201
|
Wang Y, Wu J, Zhang M, OuYang H, Li M, Jia D, Wang R, Zhou W, Liu H, Hu Y, Yao Y, Liu Y, Ji Y. Cadmium exposure during puberty damages testicular development and spermatogenesis via ferroptosis caused by intracellular iron overload and oxidative stress in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121434. [PMID: 36907243 DOI: 10.1016/j.envpol.2023.121434] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a widespread environmental pollutant and a reproductive toxicant. It has been proved that Cd can reduce male fertility, however, the molecular mechanisms remain unveiled. This study aims to explore the effects and mechanisms of pubertal Cd exposure on testicular development and spermatogenesis. The results showed that Cd exposure during puberty could cause pathological damage to testes and reduce sperm counts in mice in adulthood. Moreover, Cd exposure during puberty reduced GSH content, induced iron overload and ROS production in testes, suggesting that Cd exposure during puberty may induce testicular ferroptosis. The results in vitro experiments further strengthened that Cd caused iron overload and oxidative stress, and decreased MMP in GC-1 spg cells. In addition, Cd disturbed intracellular iron homeostasis and peroxidation signal pathway based on transcriptomics analysis. Interestingly, these changes induced by Cd could be partially suppressed by pretreated with ferroptotic inhibitors, Ferrostatin-1 and Deferoxamine mesylate. In conclusion, the study demonstrated that Cd exposure during puberty maybe disrupted intracellular iron metabolism and peroxidation signal pathway, triggered ferroptosis in spermatogonia, and ultimately damaged testicular development and spermatogenesis in mice in adulthood.
Collapse
Affiliation(s)
- Yi Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Huijuan OuYang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Didi Jia
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Weiyi Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Hu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyou Yao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - YanLi Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
202
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
203
|
Zhou D, Xu Z, Huang Y, Wang H, Zhu X, Zhang W, Song W, Gao T, Liu T, Wang M, Shi L, Zhang N, Xiong B. Structure-based discovery of potent USP28 inhibitors derived from Vismodegib. Eur J Med Chem 2023; 254:115369. [PMID: 37075624 DOI: 10.1016/j.ejmech.2023.115369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Ubiquitin-specific proteases (USPs) 28 is overexpressed in multiple types of cancers. The development of potent USP28 inhibitors is still in primitive stage. We previously reported our discovery of Vismodegib as a USP28 inhibitor by screening a commercially available drug library. Herein, we report our efforts to solve the cocrystal structure of Vismodegib bound to USP28 for the first time and subsequent structure-based optimization leading to a series of Vismodegib derivatives as potent USP28 inhibitors. Based on the cocrystal structure, elaborative SARs exploration was carried out to afford much more potent USP28 inhibitors than Vismodegib. The representative compounds 9l, 9o and 9p bearing high potency on USP28 showed high selectivity over USP2, USP7, USP8, USP9x, UCHL3 and UCHL5. The detailed cellular assay suggested that compounds 9l, 9o and 9p could cause cytotoxicity in both human colorectal cancer and lung squamous carcinoma cells and significantly enhance the sensitivity of colorectal cancer cells to Regorafenib. Further immunoblotting analysis indicated that compounds 9l, 9o and 9p could dose-dependently down-regulate the cellular level of c-Myc through ubiquitin-proteasome system and anti-cancer effects could mainly be attributed to their inhibition on USP28 but not involving the Hedgehog-Smoothened pathway. Thus, our work provided a series of novel and potent USP28 inhibitors derived from Vismodegib and may contribute to the development of USP28 inhibitors.
Collapse
Affiliation(s)
- Di Zhou
- Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, Anhui, 230012, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Zhuo Xu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Yaodong Huang
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Hui Wang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
| | - Xiaoli Zhu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Wentao Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Weiwei Song
- Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, Anhui, 230012, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Tong Gao
- Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, Anhui, 230012, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
| | - Meng Wang
- Shanghai Chemvon Biotechnology Company (Limited), Shanghai, 201202, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China.
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China.
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China.
| |
Collapse
|