201
|
Shi Y, van der Meel R, Theek B, Blenke EO, Pieters EH, Fens MH, Ehling J, Schiffelers RM, Storm G, van Nostrum CF, Lammers T, Hennink WE. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles. ACS NANO 2015; 9:3740-52. [PMID: 25831471 PMCID: PMC4523313 DOI: 10.1021/acsnano.5b00929] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achiv prolonged circulation kinetics. As a result, PTX deposition in tumors is increased, while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed PTX-loaded micelles which are stable without chemical cross-linking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses, while they induced complete tumor regression in two different xenograft models (i.e., A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index.
Collapse
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Roy van der Meel
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Benjamin Theek
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Erik Oude Blenke
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Ebel H.E. Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Marcel H.A.M. Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Twan Lammers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
202
|
Soleimani A, Moustafa MMAR, Borecki A, Gillies ER. A comparison of covalent and noncovalent strategies for paclitaxel release using poly(ester amide) graft copolymer micelles. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Micelles formed from amphiphilic copolymers are promising for the delivery of drug molecules, potentially leading to enhanced properties and efficacies. Critical aspects of these systems include the use of biocompatible, biodegradable polymer backbones as well as the ability to control the incorporation of drugs and their release rates. In this work, a poly(ester amide)–poly(ethylene oxide) graft copolymer with paclitaxel conjugated via ester linkages was prepared and assembled into micelles. For comparison, micelles with physically encapsulated paclitaxel were also prepared. The release rates of these two systems were studied, and the micelles with covalently conjugated paclitaxel exhibited a prolonged release of the drug in comparison to the noncovalent system, which rapidly released the payload. In vitro studies suggested that the poly(ester amide)–poly(ethylene oxide) copolymers were nontoxic, whereas the toxicities of the drug-loaded micelles were dependent on their release rates. Overall, these systems are promising for further development as anticancer drug carriers.
Collapse
Affiliation(s)
- Abdolrasoul Soleimani
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | | | - Aneta Borecki
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
| |
Collapse
|
203
|
Yamamoto Y, Hyodo I, Koga Y, Tsumura R, Sato R, Obonai T, Fuchigami H, Furuya F, Yasunaga M, Harada M, Kato Y, Ohtsu A, Matsumura Y. Enhanced antitumor effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models. Cancer Sci 2015; 106:627-34. [PMID: 25711681 PMCID: PMC4452165 DOI: 10.1111/cas.12645] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/07/2015] [Accepted: 02/20/2015] [Indexed: 12/23/2022] Open
Abstract
For the creation of a successful antibody–drug conjugate (ADC), both scientific and clinical evidence has indicated that highly toxic anticancer agents (ACA) should be conjugated to a monoclonal antibody (mAb) to administer a reasonable amount of ADC to patients without compromising the affinity of the mAb. For ordinary ACA, the conjugation of a mAb to ACA-loaded micellar nanoparticles is clinically applicable. Tissue factor (TF) is often overexpressed in various cancer cells and tumor vascular endothelium. Accordingly, anti-TF-NC-6300, consisting of epirubicin-incorporating micelles (NC-6300) conjugated with the F(ab')2 of anti-TF mAb was developed. The in vitro and in vivo efficacy and pharmacokinetics of anti-TF-NC-6300 were compared to NC-6300 using two human pancreatic cancer cell lines, BxPC3 (high TF expression) and SUIT2 (low TF expression), and a gastric cancer cell line, 44As3 (high TF expression). The intracellular uptake of epirubicin was faster and greater in BxPC3 cells treated with anti-TF-NC-6300, compared with NC-6300. Anti-TF-NC-6300 showed a superior antitumor activity in BxPC3 and 44As3 xenografts, compared with NC-6300, while the activities of both micelles were similar in the SUIT2 xenograft. A higher tumor accumulation of anti-TF-NC-6300 compared to NC-6300 was seen, regardless of the TF expression levels. However, anti-TF-NC-6300 appeared to be localized to the tumor cells with high TF expression. These results indicated that the enhanced antitumor effect of anti-TF-NC6300 may be independent of the tumor accumulation but may depend on the selective intratumor localization and the preferential internalization of anti-TF-NC-6300 into high TF tumor cells.
Collapse
Affiliation(s)
- Yoshiyuki Yamamoto
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ryo Tsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ryuta Sato
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toshihumi Obonai
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hirobumi Fuchigami
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Fumiaki Furuya
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Yasuki Kato
- Research Division, NanoCarrier Co. Ltd., Kashiwa, Japan
| | - Atsushi Ohtsu
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
204
|
Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging. J Control Release 2015; 206:153-60. [PMID: 25776738 DOI: 10.1016/j.jconrel.2015.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters.
Collapse
|
205
|
Nakayama M, Akimoto J, Okano T. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 2015; 22:584-99. [PMID: 25012066 DOI: 10.3109/1061186x.2014.936872] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the 1990s, nanoscale drug carriers have played a pivotal role in cancer chemotherapy, acting through passive drug delivery mechanisms and subsequent pharmaceutical action at tumor tissues with reduction of adverse effects. Polymeric micelles, as supramolecular assemblies of amphiphilic polymers, have been considerably developed as promising drug carrier candidates, and a number of clinical studies of anticancer drug-loaded polymeric micelle carriers for cancer chemotherapy applications are now in progress. However, these systems still face several issues; at present, the simultaneous control of target-selective delivery and release of incorporated drugs remains difficult. To resolve these points, the introduction of stimuli-responsive mechanisms to drug carrier systems is believed to be a promising approach to provide better solutions for future tumor drug targeting strategies. As possible trigger signals, biological acidic pH, light, heating/cooling and ultrasound actively play significant roles in signal-triggering drug release and carrier interaction with target cells. This review article summarizes several molecular designs for stimuli-responsive polymeric micelles in response to variation of pH, light and temperature and discusses their potentials as next-generation tumor drug targeting systems.
Collapse
Affiliation(s)
- Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns) , Kawada-Cho, Shinjuku-ku, Tokyo , Japan
| | | | | |
Collapse
|
206
|
|
207
|
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:691-707. [PMID: 25683687 DOI: 10.1002/wnan.1332] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 01/01/2023]
Abstract
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers, are widely considered as convenient nano-carriers for a variety of applications, such as diagnostic imaging, and drug and gene delivery. They have demonstrated a variety of favorable properties including biocompatibility, longevity, high stability in vitro and in vivo, capacity to effectively solubilize a variety of poorly soluble drugs, changing the release profile of the incorporated pharmaceutical agents, and the ability to accumulate in the target zone based on the enhanced permeability and retention effect. Moreover, additional functions can be imparted to the micelle-based delivery systems by engineering their surface for specific applications. Various targeting ligands can be attached for cell or intracellular accumulation at a site of interest. Also, the chelation or incorporation of imaging moieties into the micelle structure enables in vivo biodistribution studies. Moreover, pH-, thermo-, ultrasound-, enzyme- and light-sensitive block-copolymers allow for controlled micelle dissociation and triggered drug release in response to the pathological environment-specific stimuli and/or externally applied signals. The combination of these approaches can further improve specificity and efficacy of micelle-based drug delivery to promote the development of smart multifunctional micelles.
Collapse
Affiliation(s)
- Sara Movassaghian
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
208
|
Ring-opening polymerization of ε-caprolactone initiated by ganciclovir (GCV) for the preparation of GCV-tagged polymeric micelles. Molecules 2015; 20:2857-67. [PMID: 25675152 PMCID: PMC6272954 DOI: 10.3390/molecules20022857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/03/2015] [Indexed: 11/21/2022] Open
Abstract
Ganciclovir (GCV) is a nucleoside analogue with antiviral activity against herpes viral infections, and the most widely used antiviral to treat cytomegalovirus infections. However, the low bioavailability and short half-life of GCV necessitate the development of a carrier for sustained delivery. In this study, guanosine-based GCV was used as the initiator directly in ring-opening polymerization of ε-caprolactone (ε-CL) to form hydrophobic GCV-poly(caprolactone) (GCV-PCL) which was then grafted with hydrophilic chitosan to form amphiphilic copolymers for the preparation of stable micellar nanoparticles. Successful synthesis of GCV-PCL and GCV-PCL-chitosan were verified by 1H-NMR analysis. Self-assembled micellar nanoparticles were characterized by dynamic light scattering and zetasizer with an average size of 117 nm and a positive charge of 24.2 mV. The drug release kinetics of GCV was investigated and cytotoxicity assay demonstrated that GCV-tagged polymeric micelles were non-toxic. Our results showed that GCV could be used directly in the initiation of ring-opening polymerization of ε-CL and non-toxic polymeric micelles for GCV delivery can be formed.
Collapse
|
209
|
Jin X, Zhou B, Xue L, San W. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed Pharmacother 2015; 69:388-95. [DOI: 10.1016/j.biopha.2014.12.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022] Open
|
210
|
Amphiphilic poly(amino acid) based micelles applied to drug delivery: The in vitro and in vivo challenges and the corresponding potential strategies. J Control Release 2015; 199:84-97. [DOI: 10.1016/j.jconrel.2014.12.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
|
211
|
Talelli M, Barz M, Rijcken CJ, Kiessling F, Hennink WE, Lammers T. Core-Crosslinked Polymeric Micelles: Principles, Preparation, Biomedical Applications and Clinical Translation. NANO TODAY 2015; 10:93-117. [PMID: 25893004 PMCID: PMC4398985 DOI: 10.1016/j.nantod.2015.01.005] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polymeric micelles (PM) are extensively used to improve the delivery of hydrophobic drugs. Many different PM have been designed and evaluated over the years, and some of them have steadily progressed through clinical trials. Increasing evidence suggests, however, that for prolonged circulation times and for efficient EPR-mediated drug targeting to tumors and to sites of inflammation, PM need to be stabilized, to prevent premature disintegration. Core-crosslinking is among the most popular methods to improve the in vivo stability of PM, and a number of core-crosslinked polymeric micelles (CCPM) have demonstrated promising efficacy in animal models. The latter is particularly true for CCPM in which (pro-) drugs are covalently entrapped. This ensures proper drug retention in the micelles during systemic circulation, efficient drug delivery to pathological sites via EPR, and tailorable drug release kinetics at the target site. We here summarize recent advances in the CCPM field, addressing the chemistry involved in preparing them, their in vitro and in vivo performance, potential biomedical applications, and guidelines for efficient clinical translation.
Collapse
Affiliation(s)
- Marina Talelli
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Twan Lammers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Controlled Drug Delivery, University of Twente and MIRA Institute for Biomedical Technology and Technical Medicine, Enschede, The Netherlands
| |
Collapse
|
212
|
Zhang F, Zhang S, Pollack SF, Li R, Gonzalez AM, Fan J, Zou J, Leininger SE, Pavía-Sanders A, Johnson R, Nelson LD, Raymond JE, Elsabahy M, Hughes DMP, Lenox MW, Gustafson TP, Wooley KL. Improving Paclitaxel Delivery: In Vitro and In Vivo Characterization of PEGylated Polyphosphoester-Based Nanocarriers. J Am Chem Soc 2015; 137:2056-66. [DOI: 10.1021/ja512616s] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Laura D. Nelson
- Department
of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | - Mahmoud Elsabahy
- Department
of Pharmaceutics, and Assiut International Center of Nanomedicine,
Al-Rajhy Liver Hospital, Assiut University, 71515 Assiut, Egypt
| | - Dennis M. P. Hughes
- Department
of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | | |
Collapse
|
213
|
Lytton-Jean AKR, Kauffman KJ, Kaczmarek JC, Langer R. Cancer nanotherapeutics in clinical trials. Cancer Treat Res 2015; 166:293-322. [PMID: 25895874 DOI: 10.1007/978-3-319-16555-4_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To be legally sold in the United States, all drugs must go through the FDA approval process. This chapter introduces the FDA approval process and describes the clinical trials required for a drug to gain approval. We then look at the different cancer nanotherapeutics and in vivo diagnostics that are currently in clinical trials or have already received approval. These nanotechnologies are catagorized and described based on the delivery vehicle: liposomes, polymer micelles, albumin-bound chemotherapeutics, polymer-bound chemotherapeutics, and inorganic particles.
Collapse
Affiliation(s)
- Abigail K R Lytton-Jean
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | | |
Collapse
|
214
|
Lee HY, Jeong YI, Kim EJ, Lee KD, Choi SH, Kim YJ, Kim DH, Choi KC. Preparation of Caffeic Acid Phenethyl Ester-Incorporated Nanoparticles and Their Biological Activity. J Pharm Sci 2015; 104:144-54. [DOI: 10.1002/jps.24278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/14/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
|
215
|
Hu J, He J, Cao D, Zhang M, Ni P. Core cross-linked polyphosphoester micelles with folate-targeted and acid-cleavable features for pH-triggered drug delivery. Polym Chem 2015. [DOI: 10.1039/c5py00023h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel folate-conjugated acid-cleavable core cross-linked polyphosphoester micelles have been prepared and used for pH and enzyme-triggered delivery of doxorubicin.
Collapse
Affiliation(s)
- Jian Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Dongling Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| |
Collapse
|
216
|
Han HS, Choi KY, Ko H, Jeon J, Saravanakumar G, Suh YD, Lee DS, Park JH. Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. J Control Release 2014; 200:158-66. [PMID: 25550153 DOI: 10.1016/j.jconrel.2014.12.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 12/24/2014] [Indexed: 12/11/2022]
Abstract
For drug delivery nanocarriers to be a safe and effective therapeutic option, blood stability, tumor-targetability, and intracellular drug release features should be considered. In this study, to develop a potent drug delivery carrier that can meet the multiple requirements, we engineered a bioreducible core-crosslinked polymeric micelle based on hyaluronic acid (CC-HAM) by a facile method using d,l-dithiothreitol in aqueous conditions. The CC-HAM exhibited enhanced structural stability under diluted conditions with PBS containing FBS or sodium dodecyl sulfates. We also successfully encapsulated doxorubicin (DOX), chosen as a hydrophobic anti-cancer drug, in CC-HAMs with high loading efficiency (>80%). The drug release rate of CC-HAMs was rapidly accelerated in the presence of glutathione, whereas the drug release was significantly retarded in physiological buffer (pH7.4). An in vivo biodistribution study demonstrated the superior tumor targetability of CC-HAMs to that of non-crosslinked HAMs, primarily ascribed to robust stability of CC-HAMs in the bloodstream. Notably, these results correspond with the improved pharmacokinetics and tumor accumulation of DOX-loaded CC-HAMs as well as their excellent therapeutic efficacy. Overall, these results suggest that the robust, bioreducible CC-HAM can be applied as a potent doxorubicin delivery carrier for targeted cancer therapy.
Collapse
Affiliation(s)
- Hwa Seung Han
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ki Young Choi
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences Technology, SAIHST, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - G Saravanakumar
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yung Doug Suh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Health Sciences Technology, SAIHST, Sungkyunkwan University, Suwon 440-746, Republic of Korea; NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea.
| |
Collapse
|
217
|
Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. NANOSCALE RESEARCH LETTERS 2014; 9:2406. [PMID: 26088982 PMCID: PMC4493852 DOI: 10.1186/1556-276x-9-684] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 05/04/2023]
Abstract
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.
Collapse
Affiliation(s)
- Linghui Dian
- />School of Pharmaceutical Sciences, Guangdong Medical College, Xincheng Road 1, Dongguan, 523808 Guangdong People’s Republic of China
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Enjiang Yu
- />School of Pharmaceutical Sciences, Guangdong Medical College, Xincheng Road 1, Dongguan, 523808 Guangdong People’s Republic of China
| | - Xiaona Chen
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Xinguo Wen
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Zhengzan Zhang
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Lingzhen Qin
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Qingqing Wang
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Ge Li
- />R&D Center of Pharmaceutical Engineering, Sun Yat-sen University, Waihuan Road 132, Guangzhou, 510006 Guangdong People’s Republic of China
| | - Chuanbin Wu
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
- />R&D Center of Pharmaceutical Engineering, Sun Yat-sen University, Waihuan Road 132, Guangzhou, 510006 Guangdong People’s Republic of China
| |
Collapse
|
218
|
Yen HC, Cabral H, Mi P, Toh K, Matsumoto Y, Liu X, Koori H, Kim A, Miyazaki K, Miura Y, Nishiyama N, Kataoka K. Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy. ACS NANO 2014; 8:11591-11602. [PMID: 25333568 DOI: 10.1021/nn504836s] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanomedicines capable of smart operation at the targeted site have the potential to achieve the utmost therapeutic benefits. Providing nanomedicines that respond to endogenous stimuli with an additional external trigger may improve the spatiotemporal control of their functions, while avoiding drawbacks from their inherent tissue distribution. Herein, by exploiting the permeabilization of endosomes induced by photosensitizer agents upon light irradiation, we complemented the intracellular action of polymeric micelles incorporating camptothecin (CPT), which can sharply release the loaded drug in response to the reductive conditions of the cytosol, as an effective strategy for precisely controlling the function of these nanomedicines in vivo, while advancing toward a light-activated chemotherapy. These camptothecin-loaded micelles (CPT/m) were stable in the bloodstream, with minimal drug release in extracellular conditions, leading to prolonged blood circulation and high accumulation in xenografts of rat urothelial carcinoma. With the induction of endosomal permeabilization with the clinically approved photosensitizer, Photofrin, the CPT/m escaped from the endocytic vesicles of cancer cells into the cytosol, as confirmed both in vitro and in vivo by real-time confocal laser microscopies, accelerating the drug release from the micelles only in the irradiated tissues. This spatiotemporal switch significantly enhanced the in vivo antitumor efficacy of CPT/m without eliciting any toxicity, even at a dose 10-fold higher than the maximum tolerated dose of free CPT. Our results indicate the potential of reduction-sensitive drug-loaded polymeric micelles for developing safe chemotherapies after activation by remote triggers, such as light, which are capable of permeabilizing endosomal compartments.
Collapse
Affiliation(s)
- Hung-Chi Yen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release 2014; 193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
220
|
Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Ther Deliv 2014; 5:1101-21. [DOI: 10.4155/tde.14.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polymeric micelles are among the most promising delivery systems in nanomedicine. The growing interest in polymeric micelles as drug delivery vehicle is promoted by the advantages they offer for hydrophobic anticancer agents. The size of most polymeric micelles lies within the range 10–100 nm ensuring that they can selectively leave the circulation at tumor site via the enhanced permeability and retention effect. Their unique structure allows them to solubilize hydrophobic drugs, prolongs their circulatory half-life and eventually leads to enhanced therapeutic efficacy. In addition, they can undergo several structural modifications to further augment tumor cell uptake. In this review, we will discuss various micellar systems that have been studied in preclinical and clinical settings.
Collapse
|
221
|
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech 2014; 15:822-33. [PMID: 24687241 DOI: 10.1208/s12249-014-0107-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/06/2014] [Indexed: 12/13/2022] Open
Abstract
Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.
Collapse
|
222
|
Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 2014; 190:465-76. [PMID: 24993430 DOI: 10.1016/j.jconrel.2014.06.042] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022]
Abstract
Targeting tumors with long-circulating nano-scaled carriers is a promising strategy for systemic cancer treatment. Compared with free small therapeutic agents, nanocarriers can selectively accumulate in solid tumors through the enhanced permeability and retention (EPR) effect, which is characterized by leaky blood vessels and impaired lymphatic drainage in tumor tissues, and achieve superior therapeutic efficacy, while reducing side effects. In this way, drug-loaded polymeric micelles, i.e. self-assemblies of amphiphilic block copolymers consisting of a hydrophobic core as a drug reservoir and a poly(ethylene glycol) (PEG) hydrophilic shell, have demonstrated outstanding features as tumor-targeted nanocarriers with high translational potential, and several micelle formulations are currently under clinical evaluation. This review summarizes recent efforts in the development of these polymeric micelles and their performance in human studies, as well as our recent progress in polymeric micelles for the delivery of nucleic acids and imaging.
Collapse
|
223
|
Zhong Y, Meng F, Deng C, Zhong Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules 2014; 15:1955-69. [DOI: 10.1021/bm5003009] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yinan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
224
|
Norvaisas P, Ziemys A. The role of payload hydrophobicity in nanotherapeutic pharmacokinetics. J Pharm Sci 2014; 103:2147-2156. [PMID: 24801583 DOI: 10.1002/jps.23996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/26/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022]
Abstract
Although drug delivery with nanovectors is regarded as one of the paradigm-shifting advances in modern medicine, the compatibility and performance of drug-vector formulations have not been systematically studied in terms of their physicochemistry and pharmacokinetics (PKs). The drug delivery systems (DDSs), currently available in clinics or trials, were analyzed based on hydrophobicity and anatomical therapeutic chemical (ATC) classification of drug payloads. Four major types of DDSs differentiated based on DDS structure and drug hydrophobicity, where payload hydrophobicity decreased: micelles, serum albumin, liposome membrane, and liposome interior. A strong relationship between the increase in half-life in DDS formulation and drug hydrophobicity was found with up to 200-fold greater increase for hydrophilic drugs. The analysis results seemingly integrated PKs, ATC, and hydrophobicity to reinforce the development or optimization of drug delivery vectors and their formulations.
Collapse
Affiliation(s)
- Povilas Norvaisas
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, Texas, 77030
| | - Arturas Ziemys
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, Texas, 77030.
| |
Collapse
|
225
|
Reddy LH, Bazile D. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv Drug Deliv Rev 2014; 71:34-57. [PMID: 24184489 DOI: 10.1016/j.addr.2013.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
This review is aimed at combining the published data on taxane formulations into a generalized Drug Delivery approach, starting from the physicochemistry and assessing its relationships with the pharmacokinetics, the biodistribution and the pharmacodynamics. Owing to the number and variety of taxane formulation designs, we considered this class of cytotoxic anticancer agents of particular interest to illustrate the concepts attached to this approach. According to the history of taxane development, we propose a classification as (i) "surfactant-based formulations" first generation, (ii) "surfactant-free formulations" second generation and (iii) "modulated pharmacokinetics drug delivery systems" third generation. Since our objective was to make the link between (i) the physicochemistry of the drug and carrier and (ii) the efficacy and safety of the drug in preclinical animal models and (iii) in human, we focused on the drug delivery technologies that were tested in clinic.
Collapse
Affiliation(s)
- L Harivardhan Reddy
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Department, Sanofi Research and Development, 13 Quai Jules-Guesde, 94403 Vitry-sur-Seine, France.
| | - Didier Bazile
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Department, Sanofi Research and Development, 13 Quai Jules-Guesde, 94403 Vitry-sur-Seine, France
| |
Collapse
|
226
|
Abstract
It is expected that the incidence of various adverse effects of anticancer agents maybe decreased owing to the reduced drug distribution in normal tissue. Anticancer agent incorporating nanoparticles including micelles and liposomes can evade non-specific capture by the reticuloendothelial system because the outer shell of the nanoparticles is covered with polyethylene glycol. Consequently, the micellar and liposomal carrier can be delivered selectively to a tumor by utilizing the enhanced permeability and retention effect. Presently, several anticancer agent-incorporating nano-carrier systems are under preclinical and clinical evaluation. Several drug delivery system formulations have been approved worldwide. Regarding a pipeline of clinical development of anticancer agent incorporating micelle carrier system, several clinical trials are now underway not only in Japan but also in other countries. A Phase 3 trial of NK105, a paclitaxel incorporating micelle is now underway. In this paper, preclinical and clinical studies of NK105, NC-6004, cisplatin incorporating micelle, NC-6300, epirubicin incorporating micelle and the concept of cancer stromal targeting therapy using nanoparticles and monoclonal antibodies against cancer related stromal components are reviewed.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
227
|
Kitayama J. Intraperitoneal chemotherapy against peritoneal carcinomatosis: current status and future perspective. Surg Oncol 2014; 23:99-106. [PMID: 24721661 DOI: 10.1016/j.suronc.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/13/2014] [Accepted: 03/18/2014] [Indexed: 02/08/2023]
Abstract
Peritoneal carcinomatosis (PC), caused by advanced abdominal malignancies, such as those of the ovarian and gastrointestinal tracts, has an extremely poor prognosis. Intraperitoneal (IP) chemotherapy has been clinically applied for several decades, but its clinical efficacy has not been fully determined. An accumulating body of evidence suggests that cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC) is the optimal treatment for selected patients with ovarian and colorectal cancers with PC. Recent studies suggest that IP administration of taxane with systemic chemotherapy in a neoadjuvant setting improves patient survival in gastric cancer with PC. The pharmacokinetics of IP-administered drugs should be primarily considered in order to optimize IP chemotherapy. Therefore, the development of specific IP drugs using newly emerging molecular targeted reagents or new drug delivery systems, such as nanomedicine or controlled absorption/release methods, is essential to improve the efficacy of IP chemotherapy.
Collapse
Affiliation(s)
- Joji Kitayama
- Department of Surgical Oncology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
228
|
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:814208. [PMID: 24672796 PMCID: PMC3950423 DOI: 10.1155/2014/814208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/25/2013] [Indexed: 12/14/2022]
Abstract
Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1-100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.
Collapse
Affiliation(s)
- Su-Eon Jin
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| |
Collapse
|
229
|
Sakai-Kato K, Un K, Nanjo K, Nishiyama N, Kusuhara H, Kataoka K, Kawanishi T, Goda Y, Okuda H. Elucidating the molecular mechanism for the intracellular trafficking and fate of block copolymer micelles and their components. Biomaterials 2014; 35:1347-58. [DOI: 10.1016/j.biomaterials.2013.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
|
230
|
Emoto S, Sunami E, Yamaguchi H, Ishihara S, Kitayama J, Watanabe T. Drug development for intraperitoneal chemotherapy against peritoneal carcinomatosis from gastrointestinal cancer. Surg Today 2014; 44:2209-20. [PMID: 24482110 DOI: 10.1007/s00595-014-0848-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022]
Abstract
Intraperitoneal (IP) chemotherapy for peritoneal carcinomatosis (PC) from gastrointestinal cancer has been investigated and applied clinically for several decades. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy have been considered to be the optimal treatment options for selected patients with colorectal and gastric cancers with PC. Accumulating evidence suggests that the administration of IP paclitaxel for patients with PC from gastric cancer may improve the patient survival. The pharmacokinetics of such treatment should be considered to optimize IP chemotherapy. In addition, newly emerging molecular-targeted therapies and research into new drug delivery systems, such as nanomedicine or controlled absorption/release methods, are essential to improve the effects of IP chemotherapy. This review summarizes the current status and future prospects of IP chemotherapy for the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
231
|
Combination of hybrid peptide with biodegradable gelatin hydrogel for controlled release and enhancement of anti-tumor activity in vivo. J Control Release 2014; 176:1-7. [DOI: 10.1016/j.jconrel.2013.12.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 11/24/2022]
|
232
|
Sun CY, Dou S, Du JZ, Yang XZ, Li YP, Wang J. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy. Adv Healthc Mater 2014; 3:261-72. [PMID: 23852934 DOI: 10.1002/adhm.201300091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Polyphosphoesters with repeating phosphoester linkages in the backbone can be easily functionalized, are biodegradable and potentially biocompatible, and may be potential candidates as polymer carriers of drug conjugates. Here, the efficacy of a polyphosphoester drug conjugate as an anticancer agent in vivo is assessed for the first time. With controlled synthesis, doxorubicin conjugated to poly(ethylene glycol)-block-polyphosphoester (PPEH-DOX) via labile hydrazone bonds form spherical nanoparticles in aqueous solution with an average diameter of ≈60 nm. These nanoparticles are effectively internalized by MDA-MB-231 breast cancer cells and release the conjugated doxorubicin in response to the intracellular pH of endosomes and lysosomes, resulting in significant antiproliferative activity in cancer cells. Compared with free doxorubicin injection, PPEH-DOX injection exhibits much longer circulation behavior in the plasma of mice and leads to enhanced drug accumulation in tumor cells. In an MDA-MB-231 xenograft murine model, inhibition of tumor growth with systemic delivery of PPEH-DOX nanoparticles is more pronounced compared with free doxorubicin injection, suggesting the potential of polyphosphoesters as carriers of drug conjugates in cancer therapy.
Collapse
Affiliation(s)
- Chun-Yang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | | | | | | | | | | |
Collapse
|
233
|
Tang J, Wang X, Wang T, Chen F, Zhou J. In vivo pharmacokinetics, biodistribution and antitumor effect of amphiphilic poly(L-amino acids) micelles loaded with a novel all-trans retinoic acid derivative. Eur J Pharm Sci 2014; 51:157-164. [PMID: 24076464 DOI: 10.1016/j.ejps.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
Abstract
Poly(amino acid)s are well-known as biodegradable and environmentally acceptable materials. In this study, a series of poly(L-aspartic acid)-b-poly(L-phenylalanine) (PAA-PPA) compounds with different degrees of polymerization were used to prepare copolymer micelles for a poorly water-soluble drug 4-amino-2-trifluoromethyl-phenyl retinate (ATPR, a novel all-trans retinoic acid derivative) and in vivo pharmacokinetics, biodistribution and antitumor efficacy of ATPR delivered by PAA-PPA micelles were evaluated. The area under the plasma concentration time curve AUC0→∞ of ATPR-loaded PAA20PPA20 micelles was 2.23 and 1.97 times higher than that of ATPR solution and ATPR CrmEL solution, respectively; In addition, the mean residence time (MRT) was increased 1.67 and 1.97-fold, respectively and the total body clearance (CL) was reduced 2.25 and 1.98-fold, respectively. The biodistribution study indicated that most of the ATPR in the ATPR-M group was distributed in the liver and there was delayed liver aggregation compared with the ATPR solution and ATPR CrmEL solution groups. Furthermore, the antitumor efficacy of ATPR-loaded PAA20PPA20 micelles was demonstrated in in vivo antitumor models involving mice inoculated with the human gastric cancer cell line SGC-7901. At the same dose of 7mg/kg, the ATPR-loaded micelles group demonstrated a better tumor growth inhibition and induced differentiation than the groups given ATPR solution and ATPR CrmEL solution. Therefore, the ATPR-loaded PAA-PPA micelles appear to be a potentially useful drug delivery system for ATPR and suitable for the chemotherapy of gastric cancer.
Collapse
Affiliation(s)
- Jihui Tang
- College of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | | | | | | | | |
Collapse
|
234
|
Svenson S. What nanomedicine in the clinic right now really forms nanoparticles? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:125-35. [DOI: 10.1002/wnan.1257] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/11/2013] [Accepted: 11/26/2013] [Indexed: 11/05/2022]
|
235
|
Hu CMJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. NANOSCALE 2014; 6:65-75. [PMID: 24280870 DOI: 10.1039/c3nr05444f] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Long-circulating polymeric nanotherapeutics have garnered increasing interest in research and in the clinic owing to their ability to improve the solubility and pharmacokinetics of therapeutic cargoes. Modulation of carrier properties promises more effective drug localization at the disease sites and can lead to enhanced drug safety and efficacy. In the present review, we highlight the current development of polymeric nanotherapeutics in the clinic. In light of the importance of stealth properties in therapeutic nanoparticles, we also review the advances in stealth functionalization strategies and examine the performance of different stealth polymers in the literature. In addition, we discuss the recent development of biologically inspired "self" nanoparticles, which present a differing stealth concept from conventional approaches.
Collapse
Affiliation(s)
- Che-Ming J Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
236
|
Onishi Y, Eshita Y, Ji RC, Onishi M, Kobayashi T, Mizuno M, Yoshida J, Kubota N. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl-dextran-MMA graft copolymer and paclitaxel used as an artificial enzyme. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2293-307. [PMID: 25551057 PMCID: PMC4273266 DOI: 10.3762/bjnano.5.238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/28/2014] [Indexed: 05/06/2023]
Abstract
The anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl-dextran-methacrylic acid methylester copolymer (DDMC)/paclitaxel (PTX), obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50-300 nm in size. This complex is considered to be useful as a drug delivery system (DDS) for anticancer compounds since it formed a stable polymeric micelle in water. The resistance of B16F10 melanoma cells to PTX was shown clearly through a maximum survival curve. Conversely, the DDMC/PTX complex showed a superior anticancer efficacy and cell killing rate, as determined through a Michaelis-Menten-type equation, which may promote an allosteric supramolecular reaction to tubulin, in the same manner as an enzymatic reaction. The DDMC/PTX complex showed significantly higher anticancer activity compared to PTX alone in mouse skin in vivo. The median survival times of the saline, PTX, DDMC/PTX4 (particle size 50 nm), and DDMC/PTX5 (particle size 290 nm) groups were 120 h (treatment (T)/control (C), 1.0), 176 h (T/C, 1.46), 328 h (T/C, 2.73), and 280 h (T/C, 2.33), respectively. The supramolecular DDMC/PTX complex showed twice the effectiveness of PTX alone (p < 0.036). Above all, the DDMC/PTX complex is not degraded in cells and acts as an intact supramolecular assembly, which adds a new species to the range of DDS.
Collapse
Affiliation(s)
- Yasuhiko Onishi
- Ryujyu Science Corporation, 39-4 Kosora-cho, Seto, Aichi 489-0842, Japan
| | - Yuki Eshita
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Rui-Cheng Ji
- Department of Human Anatomy, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Masayasu Onishi
- Ryujyu Science Corporation, 39-4 Kosora-cho, Seto, Aichi 489-0842, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Masaaki Mizuno
- The Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Jun Yoshida
- Chubu Rosai Hospital, Japan Labour Health and Welfare Organization, 1-10-6 Komei, Minato-ku, Nagoya, Aichi 455-8530, Japan
| | - Naoji Kubota
- Department of Chemistry, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
237
|
Hu X, Li J, Lin W, Huang Y, Jing X, Xie Z. Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy. RSC Adv 2014. [DOI: 10.1039/c4ra06270a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The combination of prodrug and physical entrapment conveniently realizes high drug loading and time-programmable PTX delivery
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- The University of Chinese Academy of Sciences
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|
238
|
Upponi JR, Torchilin VP. Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
239
|
Chang T, Lord MS, Bergmann B, Macmillan A, Stenzel MH. Size effects of self-assembled block copolymer spherical micelles and vesicles on cellular uptake in human colon carcinoma cells. J Mater Chem B 2014; 2:2883-2891. [DOI: 10.1039/c3tb21751e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Block copolymers, poly(oligo ethylene glycol methyl ether methacrylate)-block-poly(styrene), POEGMEMA-b-PS, with various block lengths were prepared via RAFT polymerization and subsequently self-assembled into various aggregates to investigate their uptake ability into cancer cells.
Collapse
Affiliation(s)
- Teddy Chang
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Björn Bergmann
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
- Fraunhofer Institute for Chemical Technology ICT
- 76327 Karlsruhe, Germany
| | - Alex Macmillan
- Biomedical Imaging Facility
- University of New South Wales
- , Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
240
|
Dhand C, Prabhakaran MP, Beuerman RW, Lakshminarayanan R, Dwivedi N, Ramakrishna S. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Adv 2014. [DOI: 10.1039/c4ra02861a] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The design of a drug delivery system and the fabrication of efficient, successful, and targeted drug carriers are two separate issues that require slightly different design parameters.
Collapse
Affiliation(s)
- Chetna Dhand
- Anti-Infectives Research Group
- Singapore Eye Research Institute
- Singapore 168751, Singapore
| | - Molamma P. Prabhakaran
- Center for Nanofibers and Nanotechnology
- Nanoscience and Nanotechnology Initiative
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Roger W. Beuerman
- Anti-Infectives Research Group
- Singapore Eye Research Institute
- Singapore 168751, Singapore
- Duke-NUS SRP Neuroscience and Behavioral Disorders
- Singapore 169857, Singapore
| | - R. Lakshminarayanan
- Anti-Infectives Research Group
- Singapore Eye Research Institute
- Singapore 168751, Singapore
- Duke-NUS SRP Neuroscience and Behavioral Disorders
- Singapore 169857, Singapore
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering
- National University of Singapore
- Singapore117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology
- Nanoscience and Nanotechnology Initiative
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
241
|
Morshed RA, Cheng Y, Auffinger B, Wegscheid ML, Lesniak MS. The potential of polymeric micelles in the context of glioblastoma therapy. Front Pharmacol 2013; 4:157. [PMID: 24416018 PMCID: PMC3874582 DOI: 10.3389/fphar.2013.00157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. However, despite these advantages, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations.
Collapse
Affiliation(s)
- Ramin A Morshed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Yu Cheng
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Michelle L Wegscheid
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| |
Collapse
|
242
|
Stirland DL, Nichols JW, Miura S, Bae YH. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release 2013; 172:1045-64. [PMID: 24096014 PMCID: PMC3889175 DOI: 10.1016/j.jconrel.2013.09.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/07/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
Abstract
With countless research papers using preclinical models and showing the superiority of nanoparticle design over current drug therapies used to treat cancers, it is surprising how deficient the translation of these nano-sized drug carriers into the clinical setting is. This review article seeks to compare the preclinical and clinical results for Doxil®, PK1, Abraxane®, Genexol-PM®, Xyotax™, NC-6004, Mylotarg®, PK2, and CALAA-01. While not comprehensive, it covers nano-sized drug carriers designed to improve the efficacy of common drugs used in chemotherapy. While not always available or comparable, effort was made to compare the pharmacokinetics, toxicity, and efficacy between the animal and human studies. Discussion is provided to suggest what might be causing the gap. Finally, suggestions and encouragement are dispensed for the potential that nano-sized drug carriers hold.
Collapse
Affiliation(s)
- Darren Lars Stirland
- University of Utah; Department of Bioengineering; College of Engineering; Salt Lake City; UT 84112; United States
| | - Joseph W. Nichols
- University of Utah; Department of Bioengineering; College of Engineering; Salt Lake City; UT 84112; United States
| | - Seiji Miura
- Fuji Research Laboratories, Pharmaceutical Division, Kowa Co. Ltd., 332–1 Ohnoshinden, Fuji, Shizuoka, Japan
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Salt Lake City, UT 84112, United States
| | - You Han Bae
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Salt Lake City, UT 84112, United States
| |
Collapse
|
243
|
Hubbell JA, Langer R. Translating materials design to the clinic. NATURE MATERIALS 2013; 12:963-6. [PMID: 24150414 DOI: 10.1038/nmat3788] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Jeffrey A Hubbell
- Institute for Bioengineering, School of Life Sciences and School of Engineering, and Institute for Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
244
|
Yasunaga M, Furuta M, Ogata K, Koga Y, Yamamoto Y, Takigahira M, Matsumura Y. The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution. Sci Rep 2013; 3:3050. [PMID: 24157937 PMCID: PMC6505718 DOI: 10.1038/srep03050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022] Open
Abstract
The visualisation and quantitative analysis of the native drug distribution in a pre-clinical or clinical setting are desirable for evaluating drug effects and optimising drug design. Here, using matrix-assisted laser desorption ionisation imaging mass spectrometry (MALDI-IMS) with enhanced resolution and sensitivity, we compared the distribution of a paclitaxel (PTX)-incorporating micelle (NK105) with that of PTX alone after injection into tumour-bearing mice. We demonstrated optically and quantitatively that NK105 delivered more PTX to the tumour, including the centre of the tumour, while delivering less PTX to normal neural tissue, compared with injection with PTX alone. NK105 treatment yielded a greater antitumour effect and less neural toxicity in mice than did PTX treatment. The use of high-resolution MALDI-IMS may be an innovative approach for pharmacological evaluation and drug design support.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Therapeutics Development, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
245
|
Kao HW, Chan CJ, Chang YC, Hsu YH, Lu M, Shian-Jy Wang J, Lin YY, Wang SJ, Wang HE. A pharmacokinetics study of radiolabeled micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in a colon carcinoma-bearing mouse model. Appl Radiat Isot 2013; 80:88-94. [DOI: 10.1016/j.apradiso.2013.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 05/08/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
|
246
|
Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 2013; 172:782-94. [PMID: 24075927 DOI: 10.1016/j.jconrel.2013.09.013] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/30/2022]
Abstract
Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
- Mark J Ernsting
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada; Ryerson University, Faculty of Architectural Science and Engineering, Toronto, Ontario M5B 1Z2, Canada
| | | | | | | |
Collapse
|
247
|
Bernabeu E, Helguera G, Legaspi MJ, Gonzalez L, Hocht C, Taira C, Chiappetta DA. Paclitaxel-loaded PCL-TPGS nanoparticles: in vitro and in vivo performance compared with Abraxane®. Colloids Surf B Biointerfaces 2013; 113:43-50. [PMID: 24060929 DOI: 10.1016/j.colsurfb.2013.07.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/17/2013] [Accepted: 07/16/2013] [Indexed: 02/05/2023]
Abstract
The purpose of this work was to develop Cremophor(®) EL-free nanoparticles (NPs) loaded with Paclitaxel (PTX) in order to improve the drug i.v. pharmacokinetic profile and to evaluate its activity against commercially available formulations such as Taxol(®) and Abraxane(®). PTX-loaded poly(ε-caprolactone)-alpha tocopheryl polyethylene glycol 1000 succinate (PCL-TPGS) NPs were prepared using three different techniques: (i) by nanoprecipitation (NPr-method), (ii) by emulsion-solvent evaporation homogenized with an Ultra-Turrax(®) (UT-method) and (iii) by emulsion-solvent evaporation homogenized with an ultrasonicator (US-method). The NPs prepared by US-method showed the smallest size and the highest drug content. The NPs exhibited a slow and continuous release of PTX. The in vitro anti-tumoral activity was assessed using two human breast cancer cell lines (MCF-7 and MDA-MB-231) with the WTS assay. Cytotoxicity studies with both cell lines showed that PTX-loaded PCL-TPGS NPs exhibited better anti-cancer activity compared to PTX solution and the commercial formulation Abraxane(®) at different concentrations. Importantly, in the case of triple negative MDA-MB-231 breast cancer cells, the IC50 value for PTX-loaded PCL-TPGS NPs was 7.8 times lower than Abraxane(®). Finally, in vivo studies demonstrated that PTX-loaded PCL-TPGS NPs exhibited longer systemic circulation time and slower plasma elimination rate than Taxol(®) and Abraxane(®). Therefore, the novel NPs investigated might be an alternative nanotechnological platform for PTX delivery system in cancer chemotherapy.
Collapse
Affiliation(s)
- Ezequiel Bernabeu
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Gustavo Helguera
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Maria J Legaspi
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Lorena Gonzalez
- National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Christian Hocht
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Carlos Taira
- National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Diego A Chiappetta
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| |
Collapse
|
248
|
Cai H, Ni C, Yao B, Zhang L, Zhu C. A new kind of polyion complex nanoparticles and the covalent drug-loading pattern for doxorubicin and pH-controlled release. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3031-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
249
|
Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 2013; 334:133-41. [PMID: 23435377 PMCID: PMC3815990 DOI: 10.1016/j.canlet.2013.02.032] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/12/2022]
Abstract
Issues of poor oral bioavailability of cancer chemopreventives have hindered progress in cancer prevention. Novel delivery systems that modulate the pharmacokinetics of existing drugs, such as nanoparticles, cyclodextrins, niosomes, liposomes and implants, could be used to enhance the delivery of chemopreventive agents to target sites. The development of new approaches in prevention and treatment of cancer could encompass new delivery systems for approved and newly investigated compounds. In this review, we discuss some of the delivery approaches that have already made an impact by either delivering a drug to target tissue or increasing its bioavailability by many fold.
Collapse
Affiliation(s)
- Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Radha Munagala
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Jeyaprakash Jeyabalan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Manicka V Vadhanam
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
250
|
Ma Y, Jiang X, Zhuo R. Biodegradable and thermosensitive micelles of amphiphilic polyaspartamide derivatives containing aromatic groups for drug delivery. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yingying Ma
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 People's Republic of China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 People's Republic of China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|