DIII antibody response to the externally exposed sites of this domain which are the primary targets for virus neutralization, different from sE and isolated DIII, which also display protein surfaces that are cryptic in the virion. Despite its low potency for priming, DIII was an excellent boosting antigen, suggesting novel vaccination strategies that strengthen and focus the antibody response to critical neutralizing sites in DIII.
Collapse
Affiliation(s)
- Juergen Zlatkovic
- Department of Virology, Medical University of Vienna, Vienna A-1095, Austria
| | - Karin Stiasny
- Department of Virology, Medical University of Vienna, Vienna A-1095, Austria
| | - Franz X. Heinz
- Department of Virology, Medical University of Vienna, Vienna A-1095, Austria
| |
Collapse
|
246
|
Ruprecht CR, Krarup A, Reynell L, Mann AM, Brandenberg OF, Berlinger L, Abela IA, Regoes RR, Günthard HF, Rusert P, Trkola A. MPER-specific antibodies induce gp120 shedding and irreversibly neutralize HIV-1. ACTA ACUST UNITED AC 2011; 208:439-54. [PMID: 21357743 PMCID: PMC3058584 DOI: 10.1084/jem.20101907] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibody-mediated gp120 shedding and HIV neutralization exhibit similar kinetics and thermodynamic requirements. Interference with virus entry is known to be the principle mechanism of HIV neutralization by antibodies, including 2F5 and 4E10, which bind to the membrane-proximal external region (MPER) of the gp41 envelope protein. However, to date, the precise molecular events underlying neutralization by MPER-specific antibodies remain incompletely understood. In this study, we investigated the capacity of these antibodies to irrevocably sterilize HIV virions. Long-term effects of antibodies on virions can differ, rendering neutralization either reversible or irreversible. MPER-specific antibodies irreversibly neutralize virions, and this capacity is associated with induction of gp120 shedding. Both processes have similar thermodynamic properties and slow kinetics requiring several hours. Antibodies directed to the CD4 binding site, V3 loop, and the MPER can induce gp120 shedding, and shedding activity is detected with high frequency in plasma from patients infected with divergent genetic HIV-1 subtypes. Importantly, as we show in this study, induction of gp120 shedding is closely associated with MPER antibody inhibition, constituting either a primary event leading to virion neutralization or representing an immediate consequence thereof, and thus needs to be factored into the mechanistic processes underlying their activity.
Collapse
|
247
|
Deng YQ, Dai JX, Ji GH, Jiang T, Wang HJ, Yang HO, Tan WL, Liu R, Yu M, Ge BX, Zhu QY, Qin ED, Guo YJ, Qin CF. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PLoS One 2011; 6:e16059. [PMID: 21264311 PMCID: PMC3019176 DOI: 10.1371/journal.pone.0016059] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/06/2010] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1–4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1–4, YFV, and WNV and confers protection from lethal challenge with DENV 1–4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans.
Collapse
Affiliation(s)
- Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian-Xin Dai
- International Joint Cancer Institute, Second Military Medical University, Shanghai, China
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
| | - Guang-Hui Ji
- International Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua-Jing Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai, China
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
| | - Hai-ou Yang
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
| | - Weng-Long Tan
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
| | - Ran Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Man Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Xue Ge
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing-Yu Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - E-De Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Jun Guo
- International Joint Cancer Institute, Second Military Medical University, Shanghai, China
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- * E-mail: (YJG); (CFQ)
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YJG); (CFQ)
| |
Collapse
|
248
|
Midgley CM, Bajwa-Joseph M, Vasanawathana S, Limpitikul W, Wills B, Flanagan A, Waiyaiya E, Tran HB, Cowper AE, Chotiyarnwon P, Grimes JM, Yoksan S, Malasit P, Simmons CP, Mongkolsapaya J, Screaton GR. An in-depth analysis of original antigenic sin in dengue virus infection. J Virol 2011; 85:410-21. [PMID: 20980526 PMCID: PMC3014204 DOI: 10.1128/jvi.01826-10] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/14/2010] [Indexed: 01/06/2023] Open
Abstract
The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.
Collapse
Affiliation(s)
- Claire M. Midgley
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Martha Bajwa-Joseph
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sirijitt Vasanawathana
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Wannee Limpitikul
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Bridget Wills
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Aleksandra Flanagan
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Emily Waiyaiya
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Hai Bac Tran
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Alison E. Cowper
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Pojchong Chotiyarnwon
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Jonathan M. Grimes
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sutee Yoksan
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Prida Malasit
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Cameron P. Simmons
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Juthathip Mongkolsapaya
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Gavin R. Screaton
- Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Paediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand, Paediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam, Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand, Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Medical Biotechnology Unit, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
249
|
Murrell S, Wu SC, Butler M. Review of dengue virus and the development of a vaccine. Biotechnol Adv 2010; 29:239-47. [PMID: 21146601 DOI: 10.1016/j.biotechadv.2010.11.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/28/2010] [Accepted: 11/29/2010] [Indexed: 01/28/2023]
Abstract
Dengue viral infection has become an increasing global health concern with over two-fifths of the world's population at risk of infection. It is the most rapidly spreading vector borne disease, attributed to changing demographics, urbanization, environment, and global travel. It continues to be a threat in over 100 tropical and sub-tropical countries, affecting predominantly children. Dengue also carries a hefty financial burden on the health care systems in affected areas, as those infected seek care for their symptoms. The search for a suitable vaccine for dengue has been ongoing for the last sixty years, yet any effective treatment or vaccine remains elusive. A vaccine must be protective for all four serotypes of dengue and be cost-effective. Many approaches to developing candidate vaccines have been employed. The candidates include live attenuated tetravalent vaccines, chimeric tetravalent vaccines based on attenuated dengue virus or Yellow Fever 17D, and recombinant DNA vaccines based on flavivirus and non-flavivirus vectors. This review outlines the challenges involved in dengue vaccine development and presents the current stages of proposed vaccine candidate development.
Collapse
Affiliation(s)
- Sarah Murrell
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
250
|
Guzman MG, Vazquez S. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2010; 2:2649-62. [PMID: 21994635 PMCID: PMC3185591 DOI: 10.3390/v2122649] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022] Open
Abstract
Antibody-dependent enhancement (ADE) has been proposed as a mechanism to explain dengue hemorrhagic fever (DHF) in the course of a secondary dengue infection. Very recently, Dejnirattisai et al., 2010 [1], published an important article supporting the involvement of anti-prM antibodies in the ADE phenomenon. The complexity of ADE in the context of a secondary dengue infection is discussed here.
Collapse
Affiliation(s)
- Maria G. Guzman
- Department of Virology, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, “Pedro Kouri” Tropical Medicine Institute of Havana, Cuba; E-Mail:
| | - Susana Vazquez
- Department of Virology, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, “Pedro Kouri” Tropical Medicine Institute of Havana, Cuba; E-Mail:
| |
Collapse
|