201
|
Liu J, Yu X, Xu Y, Zhao Y, Li D. Quaternary Ammonium-Mediated Delamination of Europium-Based Metal-Organic Framework into Ultrathin Nanosheets for the Selective Photoelectrochemical Sensing of Fe 3. Inorg Chem 2021; 60:19044-19052. [PMID: 34855389 DOI: 10.1021/acs.inorgchem.1c02895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural delamination of bulk layered metal-organic frameworks (MOFs) remains a great challenge, largely owing to a lack of general synthetic strategies. Here, we reported a simple solvent-free intercalation strategy for the delamination of rare-earth-based MOF (RE-MOF) with a topology structure of MIL-78 by tuning the chain length of quaternary ammonium salts. Four types of quaternary ammonium salts, involving tetraethylammonium bromide (TEAB), tetrapropylammonium bromide (TPAB), tetrabutylammonium bromide (TBAB), and hexadecyl trimethyl ammonium bromide (CTAB) were introduced to investigate their intercalation capabilities. It is evident in our case that the interruption/intercalation behavior of quaternary ammonium salts differs with their steric structures, and the chain-like CTAB can induce obvious delamination of MIL-78 crystals. Particularly, the CTAB-intercalated ultrathin Eu-based MIL-78 nanosheets exhibited unique selective photoelectrochemical sensing property toward trace amounts of Fe3+ ions in aqueous solution with a detection limit of 0.0899 μM at a signal-to-noise ratio of 3. These results demonstrated a green bottom-up strategy to obtain high-quality RE-MOF nanosheets for potential photocurrent response applications.
Collapse
Affiliation(s)
- Jiaqiang Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xiandi Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.,Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
202
|
Li ZJ, Lei M, Bao H, Ju Y, Lu H, Li Y, Zhang ZH, Guo X, Qian Y, He MY, Wang JQ, Liu W, Lin J. A cationic thorium-organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chem Sci 2021; 12:15833-15842. [PMID: 35024107 PMCID: PMC8672715 DOI: 10.1039/d1sc03709a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Single-crystal-to-single-crystal transformation of metal-organic frameworks has been met with great interest, as it allows for the creation of new materials in a stepwise manner and direct visualization of structural transitions when subjected to external stimuli. However, it remains a peculiarity among numerous metal-organic frameworks, particularly for the ones constructed from tetravalent metal cations. Herein, we present a cationic thorium-organic framework displaying unprecedented triple single-crystal-to-single-crystal transformations in organic solvents, water, and NaIO3 solution. Notably, both the interpenetration conversion and topological change driven by the SC-SC transformation have remained elusive for thorium-organic frameworks. Moreover, the single-crystal-to-single-crystal transition in NaIO3 solution can efficiently and selectively turn the ligand-based emission off, leading to the lowest limit of detection (0.107 μg kg-1) of iodate, one of the primary species of long-lived fission product 129I in aqueous medium, among all luminescent sensors.
Collapse
Affiliation(s)
- Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Min Lei
- School of Environmental and Material Engineering, Yantai University Yantai 264005 P. R. China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yu Ju
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 637371 Singapore
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University Pullman WA 99164-4630 USA
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University Yantai 264005 P. R. China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- School of Nuclear Science and Technology, Xi'an Jiaotong University No. 28, Xianning West Road Xi'an 710049 P. R. China
| |
Collapse
|
203
|
Wang K, Duan Y, Chen J, Wang H, Liu H. A dye encapsulated zinc-based metal-organic framework as a dual-emission sensor for highly sensitive detection of antibiotics. Dalton Trans 2021; 51:685-694. [PMID: 34909812 DOI: 10.1039/d1dt03950d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of two Zn-MOFs, [Zn2L(DMF)3]·H2O·5DMF (1) and [Zn2L(H2O)2]·4H2O·3DMF (2), was achieved with an amide-functionalized tetracarboxylate ligand under similar conditions. Incorporated amide groups make the tetratopic linkers exhibit different configurations, tetrahedron and square, and subsequently combine tetrahedral [Zn2(CO2)4] clusters or square paddle-well [Zn2(CO2)4] clusters to afford a lon net for 1 and a nbo net for 2. Remarkably, 2 demonstrated high porosity and amide group decorated cages, and thereby proved to be a good capturing agent for a fluorescent dye molecule (DMASM). Consequently, a dual-emitting DMASM@2 sensor was successfully fabricated based on effective energy transfer from the host framework to DMASM with the variable luminescent color being visible to the naked eye. DMASM@2 could be used for the detection of metronidazole (MDZ) and dimetridazole (DTZ) with high sensitivity and remarkable recyclability.
Collapse
Affiliation(s)
- Kang Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yuhan Duan
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Jiajing Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
204
|
Zhang JW, Li H, Li JQ, Chen Y, Qu P, Zhai QG. Enhancement of the fluorescence properties via introducing the tetraphenylethylene chromophores into a novel Mn-organic framework with a rare [Mn 4(μ 3-OH) 2] cluster. Dalton Trans 2021; 50:17482-17486. [PMID: 34788353 DOI: 10.1039/d1dt03349b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By employing a tetraphenylethylene (TPE)-based tetracarboxylate linker, tetrakis(4-carboxyphenyl)ethylene (H4TCPE), we herein constructed a novel luminescent Mn-MOF based on a rare [Mn4(μ3-OH)2] cluster (SQNU-55). Interestingly, the TPE-based SQNU-55 not only provides a good material for the blue LED device, but also has a better luminescent molecular thermometer for low-temperature detection.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Hui Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Jie-Qiong Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Ya Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Peng Qu
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China.
| |
Collapse
|
205
|
Ahmed I, Lee HJ, Jhung SH. A Tb-based-metal–organic framework prepared under ultrasound for detection of organic amines in aqueous solution through fluorescence quenching. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
206
|
A thermal and pH stable fluorescent metal-organic framework sensor for high selectively and sensitively sensing nitro aromatic compounds in aqueous media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
207
|
Liu JJ, Fu JJ, Liu T, He CX, Cheng F. Photochromism and photoswitchable luminescence in a Zn 7 cluster-based metal-organic framework with an organic guest. Dalton Trans 2021; 50:17023-17028. [PMID: 34752589 DOI: 10.1039/d1dt03213e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photochromic materials coupled with photoswitchable luminescence functionalities are of particular interest due to their potential applications in switches and optical memory devices. However, the construction of such materials, especially those with two-color emission states, is still challenging. In this context, a rare Zn7 cluster-based host-guest MOF material, (bbmp)[Zn7(IPA)6(OH)4(H2O)2] (1) (H2IPA = isophthalic acid, bbmp·2I = 4,4'-([1,1'-biphenyl]-4,4'-diyl)bis(1-methylpyridin-1-ium) diiodide), was prepared by encapsulating an organic cation into an anionic MOF produced from zinc cations and isophthalic acid ligands, which exhibits reversible naked detectable photochromic properties varying from yellow to green upon UV-Vis light irradiation. The photoactive guest bbmp2+ and the short O⋯N+ distances between the oxygen atoms of the carboxylate groups and the pyridine ring play a crucial role in the photochromism of this compound. More interestingly, the luminescence color of this cluster-based host-guest material can be reversibly switched from green to blue upon irradiation, exhibiting photoswitchable luminescence properties.
Collapse
Affiliation(s)
- Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jia-Jia Fu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Chi-Xian He
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
208
|
Guo MY, Li G, Yang SL, Bu R, Piao XQ, Gao EQ. Metal-Organic Frameworks with Novel Catenane-like Interlocking: Metal-Determined Photoresponse and Uranyl Sensing. Chemistry 2021; 27:16415-16421. [PMID: 34599532 DOI: 10.1002/chem.202102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/20/2022]
Abstract
The assembly of two tripyridinium-tricarboxylate ligands and different metal ions leads to seven isostructural MOFs, which show novel 2D→2D supramolecular entanglement featuring catenane-like interlocking of tricyclic cages. The MOFs show tripyridinium-afforded and metal-modulated photoresponsive properties. The MOFs with d10 metal centers (1-Cd, 1-Zn, 2-Cd, 2-Zn) show fast and reversible photochromism and concomitant fluorescence quenching, 1-Ni displays slower photochromism but does not fluoresce, and 1-Co and 2-Co are neither photochromic nor fluorescent. It is shown here that the network entanglement dictates donor-acceptor close contacts, which enable fluorescence originated from interligand charge transfer. The contacts also allow photoinduced electron transfer, which underlies photochromism and concomitant fluorescence response. The metal dependence in fluorescence and photochromism can be related to energy transfer through metal-centered d-d transitions. In addition, 1-Cd is demonstrated to be a potential fluorescence sensor for sensitive and selective detection of UO2 2+ in water.
Collapse
Affiliation(s)
- Meng-Yue Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xian-Qing Piao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
209
|
Lin Z, Zhou J, Qu Y, Pan S, Han Y, Lafleur RPM, Chen J, Cortez-Jugo C, Richardson JJ, Caruso F. Luminescent Metal-Phenolic Networks for Multicolor Particle Labeling. Angew Chem Int Ed Engl 2021; 60:24968-24975. [PMID: 34528750 DOI: 10.1002/anie.202108671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Indexed: 12/22/2022]
Abstract
The development of fluorescence labeling techniques has attracted widespread interest in various fields, including biomedical science as it can facilitate high-resolution imaging and the spatiotemporal understanding of various biological processes. We report a supramolecular fluorescence labeling strategy using luminescent metal-phenolic networks (MPNs) constructed from metal ions, phenolic ligands, and common and commercially available dyes. The rapid labeling process (<5 min) produces ultrathin coatings (≈10 nm) on diverse particles (e.g., organic, inorganic, and biological entities) with customized luminescence (e.g., red, blue, multichromatic, and white light) simply through the selection of fluorophores. The fluorescent coatings are stable at pH values from 1 to 8 and in complex biological media owing to the dominant π interactions between the dyes and MPNs. These coatings exhibit negligible cytotoxicity and their strong fluorescence is retained even when internalized into intracellular compartments. This strategy is expected to provide a versatile approach for fluorescence labeling with potential in diverse fields across the physical and life sciences.
Collapse
Affiliation(s)
- Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - René P M Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
210
|
Lei M, Jia Y, Zhang W, Xie J, Xu Z, Wang Y, Du W, Liu W. Ultrasensitive and Selective Detection of Uranium by a Luminescent Terbium-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51086-51094. [PMID: 34694793 DOI: 10.1021/acsami.1c16742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detection and remediation of radioactive components have become the focus of worldwide research interest due to the ever-increasing generation of nuclear waste and the concerns on nuclear accidents. Among the numerous radionuclides, uranium and its isotopes receive the most attention because of their high proportion in nuclear waste and long half-life. Herein, a highly luminescent terbium-organic framework, formulated as [Tb4(C29O8H17)2(NO3)4(DMF)4(H2O)4]·4H2O·8.5DMF (YTU-100), with exceptional sensitivity and selectivity toward uranium was successfully prepared. The material exhibits fast adsorption kinetics and moderate sorption capacity. Interestingly, the luminescence intensity variation highly correlates to the amount of adsorbed uranium, which results in a quantitative, accurate, and selective uranium detection manner. The detection limits in deionized water and tap water were determined to be 1.07 and 0.75 ppb, respectively, which are lower than the US Environmental Protection Agency standard of the maximum contamination of uranium in drinking water. YTU-100 offers an alternative approach for building multifunctional MOFs used for simultaneous detection and removal of uranium from aqueous solutions.
Collapse
Affiliation(s)
- Min Lei
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuyu Jia
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jian Xie
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhijun Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yanlong Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
211
|
Liu Y, Fan Y, Hou C, Du W, Zhang D, Liu Y, Xu J, Bai YL. Highly Selective Chloromethanes Detection Based on Quartz Crystal Microbalance Gas Sensors with Ba-MOFs. Inorg Chem 2021; 60:16370-16377. [PMID: 34677953 DOI: 10.1021/acs.inorgchem.1c02185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three new metal-organic frameworks (MOFs), {(CH3NH3)3[Ba2(TTHA)(NO3)(H2O)2]}·2H2O (1), {(CH3NH3)4[Ba3(HTTHA)2(H2O)7]}·3H2O (2), and [Ba7(TTHA)2(NO3)2(H2O)10]·2H2O (3) (H6TTHA = 1,3,5-triazine-2,4,6-triamineh-exaacetic acid) have been synthesized and characterized. The sensing properties of 1-3 were explored with regard to volatile organic compounds (VOCs) by the quartz crystal microbalance (QCM) technique. The results indicated that 1 and 2 have a much higher selectivity and response to chloromethanes (CH2Cl2, CHCl3, and CCl4) compared with H2O, CH3OH, CH3CH2OH, CH3CN, (CH3)2CO, C6H6, C6H5CH3, C6H5CH2CH3, and C6H5Cl at room temperature. Furthermore, 1 and 2 sensing film also exhibits excellent reversibility and stability, and the response and recovery times are almost within 10 s. 3 displays a lower response and poor selectivity to the above VOCs. The significant difference may be caused by their different structural characteristics. The Ba2+ ions are all decacoordinated in 1 and 2, while Ba2+ ions have more open metal sites in 3. So, the high selectivity and response of 1 and 2 may be due to the exchange of coordination water molecules with chloromethanes and possible electrostatic effects between (CH3NH3)+ cations and chloromethanes containing more electronegative Cl atoms. DFT calculation results show that the bond energy of Ba-Cl and Ba-O is not much different, so chloromethanes at high concentrations may exchange coordination water to form weak Ba···Cl interactions and show higher response values. 3 has no obvious VOCs selectivity and higher response due to more open sites of Ba2+ ions and smaller pore size. This work develops a fast and effective method to detect chloromethanes, providing a new opportunity for designing QCM gas sensors coated with different MOF materials.
Collapse
Affiliation(s)
- Yanan Liu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yu Fan
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Chaoyi Hou
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Wei Du
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Dan Zhang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yu Liu
- International Center for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yue-Ling Bai
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
212
|
Fu H, Jiang Y, Wang F, Zhang J. The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2791. [PMID: 34835554 PMCID: PMC8618028 DOI: 10.3390/nano11112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal-organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
Collapse
Affiliation(s)
- Hongru Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Yuying Jiang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| |
Collapse
|
213
|
Lin Z, Zhou J, Qu Y, Pan S, Han Y, Lafleur RPM, Chen J, Cortez‐Jugo C, Richardson JJ, Caruso F. Luminescent Metal‐Phenolic Networks for Multicolor Particle Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - René P. M. Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
214
|
New Mn(II) coordination polymer constructed from a semi-rigid tricarboxylate acid ligand: Synthesis, structure, and fluorescence recognition of acetylacetone and dichromate anion. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
215
|
Uranium MOF derivative based on 2,2',2''-[1 4,6-triyltris(thio)]trisacetic acid as sensor for ruthenium(III) and biomolecules. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
216
|
Li Y, Wang HT, Zhao YL, Lv J, Zhang X, Chen Q, Li JR. Regulation of hydrophobicity and water adsorption of MIL-101(Cr) through post-synthetic modification. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
217
|
Wu S, Ren D, Zhou K, Xia HL, Liu XY, Wang X, Li J. Linker Engineering toward Full-Color Emission of UiO-68 Type Metal-Organic Frameworks. J Am Chem Soc 2021; 143:10547-10552. [PMID: 34240850 DOI: 10.1021/jacs.1c04810] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Luminescent metal-organic frameworks (LMOFs) demonstrate strong potential for a broad range of applications due to their tunable compositions and structures. However, the methodical control of the LMOF emission properties remains a great challenge. Herein, we show that linker engineering is a powerful method for systematically tuning the emission behavior of UiO-68 type metal-organic frameworks (MOFs) to achieve full-color emission, using 2,1,3-benzothiadiazole and its derivative-based dicarboxylic acids as luminescent linkers. To address the fluorescence self-quenching issue caused by densely packed linkers in some of the resultant UiO-68 type MOF structures, we apply a mixed-linker strategy by introducing nonfluorescent linkers to diminish the self-quenching effect. Steady-state and time-resolved photoluminescence (PL) experiments reveal that aggregation-caused quenching can indeed be effectively reduced as a result of decreasing the concentration of emissive linkers, thereby leading to significantly enhanced quantum yield and increased lifetime.
Collapse
Affiliation(s)
- Shenjie Wu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Daming Ren
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People's Republic of China.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
218
|
Tong YJ, Yu LD, Huang Y, Fu Q, Li N, Peng S, Ouyang S, Ye YX, Xu J, Zhu F, Pawliszyn J, Ouyang G. Polymer Ligand-Sensitized Lanthanide Metal-Organic Frameworks for an On-Site Analysis of a Radionuclide. Anal Chem 2021; 93:9226-9234. [PMID: 34165288 DOI: 10.1021/acs.analchem.1c01490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a new strategy to increase the sensitivity of a lanthanide metal-organic framework (Ln-MOF) to UO22+ was proposed by using polymeric ligands. By utilizing [Tb(1,3,5-benzenetrisbenzoate)]n (Tb-TBT) MOF as the host, preloaded 2-vinyl terephthalic acid (VTP) was polymerized in situ, which produced a novel fluorescent composite denoted as PVTP⊂Tb-TBT. Benefiting from the coordination of PVTP to the Tb nodes, the polymeric chains performed both as molecular scaffolds that improved the water stability of the framework and as additional antennae that sensitized the photoluminescence of the Tb nodes. More importantly, the detection sensitivity and selectivity of PVTP⊂Tb-TBT to UO22+ were much improved compared to those of Tb-TBT. Detailed characterizations indicated that the incorporation of PVTP efficiently enriched UO22+ in the probe, which promoted the energy dissipation to UO22+. Besides, UO22+ was also supposed to release PVTP from PVTP⊂Tb-TBT and, thus, exposed the open metal sites to water molecules, which interrupted the sensitization effect of PVTP and induced a nonradiative energy dissipation. A limit of detection (LOD) as low as 0.75 nm was recorded by suspending the PVTP⊂Tb-TBT probe in a water sample, far below the limit in drinking water set by the United States Environmental Protection Agency (130 nm). Furthermore, a remotely controlled sampling and an on-site analysis of real water samples were realized by facilely loading PVTP⊂Tb-TBT on thin films (TFs). The LOD for UO22+ was 2.5 nm by using the TFs. This study reports a new strategy for boosting the sensitivity and selectivity of Ln-MOF to monitor UO22+ and expands the application of the strategy to an on-site analysis.
Collapse
Affiliation(s)
- Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Sai Ouyang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.,Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
219
|
Lin S, Fan L, Zhou P, Xu T, Jiang Z, Hu S, Chen J, He Y. An Isomeric Copper‐Diisophthalate Framework Platform for Storage and Purification of C
2
H
2
and Exploration of the Positional Effect of the Methyl Group. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Tingting Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Zhenzhen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Simin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Jingxian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| |
Collapse
|
220
|
Qiao Y, Li Z, Yu MH, Chang Z, Bu XH. A metal–organic framework featuring highly sensitive fluorescence sensing for Al 3+ ions. CrystEngComm 2021. [DOI: 10.1039/d1ce01115d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new fluorescent MOF can detect Al3+ ions with high selectivity and sensitivity via turn-off effect and emission color change.
Collapse
Affiliation(s)
- Yang Qiao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeqi Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- College of Chemistry, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
221
|
Yu Y, Wang Z, Li Z, Hang X, Bi Y. Assembly of {Co 14} nanoclusters from adenine-modified Co 4-thiacalix[4]arene units. CrystEngComm 2021. [DOI: 10.1039/d1ce00440a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An adenine-modified Co4-thiacalix[4]arene unit can serve as a second building unit for fabrication of three Co14 clusters with different structures.
Collapse
Affiliation(s)
- Yanan Yu
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Zhao Wang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Ziping Li
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Xinxin Hang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Yanfeng Bi
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| |
Collapse
|