201
|
Li Y, Liu S, Ni H, Zhang H, Zhang H, Chuah C, Ma C, Wong KS, Lam JWY, Kwok RTK, Qian J, Lu X, Tang BZ. ACQ‐to‐AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two‐Photon NIR Bioimaging. Angew Chem Int Ed Engl 2020; 59:12822-12826. [DOI: 10.1002/anie.202005785] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanyuan Li
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Shunjie Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Huwei Ni
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 China
| | - Haoke Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hequn Zhang
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT) the Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310020 China
| | - Clarence Chuah
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Chao Ma
- Department of Physics The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Kam Sing Wong
- Department of Physics The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 China
| | - Xuefeng Lu
- Department of Materials Science Fudan University Shanghai 200438 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| |
Collapse
|
202
|
Li Y, Liu S, Ni H, Zhang H, Zhang H, Chuah C, Ma C, Wong KS, Lam JWY, Kwok RTK, Qian J, Lu X, Tang BZ. ACQ‐to‐AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two‐Photon NIR Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanyuan Li
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Shunjie Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Huwei Ni
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 China
| | - Haoke Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hequn Zhang
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT) the Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310020 China
| | - Clarence Chuah
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Chao Ma
- Department of Physics The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Kam Sing Wong
- Department of Physics The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 China
| | - Xuefeng Lu
- Department of Materials Science Fudan University Shanghai 200438 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering State Key Laboratory of Molecular Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| |
Collapse
|
203
|
Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. MATERIALS HORIZONS 2020; 7:1474-1494. [PMID: 33777400 PMCID: PMC7990392 DOI: 10.1039/d0mh00012d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300-1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.
Collapse
Affiliation(s)
- Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
204
|
Jiao L, Liu Y, Zhang X, Hong G, Zheng J, Cui J, Peng X, Song F. Constructing a Local Hydrophobic Cage in Dye-Doped Fluorescent Silica Nanoparticles to Enhance the Photophysical Properties. ACS CENTRAL SCIENCE 2020; 6:747-759. [PMID: 32490191 PMCID: PMC7256957 DOI: 10.1021/acscentsci.0c00071] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Aggregation-caused quenching (ACQ) and poor photostability in aqueous media are two common problems for organic fluorescence dyes which cause a dramatic loss of fluorescence imaging quality and photodynamic therapy (PDT) failure. Herein, a local hydrophobic cage is built up inside near-infrared (NIR) cyanine-anchored fluorescent silica nanoparticles (FSNPs) in which a hydrophobic silane coupling agent (n-octyltriethoxysilane, OTES) is doped into FSNPs for the first time to significantly inhibit the ACQ effect and inward diffusion of water molecules. Therefore, the obtained optimal FSNP-C with OTES-modification can provide hydrophobic repulsive forces to effectively inhibit the π-π stacking interaction of cyanine dyes and simultaneously reduce the formation of strong oxidizing species (•OH and H2O2) in reaction with H2O, resulting in the best photostability (fluorescent intensity remained at 90.1% of the initial value after 300 s of laser scanning) and a high PDT efficiency on two- and three-dimensional (spheroids) HeLa cell culture models. Moreover, through molecular engineering (including increasing covalent anchoring sites and steric hindrance groups of cyanine dyes), FSNP-C exhibits the highest fluorescent intensity both in water solution (12.3-fold improvement compared to free dye) and living cells due to the limitation of molecular motion. Thus, this study provides an effectively strategy by combining a local hydrophobic cage and molecular engineering for NIR FSNPs in long-term bright fluorescence imaging and a stable PDT process.
Collapse
Affiliation(s)
- Long Jiao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Yongzhuo Liu
- Shandong
Collaborative Innovation Center of Eco-Chemical Engineering, College
of Chemical Engineering, Qingdao University
of Science and Technology, No. 53 Zhengzhou Road, Shibei
District, Qingdao 266042, P. R. China
| | - Xiaoye Zhang
- Marine
Engineering College, Dalian Maritime University, No. 1 Linghai Road, High-tech District, Dalian 116026, P. R. China
| | - Gaobo Hong
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Jing Zheng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Fengling Song
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
- Institute
of Molecular Sciences and Engineering, Shandong
University, Qingdao 266237, P. R. China
- ;
| |
Collapse
|
205
|
Lu S, Lei X, Ren H, Zheng S, Qiang J, Zhang Z, Chen Y, Wei T, Wang F, Chen X. PEGylated Dimeric BODIPY Photosensitizers as Nanocarriers for Combined Chemotherapy and Cathepsin B-Activated Photodynamic Therapy in 3D Tumor Spheroids. ACS APPLIED BIO MATERIALS 2020; 3:3835-3845. [DOI: 10.1021/acsabm.0c00394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiang Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 210009, China
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jian Qiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zhijie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yahui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tingwen Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
206
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
207
|
Li X, Park EY, Kang Y, Kwon N, Yang M, Lee S, Kim WJ, Kim C, Yoon J. Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. Angew Chem Int Ed Engl 2020; 59:8630-8634. [PMID: 32077201 DOI: 10.1002/anie.201916147] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Phototheranostic nanoplatforms are of particular interest for cancer diagnosis and imaging-guided therapy. Herein, we develop a supramolecular approach to fabricate a nanostructured phototheranostic agent through the direct self-assembly of two water-soluble phthalocyanine derivatives, PcS4 and PcN4. The nature of the molecular recognition between PcS4 and PcN4 facilitates the formation of nanostructure (PcS4-PcN4) and consequently enables the fabrication of PcS4-PcN4 with completely quenched fluorescence and reduced singlet oxygen generation, leading to the high photoacoustic and photothermal activity of PcS4-PcN4. In vivo evaluations suggest that PcS4-PcN4 could not only efficiently visualize a tumor with high contrast through whole-body photoacoustic imaging but also enable excellent photothermal therapy for cancer.
Collapse
Affiliation(s)
- Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Eun-Yeong Park
- Department of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Youngnam Kang
- Department of Chemistry, Postech-Catholic Biomedical Engineering Institute, POSTECH, Pohang, 37673, Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seunghyun Lee
- Department of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Postech-Catholic Biomedical Engineering Institute, POSTECH, Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
208
|
Li X, Park E, Kang Y, Kwon N, Yang M, Lee S, Kim WJ, Kim C, Yoon J. Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xingshu Li
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou 350108 China
| | - Eun‐Yeong Park
- Department of Electrical Engineering and Creative IT Engineering POSTECH Pohang 37673 Republic of Korea
| | - Youngnam Kang
- Department of Chemistry Postech-Catholic Biomedical Engineering Institute POSTECH Pohang 37673 Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Seunghyun Lee
- Department of Electrical Engineering and Creative IT Engineering POSTECH Pohang 37673 Republic of Korea
| | - Won Jong Kim
- Department of Chemistry Postech-Catholic Biomedical Engineering Institute POSTECH Pohang 37673 Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering and Creative IT Engineering POSTECH Pohang 37673 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
209
|
Li H, Yao Q, Xu F, Li Y, Kim D, Chung J, Baek G, Wu X, Hillman PF, Lee EY, Ge H, Fan J, Wang J, Nam SJ, Peng X, Yoon J. An Activatable AIEgen Probe for High-Fidelity Monitoring of Overexpressed Tumor Enzyme Activity and Its Application to Surgical Tumor Excision. Angew Chem Int Ed Engl 2020; 59:10186-10195. [PMID: 32155310 DOI: 10.1002/anie.202001675] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Monitoring fluctuations in enzyme overexpression facilitates early tumor detection and excision. An AIEgen probe (DQM-ALP) for the imaging of alkaline phosphatase (ALP) activity was synthesized. The probe consists of a quinoline-malononitrile (QM) core decorated with hydrophilic phosphate groups as ALP-recognition units. The rapid liberation of DQM-OH aggregates in the presence of ALP resulted in aggregation-induced fluorescence. The up-regulation of ALP expression in tumor cells was imaged using DQM-ALP. The probe permeated into 3D cervical and liver tumor spheroids for imaging spatially heterogeneous ALP activity with high spatial resolution on a two-photon microscopy platform, providing the fluorescence-guided recognition of sub-millimeter tumorigenesis. DQM-ALP enabled differentiation between tumor and normal tissue ex vivo and in vivo, suggesting that the probe may serve as a powerful tool to assist surgeons during tumor resection.
Collapse
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Yueqing Li
- School of Pharmaceutical Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Dayeh Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Jeewon Chung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Gain Baek
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Prima Fitria Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China.,Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Shenzhen, 518057, P. R. China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China.,Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Shenzhen, 518057, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
210
|
Li H, Yao Q, Xu F, Li Y, Kim D, Chung J, Baek G, Wu X, Hillman PF, Lee EY, Ge H, Fan J, Wang J, Nam S, Peng X, Yoon J. An Activatable AIEgen Probe for High‐Fidelity Monitoring of Overexpressed Tumor Enzyme Activity and Its Application to Surgical Tumor Excision. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haidong Li
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine ChemicalsDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Feng Xu
- State Key Laboratory of Fine ChemicalsDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Yueqing Li
- School of Pharmaceutical Science and TechnologyDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Dayeh Kim
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | - Jeewon Chung
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | - Gain Baek
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | - Xiaofeng Wu
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | | | - Eun Young Lee
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | - Haoying Ge
- State Key Laboratory of Fine ChemicalsDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- Research Institute of Dalian University of Technology in Shenzhen Gaoxin South fourth Road Shenzhen 518057 P. R. China
| | - Jingyun Wang
- School of Life Science and BiotechnologyDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Sang‐Jip Nam
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- Research Institute of Dalian University of Technology in Shenzhen Gaoxin South fourth Road Shenzhen 518057 P. R. China
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Korea
| |
Collapse
|
211
|
Li Y, Cai Z, Liu S, Zhang H, Wong STH, Lam JWY, Kwok RTK, Qian J, Tang BZ. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun 2020; 11:1255. [PMID: 32152288 PMCID: PMC7062876 DOI: 10.1038/s41467-020-15095-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022] Open
Abstract
Fluorescence imaging in near-infrared IIb (NIR-IIb, 1500-1700 nm) spectrum holds a great promise for tissue imaging. While few inorganic NIR-IIb fluorescent probes have been reported, their organic counterparts are still rarely developed, possibly due to the shortage of efficient materials with long emission wavelength. Herein, we propose a molecular design philosophy to explore pure organic NIR-IIb fluorophores by manipulation of the effects of twisted intramolecular charge transfer and aggregation-induced emission at the molecular and morphological levels. An organic fluorescent dye emitting up to 1600 nm with a quantum yield of 11.5% in the NIR-II region is developed. NIR-IIb fluorescence imaging of blood vessels and deeply-located intestinal tract of live mice based on organic dyes is achieved with high clarity and enhanced signal-to-background ratio. We hope this study will inspire further development on the evolution of pure organic NIR-IIb dyes for bio-imaging.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhaochong Cai
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sherman T H Wong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China. .,Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. .,Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
212
|
Wang R, Yan C, Zhang H, Guo Z, Zhu WH. In vivo real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment. Chem Sci 2020; 11:3371-3377. [PMID: 34122845 PMCID: PMC8157340 DOI: 10.1039/d0sc00290a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Glucose oxidase (GOD)-based synergistic cancer therapy has aroused great research interest in the context of cancer treatment due to the inherent biocompatibility and biodegradability. However, this emerging therapeutic system still lacks a strategy to predict and regulate the in vivo biocatalytic behavior of GOD in real time to minimize the side effects on normal tissues. Herein, we developed a tumor-specific cascade nanotheranostic system (BNG) that combines GOD-catalyzed oxidative stress and dual-channel fluorescent sensing, significantly improving the synergistic therapeutic efficacy with real-time feedback information. The nanotheranostic system remains completely silent in the blood circulatory system and selectively releases GOD enzymes in the tumor site, with enhanced near-infrared (NIR) fluorescence at 825 nm. Subsequently, GOD catalyzes H2O2 production, triggering cascade reactions with NIR fluorescence at 650 nm as an optical output, along with GSH depletion, enabling synergistic cancer treatment. The designed nanotheranostic system, integrated with tumor-activated cascade reactions and triggering a dual-channel output at each step, represents an insightful paradigm for precise cooperative cancer therapy.
Collapse
Affiliation(s)
- Ruofei Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Hehe Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
213
|
Nagarasu P, Kundu A, Pitchaimani J, Anthony SP, Moon D, Madhu V. Structure controlled solvatochromism and halochromic fluorescence switching of 2,2′-bipyridine based donor–acceptor derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02560g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple donor–acceptor derivatives were prepared by substituting alicyclic amines into the 2,2′-bipyridine (Bpy) core unit and they exhibited substituent and structure dependent tunable and switchable fluorescence.
Collapse
Affiliation(s)
- Palaniyappan Nagarasu
- Department of Applied Chemistry
- Karunya Institute of Technology and Sciences
- Coimbatore-641 114
- India
| | - Anu Kundu
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Jayaraman Pitchaimani
- Department of Applied Chemistry
- Karunya Institute of Technology and Sciences
- Coimbatore-641 114
- India
| | | | - Dohyun Moon
- Beamline Department
- Pohang Accelerator Laboratory
- Pohang
- Korea
| | - Vedichi Madhu
- Department of Applied Chemistry
- Karunya Institute of Technology and Sciences
- Coimbatore-641 114
- India
| |
Collapse
|