201
|
Cho YJ, Son HJ, Kim KS. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75). J Transl Med 2014; 12:283. [PMID: 25297058 PMCID: PMC4196019 DOI: 10.1186/s12967-014-0283-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022] Open
Abstract
Background The Y-75 (Ginsan) acidic polysaccharide from Korean Panax ginseng has been shown to function as an immunomodulatory molecule. However, the efficacy of Y-75 has not been evaluated in clinical trial. Methods We verified Y-75 (6 g/day) for safety and immune efficacy in 72 healthy volunteers aged 50–75 years using a randomized, placebo-controlled, parallel, double-blind study. The activities of natural killer (NK) cells and peripheral blood phagocytes, as well as serum levels of monocyte-derived mediators, were assessed before and after administration for 8 and 14 weeks. This trial is registered at ClinicalTrials.gov (NCT02161198). Results Y-75 significantly enhanced NK cell cytotoxic activity by 35.2% and 40.2% from baseline after administration for 8 and 14 weeks, respectively. The phagocytic activity of peripheral blood cells was also significantly increased by 25.2% and 39.4% and serum level of TNF-α by 38.2% and 44.5% after treatment for 8 and 14 weeks, respectively. Differences in the efficacy of variables compared to the placebo group were also significant. Administration of Y-75 was well tolerated without treatment-related adverse events or alteration of complete blood cell count or blood chemistry over the entire study period. Conclusion Y-75 was shown to be a safe and potentially effective natural alternative for enhancing immune function.
Collapse
Affiliation(s)
| | | | - Kyung-Soo Kim
- Department of Family Medicine, Seoul St, Mary's Hospital, The Catholic University of Korea, Banpo-ro 222, Seocho-gu 137-701, Seoul, Republic of Korea.
| |
Collapse
|
202
|
Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. PHYTOCHEMISTRY 2014; 106:7-24. [PMID: 25108743 DOI: 10.1016/j.phytochem.2014.07.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 05/04/2023]
Abstract
The Panax genus is a crucial source of natural medicines that has benefited human health for a long time. Three valuable medicinal herbs, namely Panax ginseng, Panax quinquefolius, and Panax notoginseng, have received considerable interest due to their extensive application in clinical therapy, healthcare products, and as foods and food additives world-wide. Panax species are known to contain abundant levels of saponins, also dubbed ginsenosides, which refer to a series of dammarane or oleanane type triterpenoid glycosides. These saponins exhibit modulatory effects to the central nervous system and beneficial effects to patients suffering from cardiovascular diseases, and also have anti-diabetic and anti-tumor properties. To the end of 2012, at least 289 saponins were reported from eleven different Panax species. This comprehensive review describes the advances in the phytochemistry of the genus Panax for the period 1963-2012, based on the 134 cited references. The reported saponins can be classified into protopanaxadiol, protopanaxatriol, octillol, oleanolic acid, C17 side-chain varied, and miscellaneous subtypes, according to structural differences in sapogenins. The investigational history of Panax is also reviewed, with special attention being paid to the structural features of the six different subtypes, together with their (1)H and (13)C NMR spectroscopic characteristics which are useful for determining their structures and absolute configuration.
Collapse
Affiliation(s)
- Wen-Zhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ying Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
203
|
Wang HY, Hua HY, Liu XY, Liu JH, Yu BY. In vitro biotransformation of red ginseng extract by human intestinal microflora: Metabolites identification and metabolic profile elucidation using LC–Q-TOF/MS. J Pharm Biomed Anal 2014; 98:296-306. [DOI: 10.1016/j.jpba.2014.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
204
|
American ginseng attenuates azoxymethane/dextran sodium sulfate-induced colon carcinogenesis in mice. J Ginseng Res 2014; 39:14-21. [PMID: 25535472 PMCID: PMC4268560 DOI: 10.1016/j.jgr.2014.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Colorectal cancer is a leading cause of cancer-related death, and inflammatory bowel disease is a risk factor for this malignancy. We previously reported colon cancer chemoprevention potential using American ginseng (AG) in a xenograft mice model. However, the nude mouse model is not a gut-specific colon carcinogenesis animal model. METHODS In this study, an experimental colitis and colitis-associated colorectal carcinogenesis mouse model, chemically induced by azoxymethane/dextran sodium sulfate (DSS) was established and the effects of oral AG were evaluated. The contents of representative ginseng saponins in the extract were determined. RESULTS AG significantly reduced experimental colitis measured by the disease activity index scores. This suppression of the experimental colitis was not only evident during DSS treatment, but also very obvious after the cessation of DSS, suggesting that the ginseng significantly promoted recovery from the colitis. Consistent with the anti-inflammation data, we showed that ginseng very significantly attenuated azoxymethane/DSS-induced colon carcinogenesis by reducing the colon tumor number and tumor load. The ginseng also effectively suppressed DSS-induced proinflammatory cytokines activation using an enzyme-linked immunosorbent assay array, in which 12 proinflammatory cytokine levels were assessed, and this effect was supported subsequently by real-time polymerase chain reaction data. CONCLUSION AG, as a candidate of botanical-based colon cancer chemoprevention, should be further investigated for its potential clinical utility.
Collapse
|
205
|
Yu C, Wang CZ, Zhou CJ, Wang B, Han L, Zhang CF, Wu XH, Yuan CS. Adulteration and cultivation region identification of American ginseng using HPLC coupled with multivariate analysis. J Pharm Biomed Anal 2014; 99:8-15. [PMID: 25044150 DOI: 10.1016/j.jpba.2014.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
American ginseng (Panax quinquefolius) is originally grown in North America. Due to price difference and supply shortage, American ginseng recently has been cultivated in northern China. Further, in the market, some Asian ginsengs are labeled as American ginseng. In this study, forty-three American ginseng samples cultivated in the USA, Canada or China were collected and 14 ginseng saponins were determined using HPLC. HPLC coupled with hierarchical cluster analysis and principal component analysis was developed to identify the species. Subsequently, an HPLC-linear discriminant analysis was established to discriminate cultivation regions of American ginseng. This method was successfully applied to identify the sources of 6 commercial American ginseng samples. Two of them were identified as Asian ginseng, while 4 others were identified as American ginseng, which were cultivated in the USA (3) and China (1). Our newly developed method can be used to identify American ginseng with different cultivation regions.
Collapse
Affiliation(s)
- Chunhao Yu
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an, JS 223003, China; Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Chun-Jie Zhou
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an, JS 223003, China
| | - Bin Wang
- Huai'an Hospital of Traditional Chinese Medicine, Huai'an, JS 223001, China
| | - Lide Han
- Department of Human Genetics, University of Chicago, IL 60637, USA
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Xiao-Hui Wu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
206
|
Lee KH, Morris-Natschke S, Qian K, Dong Y, Yang X, Zhou T, Belding E, Wu SF, Wada K, Akiyama T. Recent Progress of Research on Herbal Products Used in Traditional Chinese Medicine: the Herbs belonging to The Divine Husbandman's Herbal Foundation Canon ( Shén Nóng Běn Cǎo Jīng). J Tradit Complement Med 2014; 2:6-26. [PMID: 24716110 PMCID: PMC3943012 DOI: 10.1016/s2225-4110(16)30066-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This article will review selected herbal products from Chinese Materia Medica that are used in Traditional Chinese Medicine. The herbs come from the upper, middle, and lower class medicines as listed in The Divine Husbandman's Herbal Foundation Canon (神農本草經 Shén Nóng Běn Cǎo Jīng). The review will focus on the active constituents of the herbs and their bioactivities, with emphasis on the most recent progress in research for the period of 2003 to 2011.
Collapse
Affiliation(s)
- Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA ; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Susan Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Keduo Qian
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Yizhou Dong
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Xiaoming Yang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Ting Zhou
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Eileen Belding
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Shou-Fang Wu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Koji Wada
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Toshiyuki Akiyama
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| |
Collapse
|
207
|
Park JB, Kwon SK, Nagar H, Jung SB, Jeon BH, Kim CS, Oh JH, Song HJ, Kim CS. Rg3-enriched Korean Red Ginseng improves vascular function in spontaneously hypertensive rats. J Ginseng Res 2014; 38:244-50. [PMID: 25379003 PMCID: PMC4213846 DOI: 10.1016/j.jgr.2014.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/28/2014] [Accepted: 05/30/2014] [Indexed: 12/11/2022] Open
Abstract
Background Panax ginseng has distinct and impressive health benefits, such as improved blood pressure and immune system functioning. Rg3-enriched Korean Red Ginseng (REKRG) isolated from Korean Red Ginseng contains a high percentage of Rg3. Methods In this study, we examined the effects of REKRG on endothelial cell nitric oxide synthase (eNOS) activation and adhesion molecules in endothelial cells and vascular function in rats. Results REKRG dose-dependently increased eNOS phosphorylation and nitric oxide (NO) production in endothelial cells. In addition, REKRG markedly inhibited the tumor necrosis factor-α (TNF-α)-mediated induction of intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expressions in endothelial cells. REKRG improved endothelium-dependent vasorelaxation in the Wistar-Kyoto (WKY) rat and spontaneously hypertensive rats (SHRs) compared with controls. Furthermore, REKRG treatment for 6 weeks increased serum NO levels and reduced the mean aortic intima-media thickness compared with controls. Conclusion Taken together, these results suggest that REKRG increased vascular function and improved immune system functioning. Therefore, REKRG is a very useful food for preventing or improving various cardiovascular diseases.
Collapse
Affiliation(s)
- Jung-Bum Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Sun Kwan Kwon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Harsha Nagar
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Saet-byel Jung
- Department of Endocrinology, Chungnam National University Hospital, Daejeon, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Sup Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Korea
| | | | - Hee-Jung Song
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
- Corresponding author. Department of Neurology, Chungnam National University Hospital, Daejeon 301-712, Korea.
| | - Cuk-Seong Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Korea
- Corresponding author. Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon 301-131, Korea.
| |
Collapse
|
208
|
Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One 2014; 9:e98887. [PMID: 24887182 PMCID: PMC4041784 DOI: 10.1371/journal.pone.0098887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5-20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5-7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which contributes to know the chiral characteristics of P-gp and structure-action relationship of PPD type and ocotillol type ginsenosides as a P-gp inhibitor.
Collapse
|
209
|
Korean red ginseng saponin fraction rich in ginsenoside-Rb1, Rc and Rb2 attenuates the severity of mouse collagen-induced arthritis. Mediators Inflamm 2014; 2014:748964. [PMID: 24833816 PMCID: PMC4009181 DOI: 10.1155/2014/748964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 11/17/2022] Open
Abstract
Despite a multitude of reports on anti-inflammatory properties of ginseng extracts or individual ginsenosides, data on antiarthritic effect of ginseng saponin preparation with mixed ginsenosides is limited. On the other hand, a combined therapy of safe and inexpensive plant-derived natural products such as ginsenosides can be considered as an alternative to treat arthritis. Our previous in vitro data displayed a strong anti-inflammatory action of red ginseng saponin fraction-A (RGSF-A). We, herein, report a marked antiarthritic property of RGSF-A rich in ginsenoside Rb1, Rc, and Rb2. Collagen-induced arthritic (CIA) mice were treated with RGSF-A or methotrexate (MTX) for 5 weeks. Joint pathology, serum antibody production and leukocye activation, cytokine production in the circulation, lymph nodes, and joints were examined. RGSF-A markedly reduced severity of arthritis, cellular infiltration, and cartilage damage. It suppressed CD3(+)/CD69(+), CD4(+)/CD25(+), CD8(+) T-cell, CD19(+), B220/CD23(+) B-cell, MHCII(+)/CD11c(+), and Gr-1(+)/CD11b(+) cell activations. It further suppressed anti-CII- or anti-RF-IgG/IgM, TNF-α, IL-1β, IL-17, and IL-6 secretions but stimulated IL-10 levels in the serum, joint, or splenocyte. RGSF-A attenuated arthritis severity, modified leukocyte activations, and restored cytokine imbalances, suggesting that it can be considered as an antiarthritic agent with the capacity to ameliorate the immune and inflammatory responses in CIA mice.
Collapse
|
210
|
Liu J, Chen D, Liu P, He M, Li J, Li J, Hu L. Discovery, synthesis, and structure-activity relationships of 20(S)-protopanaxadiol (PPD) derivatives as a novel class of AMPKα2β1γ1 activators. Eur J Med Chem 2014; 79:340-9. [PMID: 24747289 DOI: 10.1016/j.ejmech.2014.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/30/2014] [Accepted: 04/04/2014] [Indexed: 12/24/2022]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) has been demonstrated as a promising drug target due to its regulatory function in glucose and lipid metabolism. 20(S)-protopanoxadiol (PPD) was firstly identified from high throughput screening as a small molecule activator of AMPK subtype α2β1γ1. In order to enhance its potency on AMPK, a series of PPD derivatives were synthesized and evaluated. Structure-activity relationship study showed that the amine derivatives at the 24-position (groups I-VI) can improve the potency (EC50: 0.7-2.3 μM) and efficacy (fold: 2.5-3.8). Among them, compounds 12 and 13 exhibited the best potency (EC50: 1.2 and 0.7 μM) and efficacy (fold: 3.7 and 3.8). Further study suggested the mechanism of AMPK activation may functioned at the allosteric position, resulting the inhibition of the lipid synthesis in HepG2 cell model.
Collapse
Affiliation(s)
- Junhua Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Dakai Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Peng Liu
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Mengna He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Lihong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
211
|
Zhou SS, Xu JD, Zhu H, Shen H, Xu J, Mao Q, Li SL, Yan R. Simultaneous determination of original, degraded ginsenosides and aglycones by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for quantitative evaluation of Du-Shen-Tang, the decoction of ginseng. Molecules 2014; 19:4083-104. [PMID: 24699150 PMCID: PMC6270963 DOI: 10.3390/molecules19044083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022] Open
Abstract
In the present study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) method for simultaneous determination of eleven original, fourteen degraded ginsenosides and five aglycones was developed and validated to quantitatively evaluate the transformation of ginsenosides during preparation of Du-Shen-Tang, the decoction of ginseng. Both positive and negative modes as well as the step wave ion transfer optics technology were used to increase the detection sensitivity of QTOF-MS. The extracting ion mode based on the quasi-molecular ions, molecular ions and fragment ions characteristic to each analyte was used to increase the selectivity for quantitative analysis. Under the optimized UHPLC and QTOF-MS conditions, the 30 analytes with different polarities were separated (except for Re and Rg1) within 26 min. The developed method was applied for the quantitative comparison of Du-Shen-Tang and its raw materials derived from Asian ginseng (ASG) and American ginseng (AMG), respectively. It was found that the contents of the original ginsenosides decreased from 26,053.09 to 19,393.29 μg/g or 45,027.72 to 41,865.39 μg/g, whereas the degraded ginsenosides and aglycones increased from 159.72 to 685.37 μg/g or 676.54 to 1,502.26 μg/g in Du-Shen-Tang samples of ASG or AMG when compared with their raw materials, indicating that decocting could dramatically increase the proportion of the less polar degraded ginsenosides in Du-Shen-Tang. Whether these changed proportions of different polar ginsenosides could affect the bioactivities of the decoctions and their raw materials derived from ASG and AMG deserves further investigation.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - He Zhu
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Hong Shen
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Jun Xu
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Qian Mao
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
212
|
He C, Li J, Wang R, Li Z, Bligh SWA, Yang L, Wang Z. Metabolic profiles of 20(S)-protopanaxadiol in rats after oral administration using ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:595-604. [PMID: 24519822 DOI: 10.1002/rcm.6813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE 20(S)-Protopanaxadiol (PPD), a dammarane-type triterpenoid sapogenin, acts as the pharmacophore of ginsenosides which are considered as the principal bioactive components in Chinese ginseng. To fully understand the mechanism of action of PPD, it is important to study its metabolic profiles in vivo. METHODS Plasma, urine, fece and bile were collected after administration of PPD formulated in 0.5% aqueous Tween-80 to rats (150 mg/kg). Samples were analyzed by using a sensitive and reliable method based on ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS/MS) in both positive and negative ion mode. The chemical structures of metabolites were elucidated by comparing the retention time, accurate molecular mass, and fragmentation patterns of analytes with those of PPD. RESULTS In total 29 metabolites, including 10 new metabolites (M20-M29), were tentatively identified and characterized. Among them, two metabolites (M3 and M4) were unambiguously identified by matching their retention times and fragmentation patterns with their standards. Principal metabolites, namely, 20, 24-oxide metabolites (M3 and M4), 26/27-carboxylic acid derivatives (M22 and M23) and a glucuronidated product (M28), were found in the rat plasma. CONCLUSIONS The results showed that phase I metabolites are monooxygenation, dioxygenation and oxidative dehydrogenation metabolites, and phase II metabolic pathways were demonstrated to be cysteine conjugation and glucuronidation. The newly identified metabolites are useful to understand the mechanism of elimination of PPD and, in turn, its effectiveness and toxicity.
Collapse
Affiliation(s)
- Chunyong He
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210038, China
| | | | | | | | | | | | | |
Collapse
|
213
|
Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr Rev 2014; 72:319-33. [DOI: 10.1111/nure.12099] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Imogen Smith
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | - Elizabeth M Williamson
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | | | | | - Benjamin J Whalley
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| |
Collapse
|
214
|
Fan Y, Yan CP, Chen C, So KF, Li P, Qi LW. Tissue-smashing based ultra-rapid extraction of chemical constituents in herbal medicines. J Pharm Biomed Anal 2014; 95:213-9. [PMID: 24685727 DOI: 10.1016/j.jpba.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Sample extraction is the first challenge in analysis of herbal medicines (HMs). Numerous methods have been developed to improve extraction efficiency, use less solvent and short time. In this work, a tissue-smashing based ultra-rapid extraction (TSURE) method has been proposed through the designed particle crushing, drastic stir, and dynamic molecular permeation at normal temperature. Factors in TSURE like extraction time, volts, and solvents were optimized for extraction efficiency of salvianolic acid B, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza. The TSURE method was validated in terms of repeatability (RSD<2.2%) and extraction recoveries (93-106% with RSD<5.0%). TSURE showed a comparable extraction efficiency to conventional heat reflux extraction (HRE) and better than ultrasonic assisted extraction (UAE). The extraction time was about 2.0-3.0 min for TSURE, 60 times faster than the performance of HRE and 20 times faster than UAE. Microscopic analysis showed that the Krummbein diameter of plant particles after extraction were about 600-1200 μm for HRE and UAE, and decreased to 50-80 μm for TSURE. Subsequently, the developed TSURE was applied to high-throughput extraction of 19 S. miltiorrhiza samples collected in different regions of China. Besides, application of TSURE to other herbal medicines was also investigated, including Panax quinquefolius and Lonicera japonica. TSURE method provided an ultra-rapid and promising alternation for extraction of ingredients in herbal medicines, and can be extended to pharmaceutics, foods and cosmetics.
Collapse
Affiliation(s)
- Yong Fan
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Chen-Pu Yan
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Cheng Chen
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Kwok-Fai So
- Department of Anatomy, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ping Li
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
215
|
Ye R, Zhao G, Liu X. Ginsenoside Rd for acute ischemic stroke: translating from bench to bedside. Expert Rev Neurother 2014; 13:603-13. [PMID: 23738998 DOI: 10.1586/ern.13.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies have identified pathophysiological mechanisms of acute ischemic stroke and have provided proof-of-principle evidence that strategies designed to impede the ischemic cascade, namely neuroprotection, can protect the ischemic brain. However, the translation of these therapeutic agents to the clinic has not been successful. Ginsenoside Rd, a dammarane-type steroid glycoside extracted from ginseng plants, has exhibited an encouraging neuroprotective efficacy in both laboratory and clinical studies. This article attempts to provide a synopsis of the physiochemical profile, pharmacokinetics, pharmacodynamics, clinical efficacy, safety and putative therapeutic mechanisms of Rd. Finally, the authors discuss the validity of Rd as a neuroprotective agent for acute ischemic stroke.
Collapse
Affiliation(s)
- Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | | | | |
Collapse
|
216
|
Guo N, Ablajan K, Fan B, Yan H, Yu Y, Dou D. Simultaneous determination of seven ginsenosides in Du Shen Tang decoction by rapid resolution liquid chromatography (RRLC) coupled with tandem mass spectrometry. Food Chem 2013; 141:4046-50. [DOI: 10.1016/j.foodchem.2013.06.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 07/07/2012] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
217
|
Fu Y, Yin Z, Wu L, Yin C. Diversity of cultivable β-glycosidase-producing micro-organisms isolated from the soil of a ginseng field and their ginsenosides-hydrolysing activity. Lett Appl Microbiol 2013; 58:138-44. [PMID: 24117771 DOI: 10.1111/lam.12166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 12/01/2022]
Abstract
UNLABELLED This research aimed to explore the diversity of cultivable β-glycosidase-producing micro-organisms in ginseng field soil. Fifty-three strains showing β-glucosidase activity were isolated from a ginseng field, using a newly designed Esculin-R2A agar. All the isolated strains belonged to the genus Agrobacterium, Arthrobacter, Burkholderia, Dyella, Edaphobacter, Luteibacter, Mucilaginibacter, Paenibacillus, Phenylobacterium, Pseudomonas, Sphingomonas and Streptomyces. The main β-glucosidase-producing micro-organisms in the ginseng field soil were Sphingomonas, Burkholderia, Luteibacter and Streptomyces, while concentrations of Agrobacterium, Arthrobacter, Paenibacillus and Pseudomonas were relatively low. Of these micro-organisms, the strain GS 09 could hydrolyse major ginsenosides Rb1, Rb2 and Rc to the active metabolite compound K. The strain GS 09 belonged to the genus Sphingomonas, and its 16S rRNA gene sequence showed 100% similarities with that of Sphingomonas asaccharolytica. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to provide information of cultivable β-glycosidase-producing micro-organisms in ginseng field soil. The strain GS 09 has potential to be applied on the preparation for minor ginsenoside C-K in pharmaceutical industry.
Collapse
Affiliation(s)
- Y Fu
- Chemical Biology Research Center, Department of Chemistry, Yanbian University, Yanji, China
| | | | | | | |
Collapse
|
218
|
Guo N, Liu M, Yang D, Huang Y, Niu X, Wu R, Liu Y, Ma G, Dou D. Quantitative LC-MS/MS analysis of seven ginsenosides and three aconitum alkaloids in Shen-Fu decoction. Chem Cent J 2013; 7:165. [PMID: 24107599 PMCID: PMC3853001 DOI: 10.1186/1752-153x-7-165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Shen-Fu decoction is a traditional Chinese medicine prescription with a 3:2 ratio of Radix Ginseng and Fuzi (Radix Aconiti lateralis praeparata). Ginsenosides and alkaloids are considered to be the main active components of Shen-Fu decoction. However, no analytical methods have been used to quantitatively analyse both components in Shen-Fu decoction simultaneously. Results We successfully developed a rapid resolution liquid chromatography coupled with tandem mass spectrometry (RRLC-MS/MS) method for the simultaneous analysis of seven ginsenosides and three aconitum alkaloids in Shen-Fu decoction, the decoction of Radix ginseng and Fuzi (Radix Aconiti lateralis praeparata). Chromatogrpahic separation by RPLC was achieved using a reversed-phase column and a water/acetonitrile mobile phase, containing 0.05% formic acid and using a gradient system. The method was optimized to allow for simultaneous analysis of all analytes in 11minutes without the need for baseline resolution of the components. Furthermore, the separation demonstrated good linearity (r > 0.9882), repeatability (RSD < 7.01%), intra- and inter-day precisions (RSD < 5.06%) and high yields of recovery (91.13-111.97%) for ten major constituents, namely ginsenoside-Re, Rg1, Rb1, Rc, Rb2, Rd, Rf, aconitine, hypacoitine and mesaconitine. Conclusions The developed method could be used as a rapid and reliable approach for assessment of the quantity of the major constituents in Shen-Fu decoction.
Collapse
Affiliation(s)
- Na Guo
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
|
220
|
Schlag EM, McIntosh MS. The relationship between genetic and chemotypic diversity in American ginseng (Panax quinquefolius L.). PHYTOCHEMISTRY 2013; 93:96-104. [PMID: 23591019 DOI: 10.1016/j.phytochem.2013.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/09/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
Ginseng is one of the world's most important herbals used as an adaptogen and a cure for an impressively large range of ailments. Differences in the medicinal properties of ginseng roots have been attributed to variation in ginsenoside composition. In this study, the association between genetic and chemotypic profiles of wild and cultivated American ginseng (Panax quinquefolius L.) roots grown in Maryland was investigated. Ginseng roots were classified into chemotypes based on their relative composition of Re and Rg1. Genetic profiles of these roots were determined from the analysis of 38 polymorphic RAPD markers and used for a cluster analysis of genetic similarities. The close correspondence between chemotype and genetic cluster provides the first DNA-based evidence for the genetic basis of ginsenoside composition. Results of this research are significant for plant breeding and conservation, phytochemical research, and clinical and pharmacological studies. Also, the correlation between RAPD markers and chemotype indicates the potential to use RAPD markers as a reliable and practical method for identification and certification of ginseng roots.
Collapse
Affiliation(s)
- Erin M Schlag
- Department of Plant Science and Landscape Architecture, University of Maryland, 2102 Plant Sciences Building #36, College Park, MD 20742, USA.
| | | |
Collapse
|
221
|
Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chem 2013; 139:762-9. [DOI: 10.1016/j.foodchem.2013.01.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/12/2012] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
|
222
|
Li J, Yan D, Ma L, Xiong Y, Yan C, Li B, Peng C, Xiao X. A quality evaluation strategy for Rhizoma coptidis from a variety of different sources using chromatographic fingerprinting combined with biological fingerprinting. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
223
|
Uzayisenga R, Ayeka PA, Wang Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): a review. Phytother Res 2013; 28:510-6. [PMID: 23846979 DOI: 10.1002/ptr.5026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/18/2013] [Accepted: 05/21/2013] [Indexed: 12/30/2022]
Abstract
Herbal medicines have traditionally played a major role in the management of diabetes in Asian countries for centuries. Panax notoginseng (Burk) F. H. Chen (Araliaceae) known as Tiánqī or san qi is a well-known medicinal herb in Asia for its long history of use in Chinese medicine. Qualified as 'the miracle root for the preservation of life', it has been used in China for 600 years, for treatment of various diseases. Panax notoginseng saponins (PNS) are the key active components. PNS have been widely used in China for treatment of cardiovascular diseases. However, scientific studies have shown a wide range of other pharmacological applications including anti-cancer, neuroprotective and anti-inflammatory agents, immunologic adjuvant and prevention of diabetes complications. Recently, hypoglycemic and anti-obesity properties of PNS have also been demonstrated. The present review highlights the effects of PNS on glucose production and absorption, and on inflammatory processes that seem to play an important role in the development of diabetes.
Collapse
Affiliation(s)
- Rosette Uzayisenga
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 300193, PR China; District Pharmacy, Ministry of Health, P.O. Box 84, Kigali, Rwanda
| | | | | |
Collapse
|
224
|
A new ginsengenin containing an oxacyclopentane-ring isolated from the acid hydrolysate of total ginsenosides. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
225
|
Baek SH, Bae ON, Park JH. Recent methodology in ginseng analysis. J Ginseng Res 2013; 36:119-34. [PMID: 23717112 PMCID: PMC3659581 DOI: 10.5142/jgr.2012.36.2.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 12/22/2022] Open
Abstract
As much as the popularity of ginseng in herbal prescriptions or remedies, ginseng has become the focus of research in many scientific fields. Analytical methodologies for ginseng, referred to as ginseng analysis hereafter, have been developed for bioactive component discovery, phytochemical profiling, quality control, and pharmacokinetic studies. This review summarizes the most recent advances in ginseng analysis in the past half-decade including emerging techniques and analytical trends. Ginseng analysis includes all of the leading analytical tools and serves as a representative model for the analytical research of herbal medicines.
Collapse
|
226
|
Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:343594. [PMID: 23737828 PMCID: PMC3662109 DOI: 10.1155/2013/343594] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
Abstract
Type II diabetes mellitus (T2DM) is a fast-growing epidemic affecting people globally. Furthermore, multiple complications and comorbidities are associated with T2DM. Lifestyle modifications along with pharmacotherapy and patient education are the mainstay of therapy for patients afflicted with T2DM. Western medications are frequently associated with severe adverse drug reactions and high costs of treatment. Herbal medications have long been used in the treatment and prevention of T2DM in both traditional Chinese medicine (TCM) and traditional Indian medicine (TIM). This review examines in vivo, in vitro, and clinical evidence supporting the use of various herbs used in TCM and TIM. The problems, challenges, and opportunities for the incorporation of herbal frequently used in TCM and TIM into Western therapy are presented and discussed.
Collapse
|
227
|
Liu J, Wang X, Liu P, Deng R, Lei M, Chen W, Hu L. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs. Bioorg Med Chem 2013; 21:4279-87. [PMID: 23683834 DOI: 10.1016/j.bmc.2013.04.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 01/28/2023]
Abstract
Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells.
Collapse
Affiliation(s)
- Junhua Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | | | |
Collapse
|
228
|
Gao JL, Lv GY, He BC, Zhang BQ, Zhang H, Wang N, Wang CZ, Du W, Yuan CS, He TC. Ginseng saponin metabolite 20(S)-protopanaxadiol inhibits tumor growth by targeting multiple cancer signaling pathways. Oncol Rep 2013; 30:292-8. [PMID: 23633038 PMCID: PMC3729206 DOI: 10.3892/or.2013.2438] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022] Open
Abstract
Plant-derived active constituents and their semi-synthetic or synthetic analogs have served as major sources of anticancer drugs. 20(S)-protopanaxadiol (PPD) is a metabolite of ginseng saponin of both American ginseng (Panax quinquefolius L.) and Asian ginseng (Panax ginseng C.A. Meyer). We previously demonstrated that ginsenoside Rg3, a glucoside precursor of PPD, exhibits anti-proliferative effects on HCT116 cells and reduces tumor size in a xenograft model. Our subsequent study indicated that PPD has more potent antitumor activity than that of Rg3 in vitro although the mechanism underlying the anticancer activity of PPD remains to be defined. Here, we investigated the mechanism underlying the anticancer activity of PPD in human cancer cells in vitro and in vivo. PPD was shown to inhibit growth and induce cell cycle arrest in HCT116 cells. The in vivo studies indicate that PPD inhibits xenograft tumor growth in athymic nude mice bearing HCT116 cells. The xenograft tumor size was significantly reduced when the animals were treated with PPD (30 mg/kg body weight) for 3 weeks. When the expression of previously identified Rg3 targets, A kinase (PRKA) anchor protein 8 (AKAP8L) and phosphatidylinositol transfer protein α (PITPNA), was analyzed, PPD was shown to inhibit the expression of PITPNA while upregulating AKAP8L expression in HCT116 cells. Pathway-specific reporter assays indicated that PPD effectively suppressed the NF-κB, JNK and MAPK/ERK signaling pathways. Taken together, our results suggest that the anticancer activity of PPD in colon cancer cells may be mediated through targeting NF-κB, JNK and MAPK/ERK signaling pathways, although the detailed mechanisms underlying the anticancer mode of PPD action need to be fully elucidated.
Collapse
Affiliation(s)
- Jian-Li Gao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Jin X, Li SL, Zhang ZH, Zhu FX, Sun E, Wei YJ, Jia XB. Characterization of metabolites of 20(S)-protopanaxadiol in rats using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 933:59-66. [PMID: 23877070 DOI: 10.1016/j.jchromb.2013.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/05/2013] [Accepted: 03/24/2013] [Indexed: 01/08/2023]
Abstract
In this study, ultra-performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF-MS) was applied to the rapid analysis of 20(S)-protopanaxadiol (PPD) metabolites in rats after oral administration, enabling the structural characterization of 23 metabolites in plasma, bile, urine, and feces. 16 of these, including M1-M5, M9, and M11-M15, have not been previously reported. The results also indicated that demethylation, dehydration, dehydrogenation, oxidation, deoxidation, and glucuronidation were the major metabolic reactions of PPD in vivo. This study provides important information about the metabolism of PPD which will be helpful for fully understanding its mechanism of action. Furthermore, structural modification of PPD in vivo may aid in obtaining new chemical derivatives for pharmacological screening.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | | | | | | | | | | | | |
Collapse
|
230
|
Wan JY, Liu P, Wang HY, Qi LW, Wang CZ, Li P, Yuan CS. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2013; 1286:83-92. [DOI: 10.1016/j.chroma.2013.02.053] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 01/26/2023]
|
231
|
Zheng SD, Wu HJ, Wu DL. Roles and mechanisms of ginseng in protecting heart. Chin J Integr Med 2013; 18:548-55. [DOI: 10.1007/s11655-012-1148-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Indexed: 01/23/2023]
|
232
|
Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Meyer) using commercial enzymes and high hydrostatic pressure. Biotechnol Lett 2013; 35:1017-22. [DOI: 10.1007/s10529-013-1182-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/12/2013] [Indexed: 12/17/2022]
|
233
|
Zhang Z, Du GJ, Wang CZ, Wen XD, Calway T, Li Z, He TC, Du W, Bissonnette M, Musch MW, Chang EB, Yuan CS. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions. Int J Mol Sci 2013; 14:2980-95. [PMID: 23434653 PMCID: PMC3588026 DOI: 10.3390/ijms14022980] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 01/15/2023] Open
Abstract
Compound K (20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC). A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Guang-Jian Du
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Tyler Calway
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Zejuan Li
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Tong-Chuan He
- Department of Orthopaedic Surgery, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 3079, Chicago, IL 60637, USA; E-Mail:
| | - Wei Du
- Ben May Department for Cancer Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
| | - Marc Bissonnette
- Department of Medicine, University of Chicago, 900 E. 57th street, MB 9, Chicago, IL 60637, USA; E-Mails: (M.B.); (M.W.M.); (E.B.C.)
| | - Mark W. Musch
- Department of Medicine, University of Chicago, 900 E. 57th street, MB 9, Chicago, IL 60637, USA; E-Mails: (M.B.); (M.W.M.); (E.B.C.)
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, 900 E. 57th street, MB 9, Chicago, IL 60637, USA; E-Mails: (M.B.); (M.W.M.); (E.B.C.)
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mails: (Z.Z.); (G.-J.D.); (C.-Z.W.); (X.-D.W.)
- Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA; E-Mail:
- Committee on Clinical Pharmacology and Pharmacogenomics, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., MC 4028, Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-702-1916; Fax: +1-773-834-0601
| |
Collapse
|
234
|
Wang CZ, Li B, Wen XD, Zhang Z, Yu C, Calway TD, He TC, Du W, Yuan CS. Paraptosis and NF-κB activation are associated with protopanaxadiol-induced cancer chemoprevention. Altern Ther Health Med 2013; 13:2. [PMID: 23281928 PMCID: PMC3575249 DOI: 10.1186/1472-6882-13-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/19/2012] [Indexed: 12/27/2022]
Abstract
Background Protopanaxadiol (PPD) is a triterpenoid that can be prepared from steamed ginseng. PPD possesses anticancer potential via caspase-dependent apoptosis. Whether paraptosis, a type of the caspase-independent cell death, is also induced by PPD has not been evaluated. Methods Cell death, the cell cycle and intracellular reactive oxygen species (ROS) were analyzed by flow cytometry after staining with annexin V/PI, PI/RNase or H2DCFDA. We observed morphological changes by crystal violet staining assay. Mitochondrial swelling was measured by ultraviolet–visible spectrophotometry. The activation of NF-κB was measured by luciferase reporter assay. Results At comparable concentrations of 5-fluorouracil, PPD induced more cell death in human colorectal cancer cell lines HCT-116 and SW-480. We demonstrated that PPD induced paraptosis in these cancer cells. PPD treatment significantly increased the percentage of cancer cells with cytoplasmic vacuoles. After the cells were treated with PPD and cycloheximides, cytoplasmic vacuole generation was inhibited. The paraptotic induction effect of PPD was also supported by the results of the mitochondrial swelling assay. PPD induced ROS production in cancer cells, which activated the NF-κB pathway. Blockage of ROS by NAC or PS-1145 inhibited the activation of NF-κB signaling. Conclusions PPD induces colorectal cancer cell death in part by induction of paraptosis. The anticancer activity of PPD may be enhanced by antioxidants such as green tea, which also inhibit the activation of NF-κB signaling.
Collapse
|
235
|
Yu J, Sun J, Niu Y, Li R, Liao J, Zhang F, Yu B. Synthetic access toward the diverse ginsenosides. Chem Sci 2013. [DOI: 10.1039/c3sc51479j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
236
|
Preparation of Knockout Extract by Immunoaffinity Column and Its Application. Antibodies (Basel) 2012. [DOI: 10.3390/antib1030294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
237
|
Liu JY, Lee KF, Sze CW, Tong Y, Tang SCW, Ng TB, Zhang YB. Intestinal absorption and bioavailability of traditional Chinese medicines: a review of recent experimental progress and implication for quality control. J Pharm Pharmacol 2012; 65:621-33. [DOI: 10.1111/j.2042-7158.2012.01608.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/28/2012] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
Experimental studies on the pharmacokinetics of traditional Chinese medicines (TCMs) have achieved great progress in recent years. This review aims to summarize the progress made on intestinal absorption and bioavailability of TCMs, and proposes the application of intestinal absorption assays as new tools for the quality and safety control of these medicines.
Key findings
Since only the absorbed constituents may produce possible therapeutic effect (except those that directly target the digestive tract), intestinal absorption is of utmost importance for the drug action of TCMs, which are usually taken orally. Meanwhile, complicated drug interactions may occur among the multiple ingredients in a herbal mixture. In this regard, the intestinal permeability assays not only provide useful pharmacokinetic data of TCMs, but have potential applications for quality and safety control. Moreover, knockout animals, 2/4/A1 in-vitro cell model and physiologically-based in-silico models based on the online TCM database can be quite useful for the prediction of absorption and bioavailability of TCMs.
Summary
A variety of in-vivo, in-vitro, in-situ and in-silico models for predicting the intestinal absorption and bioavailability can be applied to study the herbal interactions and screen appropriate biomarkers for the quality and safety control of TCMs.
Collapse
Affiliation(s)
- Jing-Yi Liu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Cho-Wing Sze
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Tong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Sydney Chi-Wai Tang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tzi-Bun Ng
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan-Bo Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
238
|
Wang CZ, Calway T, Yuan CS. Herbal medicines as adjuvants for cancer therapeutics. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:657-69. [PMID: 22809022 DOI: 10.1142/s0192415x12500498] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the United States, many patients, including cancer patients, concurrently take prescription drugs and herbal supplements. Co-administration of prescription medicines and herbal supplements may have negative outcomes via pharmacodynamic and pharmacokinetic herb-drug interactions. However, multiple constituents in botanicals may also yield beneficial pharmacological activities. Botanicals could possess effective anticancer compounds that may be used as adjuvants to existing chemotherapy to improve efficacy and/or reduce drug-induced toxicity. Herbal medicines, such as ginseng, potentiated the effects of chemotherapeutic agents via synergistic activities, supported by cell cycle evaluations, apoptotic observations, and computer-based docking analysis. Since botanicals are nearly always administrated orally, the role of intestinal microbiota in metabolizing ginseng constituents is presented. Controlled clinical studies are warranted to verify the clinical utility of the botanicals in cancer chemoprevention.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Pritzker School of Medicine, University of Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
239
|
Kim N, Kim K, Lee D, Shin YS, Bang KH, Cha SW, Lee JW, Choi HK, Hwang BY, Lee D. Nontargeted metabolomics approach for age differentiation and structure interpretation of age-dependent key constituents in hairy roots of Panax ginseng. JOURNAL OF NATURAL PRODUCTS 2012; 75:1777-1784. [PMID: 23002782 DOI: 10.1021/np300499p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The age of the ginseng plant has been considered as an important criterion to determine the quality of this species. For age differentiation and structure interpretation of age-dependent key constituents of Panax ginseng, hairy root (fine root) extracts aged from four to six years were analyzed using a nontargeted approach with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS). Various classification methods were used to determine an optimal method to best describe ginseng age by selecting influential metabolites of different ages. Through the metabolite selection process, several age-dependent key constituents having the potential to be biomarkers were determined, and their structures were identified according to tandem mass spectrometry and accurate mass spectrometry by comparing them with an in-house ginsenoside library and with literature data. This proposed method applied to the hairy roots of P. ginseng showed an improved efficiency of age differentiation when compared to previous results on the main roots and increases the possibility of the identification of key metabolites that can be used as biomarker candidates for quality assurance in ginseng.
Collapse
Affiliation(s)
- Nahyun Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Lai YH, So PK, Lo SCL, Ng EWY, Poon TCW, Yao ZP. Rapid differentiation of Panax ginseng and Panax quinquefolius by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2012; 753:73-81. [PMID: 23107139 DOI: 10.1016/j.aca.2012.09.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022]
Abstract
A matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based method has been developed for rapid differentiation between Panax ginseng and Panax quinquefolius, two herbal medicines with similar chemical and physical properties but different therapeutic effects. This method required only a small quantity of samples, and the herbal medicines were analyzed by MALDI-MS either after a brief extraction step, or directly on the powder form or small pieces of raw samples. The acquired MALDI-MS spectra showed different patterns of ginsenosides and small chemical molecules between P. ginseng and P. quinquefolius, thus allowing unambiguous differentiation between the two Panax species based on the specific ions, intensity ratios of characteristic ions or principal component analysis. The approach could also be used to differentiate red ginseng or P. quinquefolius adulterated with P. ginseng from pure P. ginseng and pure Panax quinquefolium. The intensity ratios of characteristic ions in the MALDI-MS spectra showed high reproducibility and enabled quantitative determination of ginsenosides in the herbal samples and percentage of P. quinquefolius in the adulterated binary mixture. The method is simple, rapid, robust, and can be extended for analysis of other herbal medicines.
Collapse
Affiliation(s)
- Ying-Han Lai
- Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | | | | | | | | | | |
Collapse
|
241
|
Pharmacological effects of ginseng on liver functions and diseases: a minireview. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:173297. [PMID: 22997528 PMCID: PMC3446728 DOI: 10.1155/2012/173297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/10/2012] [Indexed: 01/27/2023]
Abstract
Ginseng, an ancient and famous medicinal herb in the Orient, has been used as a valuable tonic and for the treatment of various diseases including hepatic disorders. Ginseng saponins, commonly known as ginsenosides, are principal constituents and have believed to be responsible for multiple ginseng health benefits. There are more 40 ginsenosides isolated from ginseng. To date, treatment options for common liver diseases such as cirrhosis, fatty liver, and chronic hepatitis remain problematic. In this regard, ginseng extracts and individual ginsenosides have shown a wide array of beneficial role in the regulation of regular liver functions and the treatment of liver disorders of acute/chronic hepatotoxicity, hepatitis, hepatic fibrosis/cirrhosis, hepatocellular carcinoma, and so on in various pathways and mechanisms. In this paper, we first outline the pharmacological effects of ginseng and ginsenosides on the liver functions.
Collapse
|
242
|
Moey M, Gan XT, Huang CX, Rajapurohitam V, Martínez-Abundis E, Lui EM, Karmazyn M. Ginseng Reverses Established Cardiomyocyte Hypertrophy and Postmyocardial Infarction-Induced Hypertrophy and Heart Failure. Circ Heart Fail 2012; 5:504-14. [DOI: 10.1161/circheartfailure.112.967489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
A major challenge in the treatment of heart failure is the ability to reverse already-established myocardial remodeling and ventricular dysfunction, with few available pharmacological agents prescribed for the management of heart failure having demonstrated successful reversal of the remodeling and hypertrophic processes. North American ginseng (
Panax quinquefolius
) has previously been shown to effectively prevent cardiomyocyte hypertrophy and heart failure. Here, we determined whether North American ginseng can reverse established cardiomyocyte hypertrophy in cultured myocytes as well as hypertrophy and left ventricular dysfunction in experimental heart failure secondary to coronary artery occlusion.
Methods and Results—
Ginseng was administered in drinking water (0.9 g/L) ad libitum to rats after 4 weeks of sustained coronary artery ligation when heart failure was established or to angiotensin II- (100 nmol/L), endothelin-1- (10 nmol/L), or phenylephrine- (10 µmol/L) induced hypertrophic cultured neonatal ventricular cardiomyocytes. Echocardiographic and catheter-based measurements of hemodynamic parameters 4 weeks after starting ginseng treatment (8 weeks postinfarction) revealed nearly complete reversibility of systolic and diastolic abnormalities. Similarly, ginseng administration to hypertrophic cardiomyocytes resulted in a complete reversal to a normal phenotype after 24 hours as determined by cell surface area and expression of molecular markers. The effects of ginseng both in vivo and in cultured cardiomyocytes were associated with reversal of calcineurin activation and reduced nuclear translocation of the transcription factor NFAT3 (nuclear factor of activated T cells 3) in cultured myocytes. Moreover, the beneficial effect of ginseng was associated with normalization in the gene expression of profibrotic markers, including collagen (I and III) and fibronectin.
Conclusions—
This study demonstrates a marked ability of ginseng to reverse cardiac hypertrophy, myocardial remodeling, and heart failure, which was associated with and likely mediated by reversal of calcineurin activation. Ginseng may offer a potentially effective approach to reverse the myocardial remodeling and heart failure processes, particularly in combination with other treatment modalities.
Collapse
Affiliation(s)
- Melissa Moey
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Xiaohong T. Gan
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cathy Xiaoling Huang
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Venkatesh Rajapurohitam
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Eduardo Martínez-Abundis
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Edmund M.K. Lui
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Morris Karmazyn
- From the Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
243
|
Gao W, Yang H, Qi LW, Liu EH, Ren MT, Yan YT, Chen J, Li P. Unbiased metabolite profiling by liquid chromatography–quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: Classification of seven Lonicera species flower buds. J Chromatogr A 2012; 1245:109-16. [DOI: 10.1016/j.chroma.2012.05.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
244
|
Qi LW, Wang CZ, Du GJ, Zhang ZY, Calway T, Yuan CS. Metabolism of ginseng and its interactions with drugs. Curr Drug Metab 2012; 12:818-22. [PMID: 21619519 DOI: 10.2174/138920011797470128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/15/2011] [Accepted: 04/13/2011] [Indexed: 01/27/2023]
Abstract
Ginseng is an herbal medicine used worldwide. It is reported to have a wide range of pharmacological activities because of a diversified group of steroidal saponins called ginsenosides. Compared to extensive pharmacological studies of ginseng, the pharmacokinetics, especially the metabolism of this herb, has received less attention. In this article we review the known pharmacokinetic data on ginseng. Understanding ginseng's pharmacokinetics may reduce the potential for interactions in patients who use both ginseng and prescription medications. In addition, bioavailability after taking ginseng orally is low, and the metabolites of ginsenosides produced by gut microbiota may be biologically active. One ginseng metabolite, Compound K, and its potential for cancer chemoprevention is also discussed. An active ginseng metabolite may differ in distribution and clearance from its parent compound, and the parent compound and its metabolite may be bioactive by similar or different mechanisms. Thus, further investigation of ginseng metabolites is needed for predicting the therapeutic outcome with ginseng.
Collapse
Affiliation(s)
- Lian-Wen Qi
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, The Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
245
|
Yang WZ, Ye M, Qiao X, Liu CF, Miao WJ, Bo T, Tao HY, Guo DA. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal Chim Acta 2012; 739:56-66. [PMID: 22819050 DOI: 10.1016/j.aca.2012.06.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 11/17/2022]
Abstract
To discover new natural compounds from herbal medicines tends to be more and more difficult. In this paper, a strategy integrating orthogonal column chromatography and liquid chromatography/mass spectrometry (LC/MS) analysis was proposed, and was applied for rapid discovery of new ginsenosides from Panax ginseng (PG), Panax quinquefolium (PQ), and Panax notoginseng (PN). The ginsenosides extracts were fractionated by MCI gel×silica gel orthogonal column chromatography. The fractions were then separated on a C(18) HPLC column, eluted with a three-component mobile phase (CH(3)CN/CH(3)OH/3mM CH(3)COONH(4)H(2)O), and detected by electrospray ionization tandem mass spectrometry. The structures of unknown ginsenosides were elucidated by analyzing negative and positive ion mass spectra, which provided complementary information on the sapogenins and oligosaccharide chains, respectively. A total of 623 comprising 437 potential new ginsenosides were characterized from the ethanol extracts of PG, PQ and PN. New acylations, diversified saccharide chains and C-17 side chains constituted novelty of the newly identified ginsenosides. An interpretation guideline was proposed for structural characterization of unknown ginsenosides by LC/MS. To confirm reliability of this strategy, two targeted unknown trace ginsenosides were obtained in pure form by LC/MS-guided isolation. Based on extensive NMR spectroscopic analysis and other techniques, they were identified as 3-O-[6-O-(E)-butenoyl-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl]-20(S)-protopanaxadiol-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (named ginsenoside IV) and 3-O-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl-3β,12β,20(S),24(R)-tetra hydroxy-dammar-25-ene-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (ginsenoside V), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our understanding on ginsenosides of Panax species, and the proposed strategy was proved efficient and reliable in the discovery of new minor compounds from herbal extracts.
Collapse
Affiliation(s)
- Wen-zhi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
From classical taxonomy to genome and metabolome: towards comprehensive quality standards for medicinal herb raw materials and extracts. Fitoterapia 2012; 83:979-88. [PMID: 22580015 DOI: 10.1016/j.fitote.2012.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 11/20/2022]
Abstract
Fundamental to herbal medicine quality is the use of 'authentic' medicinal herb species. Species, however, 'represent more or less arbitrary and subjective man-made units'. Against this background, we discuss, with illustrative examples, the importance of defining species boundaries by accommodating both the fixed (shared) diagnostic and varying (within-species) traits in medicinal herb populations. We emphasize the role of taxonomy, floristic information and genomic profiling in authenticating medicinal herb species, in addition to the need to include within species phytochemical profile variations while developing herbal extract identification protocols. We outline the application of species-specific genomic and phytochemical markers, chemoprofiling and chemometrics as additional tools to develop qualifying herbal extract references. We list the diagnostic traits available subsequent to each step during the medicinal herb extract manufacturing process and delineate limits to qualification of extract references.
Collapse
|
247
|
Du GJ, Wang CZ, Qi LW, Zhang ZY, Calway T, He TC, Du W, Yuan CS. The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res 2012; 27:272-7. [PMID: 22566066 DOI: 10.1002/ptr.4707] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/07/2011] [Accepted: 03/26/2012] [Indexed: 12/15/2022]
Abstract
Panaxadiol (PD) is a purified sapogenin of ginseng saponins, which exhibits anticancer activity. Epigallocatechin gallate (EGCG), a major catechin in green tea, is a strong botanical antioxidant. In this study, we investigated the possible synergistic anticancer effects of PD and EGCG on human colorectal cancer cells and explored the potential role of apoptosis in the synergistic activities. Effects of selected compounds on HCT-116 and SW-480 human colorectal cancer cells were evaluated by a modified trichrome stain cell proliferation analysis. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with PI/RNase or annexin V/PI. Cell growth was suppressed after treatment with PD (10 and 20 µm) for 48 h. When PD (10 and 20 µm) was combined with EGCG (10, 20, and 30 µm), significantly enhanced antiproliferative effects were observed in both cell lines. Combining 20 µm of PD with 20 and 30 µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p < 0.01). The synergistic apoptotic effects were also supported by docking analysis, which demonstrated that PD and EGCG bound in two different sites of the annexin V protein. Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced antiproliferative effects of PD on human colorectal cancer cells.
Collapse
Affiliation(s)
- Guang-Jian Du
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Calway T, Du GJ, Wang CZ, Huang WH, Zhao J, Li SP, Yuan CS. Chemical and pharmacological studies of Oplopanax horridus, a North American botanical. J Nat Med 2012; 66:249-56. [PMID: 22101399 PMCID: PMC3345165 DOI: 10.1007/s11418-011-0602-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/21/2011] [Indexed: 11/29/2022]
Abstract
Oplopanax horridus (OH), or Devil's club, is an ethnobotanical used by the indigenous people native to the Pacific Northwest of North America. There are three species in the genus Oplopanax, and OH is the only species that is distributed in North America. Compared with the extensive research on OH's "cousin," American ginseng, there is comparatively little reported about the chemical makeup and pharmacological effects of OH. Nevertheless, there has been some research over the past few years that shows promise for the future usage perspectives of OH. To date, 17 compounds were isolated and elucidated, including polyynes, glycosides, lignans, and polyenes, with most of the attention being paid to the polyynes. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to determine the contents of volatile compounds and polyynes in the essential oil and extracts of OH. For the pharmacological studies, antibacterial and antidiabetes effects of polyynes were reported. Our recent study has focused more on the anticancer effects of OH and the involved mechanisms of action. In this review, we will summarize the research status in the botany, phytochemistry, and pharmacology of OH.
Collapse
Affiliation(s)
- Tyler Calway
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Guang-Jian Du
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
249
|
Kochkin DV, Zaitsev GP, Kachala VV, Chizhov AO, Demidova EV, Titova MV, Chirva VY, Nosov AM, Kuznetsov VV. The occurrence of gypenoside XVII in suspension cell culture of ginseng Panax japonicus var. repens. DOKL BIOCHEM BIOPHYS 2012; 442:42-5. [PMID: 22419094 DOI: 10.1134/s1607672912010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Indexed: 11/23/2022]
Affiliation(s)
- D V Kochkin
- Faculty of Biology, Moscow State University, Moscow, 119991, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Wang CZ, Du GJ, Zhang Z, Wen XD, Calway T, Zhen Z, Musch MW, Bissonnette M, Chang EB, Yuan CS. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer. Int J Oncol 2012; 40:1970-6. [PMID: 22426808 DOI: 10.3892/ijo.2012.1399] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023] Open
Abstract
Ginsenoside compound K (C-K) is an intestinal microbiota metabolite of ginsenoside Rb1, a major constituent in American ginseng. However, previous ginseng anti-cancer observations were largely focused on ginseng parent compounds but not metabolites, and anti-colorectal cancer studies on C-K were limited. This study investigated the anti-proliferative effects of C-K when compared to those of Rb1, and the related mechanisms of action, in HCT-116 and SW-480 colorectal cancer cells. The effects of Rb1 and C-K on the proliferation of HCT-116 and SW-480 human colorectal cancer cells were compared using an MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Enzymatic activities of caspases were determined by colorimetric assay, and interactions of C-K and caspases were explored by docking analysis. C-K showed significant anti-proliferative effects in HCT-116 and SW-480 cells at concentrations of 30-50 µM. At the same concentrations, Rb1 did not show any effects, while C-K arrested the cells in the G1 phase, and significantly induced cell apoptosis. Compared to HCT-116 (p53 wild-type), the p53 mutant cell line SW-480 was more sensitive to C-K as assessed by cell cycle regulation and apoptosis induction. C-K activated expression of caspases 8 and 9, consistent with docking analysis. The docking data suggested that C-K forms hydrogen bonds with Lys253, Thr904 and Gly362 in caspase 8, and with Thr62, Ser63 and Arg207 in caspase 9. C-K, but not its parent ginsenoside Rb1, showed significant anti-proliferative and pro-apoptotic effects in human colorectal cancer cells. These results suggest that C-K could be a potentially effective anti-colorectal cancer agent.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|