201
|
François P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approach to investigate pathogenicity and metabolism of methicillin-resistant Staphylococcus aureus. Methods Mol Biol 2014; 1085:231-50. [PMID: 24085700 DOI: 10.1007/978-1-62703-664-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last two decades, numerous genomes of pathogenic bacteria have been fully sequenced and annotated, while others are continuously being sequenced. To date, the sequences of more than 8,500 whole bacterial genomes are publicly available for research purposes. These efforts in high-throughput sequencing simultaneously to progresses in methods allowing to study whole transcriptome and proteome of bacteria provide the basis of comprehensive understanding of metabolism, adaptability to environment, regulation, resistance pathways, or pathogenicity mechanisms of bacterial pathogens. Staphylococcus aureus is a Gram-positive human pathogen causing a wide variety of infections ranging from benign skin infection to life-threatening diseases. Furthermore, the spreading of multidrug-resistant isolates requiring the use of last barrier drugs has resulted in a particular attention of the medical and scientific community to this pathogen. We describe here proteomic methods to prepare, identify, and analyze protein fractions, which allow studying Staphylococcus aureus on the organism level. Besides evaluation of the whole bacterial transcriptome, this approach might contribute to the development of rapid diagnostic tests and to the identification of new drug targets to improve public health.
Collapse
Affiliation(s)
- Patrice François
- Service of Infectious Diseases, Genomic Research Laboratory, Geneva, Switzerland
| | | | | | | |
Collapse
|
202
|
Yang J, Ji Y. Investigation of Staphylococcus aureus adhesion and invasion of host cells. Methods Mol Biol 2014; 1085:187-94. [PMID: 24085697 DOI: 10.1007/978-1-62703-664-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The continuous emergence of multidrug-resistant bacterial pathogens is a major problem in public health. Many mechanisms may be involved in such resistance in Staphylococcus aureus. Increasing data have shown that S. aureus can invade different types of host cells, which may contribute to escape from host immune defense as well as evade the toxicity of certain antibiotics. The organism produces various cell wall-associated molecules, particularly fibronectin-binding proteins, which are important for the bacterial cells to adhere to and internalize into the host cells. Thus, the expression levels of these factors affect the bacterial capacity of adhesion and invasion. In this study, we found that different human MRSA isolates possessed different abilities to adhere to and invade the epithelial cells.
Collapse
Affiliation(s)
- Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
203
|
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of neonatal sepsis and meningitis, peripartum infections in women, and invasive infections in chronically ill or elderly individuals. GBS can be isolated from the gastrointestinal or genital tracts of up to 30% of healthy adults, and infection is thought to arise from invasion from a colonized mucosal site. Accordingly, bacterial surface components that mediate attachment of GBS to host cells or the extracellular matrix represent key factors in the colonization and infection of the human host. We identified a conserved GBS gene of unknown function that was predicted to encode a cell wall-anchored surface protein. Deletion of the gene and a cotranscribed upstream open reading frame (ORF) in GBS strain 515 reduced bacterial adherence to VK2 vaginal epithelial cells in vitro and reduced GBS binding to fibronectin-coated microtiter wells. Expression of the gene product in Lactococcus lactis conferred the ability to adhere to VK2 cells, to fibronectin and laminin, and to fibronectin-coated ME-180 cervical epithelial cells. Expression of the recombinant protein in L. lactis also markedly increased biofilm formation. The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both on a central BID1 domain found in bacterial intimin-like proteins and on the C-terminal portion of the BsaB protein. Expression of BsaB in GBS, like that of several other adhesins, was regulated by the CsrRS two-component system. We conclude that BsaB represents a newly identified adhesin that participates in GBS attachment to epithelial cells and the extracellular matrix.
Collapse
|
204
|
Abstract
S. aureus is a frequent cause of chronic and therapy-refractory infections. The ability of S. aureus to invade different types of non-professional phagocytes, to escape from the host lysosomal degradation machinery and to persist within the intracellular location for long time periods are most likely essential steps in pathogenesis. During the course from acute to chronic infection the bacteria need to dynamically react to the environmental changes and to adapt to the intracellular environment. In this context the bacteria change to SCV-like phenotypes that exhibit some characteristics of stable SCV-mutants, like upregulation of adhesins and downregulation of toxins. The exact formation mechanism and further typical features of these dynamically forming SCVs are largely unknown. In this review, recent data on the essential steps to establish chronic infections will be summarized and the clinical consequences of the dynamic bacterial adaptation mechanisms will be discussed.
Collapse
|
205
|
Abstract
The cytoplasmic membrane of most bacteria is surrounded by a more or less thick murein layer (peptidoglycan) that protects the protoplast from mechanical damage, osmotic rupture and lysis. When bacteria are dividing processes are initiated stepwise that involve DNA replication, constriction of the membranes, cell growth, biosynthesis of new murein, and finally the generation of two daughter cells. As the daughter cells are still covalently interlinked by the murein network they must be separated by specific peptidoglycan hydrolases, also referred to as autolysins. In staphylococci, the major autolysin (Atl) and its processed products N-acetylmuramoyl-l-alanine amidase (AM) and endo-β-N-acetylglucosaminidase (GL) have been in the research focus for long time. This review addresses phenotypic consequences of atl mutants, impact of Atl in virulence, the mechanism of targeting to the septum region, regulation of atl, the structure of the amidase and the repeat regions, as well as the phylogeny of Atl and its use in Staphylococcus genus and species typing.
Collapse
|
206
|
Kramko N, Sinitski D, Seebach J, Löffler B, Dieterich P, Heilmann C, Peters G, Schnittler HJ. Early Staphylococcus aureus-induced changes in endothelial barrier function are strain-specific and unrelated to bacterial translocation. Int J Med Microbiol 2013; 303:635-44. [DOI: 10.1016/j.ijmm.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/26/2013] [Accepted: 09/01/2013] [Indexed: 12/14/2022] Open
|
207
|
Werdan K, Dietz S, Löffler B, Niemann S, Bushnaq H, Silber RE, Peters G, Müller-Werdan U. Mechanisms of infective endocarditis: pathogen–host interaction and risk states. Nat Rev Cardiol 2013; 11:35-50. [DOI: 10.1038/nrcardio.2013.174] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
208
|
Grosz M, Kolter J, Paprotka K, Winkler AC, Schäfer D, Chatterjee SS, Geiger T, Wolz C, Ohlsen K, Otto M, Rudel T, Sinha B, Fraunholz M. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α. Cell Microbiol 2013; 16:451-65. [PMID: 24164701 DOI: 10.1111/cmi.12233] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus is a Gram-positive human pathogen that is readily internalized by professional phagocytes such as macrophages and neutrophils but also by non-professional phagocytes such as epithelial or endothelial cells. Intracellular bacteria have been proposed to play a role in evasion of the innate immune system and may also lead to dissemination within migrating phagocytes. Further, S. aureus efficiently lyses host cells with a battery of cytolytic toxins. Recently, phenol-soluble modulins (PSM) have been identified to comprise a genus-specific family of cytolytic peptides. Of these the PSMα peptides have been implicated in killing polymorphonuclear leucocytes after phagocytosis. We questioned if the peptides were active in destroying endosomal membranes to avoid lysosomal killing of the pathogen and monitored integrity of infected host cell endosomes by measuring the acidity of the intracellular bacterial microenvironment via flow cytometry and by a reporter recruitment technique. Isogenic mutants of the methicillin-resistant S. aureus (MRSA) strains USA300 LAC, USA400 MW2 as well as the strongly cytolytic methicillin-sensitive strain 6850 were compared with their respective wild type strains. In all three genetic backgrounds, PSMα mutants were unable to escape from phagosomes in non-professional (293, HeLa, EAhy.926) and professional phagocytes (THP-1), whereas mutants in PSMβ and δ-toxin as well as β-toxin, phosphatidyl inositol-dependent phospholipase C and Panton Valentine leucotoxin escaped with efficiencies of the parental strains. S. aureus replicated intracellularly only in presence of a functional PSMα operon thereby illustrating that bacteria grow in the host cell cytoplasm upon phagosomal escape.
Collapse
Affiliation(s)
- Magdalena Grosz
- Department of Microbiology, University of Würzburg, Biocenter, Am Hubland, D-97074, Würzburg, Germany; Institute for Hygiene and Medical Microbiology, Josef-Schneider-Str. 2, Bldg. E1, D-97080, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Lappann M, Danhof S, Guenther F, Olivares-Florez S, Mordhorst IL, Vogel U. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol 2013; 89:433-49. [PMID: 23750848 DOI: 10.1111/mmi.12288] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET-mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET-bound cathepsin G; (ii) expression of the high-affinity zinc uptake receptor ZnuD allowed Nm to escape NET-mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).
Collapse
Affiliation(s)
- Martin Lappann
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
210
|
Involvement of phosphatidylinositol 3-Kinase/Akt signaling pathway in β1 integrin-mediated internalization of Staphylococcus aureus by alveolar epithelial cells. J Microbiol 2013; 51:644-50. [PMID: 23800951 DOI: 10.1007/s12275-013-3040-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The invasion of Staphylococcus aureus into alveolar epithelial cells is regarded as the key step for S. aureus lung infection. However, the mechanism of internalization of S. aureus by alveolar epithelial cells is not clear, and was the aim of this investigation Human lung adenocarcinomic epithelial cells and A549 cells were used. Human β1 integrin and rat β1 integrin were detected by real-time reverse transcription (RT)-PCR. The expressions of β1 integrin, Akt and p-Akt were detected by Western blot analysis. To further investigate the role of β1 integrin in S. aureus internalization by alveolar epithelial cells, we next performed siRNA-mediated knockdown of β1 integrin expression. In this study, we found that S. aureus invades human alveolar epithelial cells and rat primary alveolar epithelial cells. The β1 integrin ligand competitive inhibitor, GRGDS-peptide, blocked the internalization of S. aureus by A549 cells. Knockdown of β1 integrin also inhibited the internalization of S. aureus. In addition, the PI3K/Akt signaling pathway in alveolar epithelial cells was activated by the infection with S. aureus. Furthermore, Akt phosphorylation was abolished by transient transfection with β1 integrin siRNA in A549 cells challenged with S. aureus. Our results suggest that the phosphatidylinositol 3-kinase/Akt signaling pathway plays an important role in β1 integrin-mediated internalization of S. aureus by alveolar epithelial cells.
Collapse
|
211
|
van der Mee-Marquet N, Corvaglia AR, Valentin AS, Hernandez D, Bertrand X, Girard M, Kluytmans J, Donnio PY, Quentin R, François P. Analysis of prophages harbored by the human-adapted subpopulation of Staphylococcus aureus CC398. INFECTION GENETICS AND EVOLUTION 2013; 18:299-308. [PMID: 23770143 DOI: 10.1016/j.meegid.2013.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus clonal complex 398 is a livestock-associated pathogen that poses a worldwide threat because of its ability to colonize and infect both humans and animals. We used high-resolution whole-genome microarrays, prophage profiling, immune evasion cluster characterization and whole-genome sequencing to investigate the roles of prophages in the emerging human-adapted subpopulation of CC398 that has been associated with invasive infections in humans living in animal-free environments. We characterized one phage and two prophages specifically harbored by CC398 isolates belonging to the emerging subpopulation. We introduced the phage into permissive prophage-free isolates. We investigated the effects of lysogeny on the host ability to resist further phage infection and transformation, to acquire the capacity to invade human cells, and to express virulence factors encoded by prophages. We report evidence of a defective ϕMR11-like helper prophage, named StauST398-5pro, specifically associated with the emerging non-LA CC398 subpopulation. StauST398-5pro confers substantial protection against horizontal genetic transfer to its host. It interacts with a human-associated β-converting prophage encoding immune-modulating proteins such that virulence genes are expressed during stress situations. Our findings provide insight into the role of phages in the expression of virulence and in the spread of genetic information among new host-adapted S. aureus isolates. We demonstrate that functional prophage elements can condition host specificity and confer new virulence traits on emerging intra-species clones of bacteria.
Collapse
|
212
|
Pappelbaum KI, Gorzelanny C, Grässle S, Suckau J, Laschke MW, Bischoff M, Bauer C, Schorpp-Kistner M, Weidenmaier C, Schneppenheim R, Obser T, Sinha B, Schneider SW. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 2013; 128:50-9. [PMID: 23720451 DOI: 10.1161/circulationaha.113.002008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown. METHODS AND RESULTS Perfusion of activated human endothelial cells with fluorescent bacteria under high-shear-rate conditions revealed 95% attachment of the S aureus by ultralarge von Willebrand factor (ULVWF). Flow experiments with VWF deletion mutants and heparin indicate a contribution of the A-type domains of VWF to bacterial binding. In this context, analyses of different bacterial deletion mutants suggest the involvement of wall teichoic acid but not of staphylococcal protein A. The presence of inactivated platelets and serum increased significantly ULVWF-mediated bacterial adherence. ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motifs 13) caused a dose-dependent reduction of bacterial binding and a reduced length of ULVWF, but single cocci were still tethered by ULVWF at physiological levels of ADAMTS13. To further prove the role of VWF in vivo, we compared wild-type mice with VWF knockout mice. Binding of fluorescent bacteria was followed in tumor necrosis factor-α-stimulated tissue by intravital microscopy applying the dorsal skinfold chamber model. Compared with wild-type mice (n=6), we found less bacteria in postcapillary (60±6 versus 32±5 bacteria) and collecting venules (48±5 versus 18±4 bacteria; P<0.05) of VWF knockout mice (n=5). CONCLUSIONS Our data provide the first evidence that ULVWF contributes to the initial pathogenic step of S aureus-induced endocarditis in patients with an apparently intact endothelium. An intervention reducing the ULVWF formation with heparin or ADAMTS13 suggests novel therapeutic options to prevent infective endocarditis.
Collapse
Affiliation(s)
- Karin I Pappelbaum
- Experimental Dermatology, Department of Dermatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Bur S, Preissner KT, Herrmann M, Bischoff M. The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytes independent of fibronectin-binding proteins. J Invest Dermatol 2013; 133:2004-12. [PMID: 23446985 DOI: 10.1038/jid.2013.87] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus, the leading causal pathogen of skin infections, is strongly associated with skin atopy, and a number of bacterial adhesins allow the microbe to adhere to and invade eukaryotic cells. One of these adhesive molecules is the multifunctional extracellular adherence protein (Eap), which is overexpressed in situ in authentic human wounds and was shown to delay wound healing in experimental models. Yet, its role during invasion of keratinocytes is not clearly defined. By using a gentamicin/lysostaphin protection assay we demonstrate here that preincubation of HaCaT cells or primary keratinocytes with Eap results in a concentration-dependent significant increase in staphylococcal adhesion, followed by an even more pronounced internalization of bacteria by eukaryotic cells. Flow cytometric analysis revealed that Eap increased both the number of infected eukaryotic cells and the bacterial load per infected cell. Moreover, treatment of keratinocytes with Eap strongly enhanced the internalization of coagulase-negative staphylococci, as well as of E. coli, and markedly promoted staphylococcal invasion into extended-culture keratinocytes, displaying expression of keratin 10 and involucrin as differentiation markers. Thus, wound-related staphylococcal Eap may provide a major cellular invasin function, thereby enhancing the pathogen's ability to hide from the host immune system during acute and chronic skin infection.
Collapse
Affiliation(s)
- Stephanie Bur
- Institute for Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | | | | | | |
Collapse
|
214
|
Jauregui CE, Mansell JP, Jepson MA, Jenkinson HF. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts. Mol Oral Microbiol 2013; 28:250-66. [PMID: 23413785 DOI: 10.1111/omi.12022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/18/2023]
Abstract
The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption.
Collapse
Affiliation(s)
- C E Jauregui
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
215
|
Zapotoczna M, Jevnikar Z, Miajlovic H, Kos J, Foster TJ. Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol 2013; 15:1026-41. [PMID: 23279065 DOI: 10.1111/cmi.12097] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/28/2012] [Accepted: 12/13/2012] [Indexed: 01/22/2023]
Abstract
Staphylococcus aureus is a human pathogen that causes invasive and recurring infections. The ability to internalize into and persist within host cells is thought to contribute to infection. Here we report a novel role for the well-characterized iron-regulated surface determinant B (IsdB) protein which we have shown can promote adhesion of 293T, HeLa cells and platelets to immobilized bacteria independently of its ability to bind haemoglobin. IsdB bound to the active form of the platelet integrin αIIb β3 , both on platelets and when the integrin was expressed ectopically in CHO cells. IsdB also promoted bacterial invasion into human cells. This was clearly demonstrated with bacteria lacking fibronectin-binding proteins (FnBPs), which are known to promote invasion in the presence of fibronectin. However, IsdB also contributed significantly to invasion by cells expressing FnBPs in the presence of serum. Thus IsdB appears to be able to interact with the broader family of integrins that bind ligands with the RGD motif and to act as a back up mechanism to promote interactions with mammalian cells.
Collapse
Affiliation(s)
- Marta Zapotoczna
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
216
|
Borisova M, Shi Y, Buntru A, Wörner S, Ziegler WH, Hauck CR. Integrin-mediated internalization of Staphylococcus aureus does not require vinculin. BMC Cell Biol 2013; 14:2. [PMID: 23294665 PMCID: PMC3562162 DOI: 10.1186/1471-2121-14-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/21/2012] [Indexed: 11/23/2022] Open
Abstract
Background Disease manifestations of Staphylococcus aureus are connected to the fibronectin (Fn)-binding capacity of these Gram-positive pathogens. Fn deposition on the surface of S. aureus allows engagement of α5β1 integrins and triggers uptake by host cells. For several integrin- and actin-associated cytoplasmic proteins, including FAK, Src, N-WASP, tensin and cortactin, a functional role during bacterial invasion has been demonstrated. As reorganization of the actin cytoskeleton is critical for bacterial entry, we investigated whether vinculin, an essential protein linking integrins with the actin cytoskeleton, may contribute to the integrin-mediated internalization of S. aureus. Results Complementation of vinculin in vinculin -/- cells, vinculin overexpression, as well as shRNA-mediated vinculin knock-down in different eukaryotic cell types demonstrate, that vinculin does not have a functional role during the integrin-mediated uptake of S. aureus. Conclusions Our results suggest that vinculin is insignificant for the integrin-mediated uptake of S. aureus despite the critical role of vinculin as a linker between integrins and F-actin.
Collapse
Affiliation(s)
- Marina Borisova
- Lehrstuhl Zellbiologie, Universität Konstanz, Postfach X908, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
217
|
Use of a human-like low-grade bacteremia model of experimental endocarditis to study the role of Staphylococcus aureus adhesins and platelet aggregation in early endocarditis. Infect Immun 2012; 81:697-703. [PMID: 23250949 DOI: 10.1128/iai.01030-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 10(6) CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.
Collapse
|
218
|
McMillan A, Macklaim JM, Burton JP, Reid G. Adhesion of Lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina? Reprod Sci 2012. [PMID: 23202727 DOI: 10.1177/1933719112466306] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lactobacillus iners is prominent in the human vagina and is able to persist despite development of bacterial vaginosis and treatment with antibiotics. A probable factor in its persistent survival is its ability to be retained in the vaginal epithelia. Genome sequencing of the strain showed an organism deplete of many metabolic pathways, yet equipped with fibronectin (Fn)-binding adhesins. The objective of the present study was to assess the ability of L iners AB-1 to bind immobilized Fn. Results showed that the organism superiorly bound the protein compared to other species of Lactobacillus and known binders such as Staphylococcus aureus. Treatment of L iners cells by protease rendered its binding abilities to Fn nonfunctional. The findings indicate a mechanism of vaginal persistence for a Lactobacillus species, with implications for reproductive health.
Collapse
Affiliation(s)
- Amy McMillan
- Canadian Research and Development Centre for Probiotics, Lawson Health Research Institute, St Joseph's Health Care, London, ON, Canada
| | | | | | | |
Collapse
|
219
|
Claro T, Widaa A, McDonnell C, Foster TJ, O'Brien FJ, Kerrigan SW. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. MICROBIOLOGY-SGM 2012; 159:147-154. [PMID: 23154968 DOI: 10.1099/mic.0.063016-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is the major pathogen among the staphylococci and the most common cause of bone infections. These infections are mainly characterized by bone destruction and inflammation, and are often debilitating and very difficult to treat. Previously we demonstrated that S. aureus protein A (SpA) can bind to osteoblasts, which results in inhibition of osteoblast proliferation and mineralization, apoptosis, and activation of osteoclasts. In this study we used small interfering RNA (siRNA) to demonstrate that osteoblast tumour necrosis factor receptor-1 (TNFR-1) is responsible for the recognition of and binding to SpA. TNFR-1 binding to SpA results in the activation of nuclear factor kappa B (NFκB). In turn, NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin 6 (IL-6). Silencing TNFR-1 in osteoblasts or disruption of the spa gene in S. aureus prevented both NFκB activation and IL-6 release. As well as playing a key role in proinflammatory reactions, IL-6 is also an important osteotropic factor. Release of IL-6 from osteoblasts results in the activation of the bone-resorbing cells, the osteoclasts. Consistent with our results described above, both silencing TNFR-1 in osteoblasts and disruption of spa in S. aureus prevented osteoclast activation. These studies are the first to demonstrate the importance of the TNFR-1-SpA interaction in bone infection, and may help explain the mechanism through which osteoclasts become overactivated, leading to bone destruction. Anti-inflammatory drug therapy could be used either alone or in conjunction with antibiotics to treat osteomyelitis or for prophylaxis in high-risk patients.
Collapse
Affiliation(s)
- Tânia Claro
- Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Amro Widaa
- Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.,Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Cormac McDonnell
- Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Fergal J O'Brien
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Steven W Kerrigan
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.,Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
220
|
Moser A, Stephan R, Corti S, Johler S. Comparison of genomic and antimicrobial resistance features of latex agglutination test-positive and latex agglutination test-negative Staphylococcus aureus isolates causing bovine mastitis. J Dairy Sci 2012; 96:329-34. [PMID: 23127911 DOI: 10.3168/jds.2012-5944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022]
Abstract
The dairy industry suffers massive economic losses due to staphylococcal mastitis in cattle. The Staphaureux latex agglutination test (Oxoid, Basel, Switzerland) was reported to lead to negative results in 54% of bovine Staphylococcus aureus strains, and latex-negative strains are thought to be less virulent than Staphaurex latex-positive strains. However, comparative information on virulence and resistance profiles of these 2 groups of Staph. aureus is scarce. Our objective was to associate the latex agglutination phenotype of Staph. aureus strains isolated from bovine mastitis milk with data on clonal complexes, virulence genes, and antibiotic resistance to (1) determine the virulence profiles of the Staphaureux test positive and Staphaurex test negative groups, and (2) provide data needed to improve treatment of bovine mastitis and to identify potential vaccine targets. Seventy-eight Staph. aureus strains isolated from 78 cows on 57 Swiss farms were characterized. Latex agglutination was tested by Staphaureux kit, and resistance profiles were generated by disk diffusion. A DNA microarray was used to assign clonal complexes (CC) and to determine virulence and resistance gene profiles. By the Staphaureux test, 49% of the isolates were latex-positive and 51% were latex-negative. All latex-negative strains were assigned to CC151, whereas latex-positive strains were assigned to various clonal complexes, including CC97 (n=16), CC8 (n=10), CC479 (n=5), CC20 (n=4), CC7 (n=1), CC9 (n=1), and CC45 (n=1). Although the latex-negative isolates were susceptible to all antimicrobial agents tested, 24% of latex-positive isolates were classified as intermediate with regard to cefalexin-kanamycin and 13% were resistant to both ampicillin and penicillin. Microarray profiles of latex-negative isolates were highly similar, but differed largely from those of latex-positive isolates. Although the latex-negative group lacked several enterotoxin genes and sak, it exhibited significantly higher prevalence rates of genes encoding enterotoxin C, toxic shock syndrome toxin, and leukocidins (lukM/lukF-P83, lukD). Our findings suggest that latex-negative isolates represent a group of closely related strains with specific resistance and virulence gene patterns.
Collapse
Affiliation(s)
- A Moser
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
221
|
Interactions of Staphylococci with Osteoblasts and Phagocytes in the Pathogenesis of Implant-Associated Osteomyelitis. Int J Artif Organs 2012; 35:713-26. [DOI: 10.5301/ijao.5000158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 11/20/2022]
Abstract
In spite of great advancements in the field of biomaterials and in surgical techniques, the implant of medical devices is still associated with a high risk of bacterial infection. Implant-associated osteomyelitis is a deep infection of bone around the implant. The continuous inflammatory destruction of bone tissues characterizes this serious bone infectious disease. Staphylococcus aureus and Staphylococcus epidermidis are the most prevalent etiologic agents of implant-associated infections, together with the emerging pathogen Staphylococcus lugdunensis. Various interactions between staphylococci, osteoblasts, and phagocytes occurring in the peri-prosthesis environment play a crucial role in the pathogenesis of implant-associated osteomyelitis. Here we focus on two main events: internalization of staphylococci into osteoblasts, and bacterial interactions with phagocytic cells.
Collapse
|
222
|
|
223
|
Pontes D, Innocentin S, Del Carmen S, Almeida JF, Leblanc JG, de Moreno de Leblanc A, Blugeon S, Cherbuy C, Lefèvre F, Azevedo V, Miyoshi A, Langella P, Chatel JM. Production of Fibronectin Binding Protein A at the surface of Lactococcus lactis increases plasmid transfer in vitro and in vivo. PLoS One 2012; 7:e44892. [PMID: 23028664 PMCID: PMC3459934 DOI: 10.1371/journal.pone.0044892] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/15/2012] [Indexed: 12/23/2022] Open
Abstract
Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL) expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+) showed higher internalization rates in vitro in Caco-2 cells than the native (wt) lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP) expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG), one of the major cow's milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG) was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i) in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii) plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not); iii) the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo.
Collapse
|
224
|
Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells. Antimicrob Agents Chemother 2012; 56:6166-74. [PMID: 22985883 DOI: 10.1128/aac.01031-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.
Collapse
|
225
|
Ridley RA, Douglas I, Whawell SA. Differential adhesion and invasion by Staphylococcus aureus of epithelial cells derived from different anatomical sites. J Med Microbiol 2012; 61:1654-1661. [PMID: 22956750 DOI: 10.1099/jmm.0.049650-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus can invade epithelial cells, and the host-cell receptor α(5)β(1) integrin is thought to mediate this process. The aim of this study was to investigate S. aureus invasion of epithelial cell lines derived from oral (H357), skin (UP) and nasopharyngeal (Detroit 562) sites and to determine whether any differences were due to the levels of α(5)β(1) integrin expressed. While the adhesion and invasion of two S. aureus strains were similar in both oral and skin-derived keratinocytes, this was markedly reduced in the nasopharyngeal cell line, despite it expressing similar levels of α(5)β(1). While this might be explainable on the basis of availability of cell receptor, adhesion to and invasion of H357 and UP cells by S. aureus were enhanced when the epithelial cells were in suspension rather than on a surface, and levels of α(5) integrin subunit mRNA were also increased. Detroit 562 cells exhibited a similar α(5) gene upregulation, but this did not result in enhanced adhesion and invasion of S. aureus. The Detroit 562 cells also showed reduced adhesion to fibronectin compared with the other cell types. This, and the low S. aureus invasion, may result from reduced α(5)β(1) integrin activity or from variation in an as-yet-unidentified additional receptor or accessory molecule. These studies shed further light on the mechanisms of S. aureus invasion of human cells.
Collapse
Affiliation(s)
- Robert A Ridley
- Academic Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Ian Douglas
- Academic Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Simon A Whawell
- Academic Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| |
Collapse
|
226
|
Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun 2012; 80:3804-11. [PMID: 22890993 DOI: 10.1128/iai.00689-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.
Collapse
|
227
|
Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penadés JR, Lasa I. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 2012; 8:e1002843. [PMID: 22876182 PMCID: PMC3410863 DOI: 10.1371/journal.ppat.1002843] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022] Open
Abstract
The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections.
Collapse
Affiliation(s)
- Jaione Valle
- Laboratory of Microbial Biofilms, Idab-Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| | - Cristina Latasa
- Laboratory of Microbial Biofilms, Idab-Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Biofilms, Idab-Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms, Idab-Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Biofilms, Idab-Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| | - José R. Penadés
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms, Idab-Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| |
Collapse
|
228
|
Hirschhausen N, Schlesier T, Peters G, Heilmann C. Characterization of the modular design of the autolysin/adhesin Aaa from Staphylococcus aureus. PLoS One 2012; 7:e40353. [PMID: 22768285 PMCID: PMC3386970 DOI: 10.1371/journal.pone.0040353] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 06/07/2012] [Indexed: 11/23/2022] Open
Abstract
Background Staphylococcus aureus is a frequent cause of serious and life-threatening infections, such as endocarditis, osteomyelitis, pneumonia, and sepsis. Its adherence to various host structures is crucial for the establishment of diseases. Adherence may be mediated by a variety of adhesins, among them the autolysin/adhesins Atl and Aaa. Aaa is composed of three N-terminal repeated sequences homologous to a lysin motif (LysM) that can confer cell wall attachment and a C-terminally located cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain having bacteriolytic activity in many proteins. Methodology/Principal Findings Here, we show by surface plasmon resonance that the LysM domain binds to fibrinogen, fibronectin, and vitronectin respresenting a novel adhesive function for this domain. Moreover, we demonstrated that the CHAP domain not only mediates the bacteriolytic activity, but also adherence to fibrinogen, fibronectin, and vitronectin, thus demonstrating for the first time an adhesive function for this domain. Adherence of an S. aureus aaa mutant and the complemented aaa mutant is slightly decreased and increased, respectively, to vitronectin, but not to fibrinogen and fibronectin, which might at least in part result from an increased expression of atl in the aaa mutant. Furthermore, an S. aureus atl mutant that showed enhanced adherence to fibrinogen, fibronectin, and endothelial cells also demonstrated increased aaa expression and production of Aaa. Thus, the redundant functions of Aaa and Atl might at least in part be interchangeable. Lastly, RT-PCR and zymographic analysis revealed that aaa is negatively regulated by the global virulence gene regulators agr and SarA. Conclusions/Significance We identified novel functions for two widely distributed protein domains, LysM and CHAP, i.e. the adherence to the extracellular matrix proteins fibrinogen, fibronectin, and vitronectin. The adhesive properties of Aaa might promote S. aureus colonization of host extracellular matrix and tissue, suggesting a role for Aaa in the pathogenesis of S. aureus infections.
Collapse
Affiliation(s)
- Nina Hirschhausen
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Tim Schlesier
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Münster, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
229
|
Wang X, Zhang N, Glorieux S, Holtappels G, Vaneechoutte M, Krysko O, Zhang L, Han D, Nauwynck HJ, Bachert C. Herpes simplex virus type 1 infection facilitates invasion of Staphylococcus aureus into the nasal mucosa and nasal polyp tissue. PLoS One 2012; 7:e39875. [PMID: 22768151 PMCID: PMC3387208 DOI: 10.1371/journal.pone.0039875] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 05/28/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) plays an important role in the pathogenesis of severe chronic airway disease, such as nasal polyps. However the mechanisms underlying the initiation of damage and/or invasion of the nasal mucosa by S. aureus are not clearly understood. The aim of this study was to investigate the interaction between S. aureus and herpes simplex virus type 1 (HSV1) in the invasion of the nasal mucosa and nasal polyp tissue. METHODOLOGY/PRINCIPAL FINDINGS Inferior turbinate and nasal polyp samples were cultured and infected with either HSV1 alone, S. aureus alone or a combination of both. Both in turbinate mucosa and nasal polyp tissue, HSV1, with or without S. aureus incubation, led to focal infection of outer epithelial cells within 48 h, and loss or damage of the epithelium and invasion of HSV1 into the lamina propria within 72 h. After pre-infection with HSV1 for 24 h or 48 h, S. aureus was able to pass the basement membrane and invade the mucosa. Epithelial damage scores were significantly higher for HSV1 and S. aureus co-infected explants compared with control explants or S. aureus only-infected explants, and significantly correlated with HSV1-invasion scores. The epithelial damage scores of nasal polyp tissues were significantly higher than those of inferior turbinate tissues upon HSV1 infection. Consequently, invasion scores of HSV1 of nasal polyp tissues were significantly higher than those of inferior turbinate mucosa in the HSV1 and co-infection groups, and invasion scores of S. aureus of nasal polyp tissues were significantly higher than those of inferior turbinate tissues in the co-infection group. CONCLUSIONS/SIGNIFICANCE HSV1 may lead to a significant damage of the nasal epithelium and consequently may facilitate invasion of S. aureus into the nasal mucosa. Nasal polyp tissue is more susceptible to the invasion of HSV1 and epithelial damage by HSV1 compared with inferior turbinate mucosa.
Collapse
Affiliation(s)
- XiangDong Wang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Sarah Glorieux
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Mario Vaneechoutte
- Laboratory of Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Institute of Otolaryngology, Beijing, People’s Republic of China
- * E-mail: (LZ); (DH)
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Institute of Otolaryngology, Beijing, People’s Republic of China
- * E-mail: (LZ); (DH)
| | - Hans J. Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
230
|
Slanina H, Hebling S, Hauck CR, Schubert-Unkmeir A. Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS One 2012; 7:e39613. [PMID: 22768099 PMCID: PMC3387252 DOI: 10.1371/journal.pone.0039613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/23/2012] [Indexed: 02/07/2023] Open
Abstract
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.
Collapse
Affiliation(s)
- Heiko Slanina
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
231
|
Seidl K, Solis NV, Bayer AS, Hady WA, Ellison S, Klashman MC, Xiong YQ, Filler SG. Divergent responses of different endothelial cell types to infection with Candida albicans and Staphylococcus aureus. PLoS One 2012; 7:e39633. [PMID: 22745797 PMCID: PMC3382135 DOI: 10.1371/journal.pone.0039633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/27/2012] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells are important in the pathogenesis of bloodstream infections caused by Candida albicans and Staphylococcus aureus. Numerous investigations have used human umbilical vein endothelial cells (HUVECs) to study microbial-endothelial cell interactions in vitro. However, the use of HUVECs requires a constant supply of umbilical cords, and there are significant donor-to-donor variations in these endothelial cells. The use of an immortalized endothelial cell line would obviate such difficulties. One candidate in this regard is HMEC-1, an immortalized human dermal microvascular endothelial cell line. To determine if HMEC-1 cells are suitable for studying the interactions of C. albicans and S. aureus with endothelial cells in vitro, we compared the interactions of these organisms with HMEC-1 cells and HUVECs. We found that wild-type C. albicans had significantly reduced adherence to and invasion of HMEC-1 cells as compared to HUVECs. Although wild-type S. aureus adhered to and invaded HMEC-1 cells similarly to HUVECs, an agr mutant strain had significantly reduced invasion of HMEC-1 cells, but not HUVECs. Furthermore, HMEC-1 cells were less susceptible to damage induced by C. albicans, but more susceptible to damage caused by S. aureus. In addition, HMEC-1 cells secreted very little IL-8 in response to infection with either organism, whereas infection of HUVECs induced substantial IL-8 secretion. This weak IL-8 response was likely due to the anatomic site from which HMEC-1 cells were obtained because infection of primary human dermal microvascular endothelial cells with C. albicans and S. aureus also induced little increase in IL-8 production above basal levels. Thus, C. albicans and S. aureus interact with HMEC-1 cells in a substantially different manner than with HUVECs, and data obtained with one type of endothelial cell cannot necessarily be extrapolated to other types.
Collapse
Affiliation(s)
- Kati Seidl
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Arnold S. Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Wessam Abdel Hady
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Steven Ellison
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Biology, California State University-Dominguez Hills, Carson, California, United States of America
| | - Meredith C. Klashman
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Yan Q. Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
232
|
Fraunholz M, Sinha B. Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol 2012; 2:43. [PMID: 22919634 PMCID: PMC3417557 DOI: 10.3389/fcimb.2012.00043] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus uses a plethora of virulence factors to accommodate a diversity of niches in its human host. Aside from the classical manifestations of S. aureus-induced diseases, the pathogen also invades and survives within mammalian host cells.The survival strategies of the pathogen are as diverse as strains or host cell types used. S. aureus is able to replicate in the phagosome or freely in the cytoplasm of its host cells. It escapes the phagosome of professional and non-professional phagocytes, subverts autophagy, induces cell death mechanisms such as apoptosis and pyronecrosis, and even can induce anti-apoptotic programs in phagocytes. The focus of this review is to present a guide to recent research outlining the variety of intracellular fates of S. aureus.
Collapse
Affiliation(s)
- Martin Fraunholz
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
233
|
Schuenck RP, Cavalcante FS, Emery E, Giambiagi-de Marval M, dos Santos KRN. Staphylococcus aureus isolates belonging to different multilocus sequence types present specific virulence gene profiles. ACTA ACUST UNITED AC 2012; 65:501-4. [PMID: 22443809 DOI: 10.1111/j.1574-695x.2012.00958.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 11/29/2022]
Abstract
To characterize 73 Staphylococcus aureus isolates from infections in an orthopedic hospital in Rio de Janeiro, we investigated the SCCmec types, the clonality by pulsed field gel electrophoresis and multilocus sequence typing, and the presence of virulence genes. Twenty-eight (38.3%) methicillin-resistant (16 SCCmec type IV and 12 type III) isolates were detected. Most (83.5%) of the isolates were included in five lineages: sequence type (ST) 239 (SCCmecIII), 1, 5, 30, and 1462 (SCCmecIV and/or methicillin-susceptible isolates). Virulence genes fnbB, bbp, and pvl were related to STs 239, 30, and 30/1462, respectively. Isolates from STs 1, 5, and 30 presented specific virulence profiles, irrespective of methicillin resistance.
Collapse
Affiliation(s)
- Ricardo Pinto Schuenck
- Departamento de Patologia, Universidade Federal do Espirito Santo, Vitória, Espirito Santo, Brazil
| | | | | | | | | |
Collapse
|
234
|
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm 2012; 2012:484167. [PMID: 22577250 PMCID: PMC3337720 DOI: 10.1155/2012/484167] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023] Open
Abstract
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the
peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of
defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and
is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With
appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD
patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and
thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental
changes in the peritoneal membrane structure and function correlate with the number and severity
of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical
resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the
peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the
structural and functional changes that occur in the peritoneal membrane during peritonitis and how
mesothelial cells contribute to these changes and respond to infection. The latter part of the review
discusses the potential of mesothelial cell transplantation and genetic manipulation in the
preservation of the peritoneal membrane.
Collapse
|
235
|
Internalization by osteoblasts of two Staphylococcus aureus clinical isolates differing in their adhesin gene pattern. Int J Artif Organs 2012; 34:789-98. [PMID: 22094558 DOI: 10.5301/ijao.5000058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus is the leading etiologic agent of implant orthopedic infections. Until recently S. aureus was considered a mere extracellular pathogen; it then turned out to be able to invade eukaryotic cells. Adhesion of S. aureus to peri-prosthesis tissues represents the starting of the infection pathogenesis and the first step of the subsequent internalization of S. aureus by host cells. In the present work the experimental observations on two epidemic clinical strains differing in their adhesin pattern demonstrate the crucial role of the fibronectin-binding protein A in the internalization process and suggest that CNA and Bbp adhesins can play a synergistic role by acting in the initial adhesion of S. aureus to osteoblasts, thus favoring the subsequent FnBPA-mediated internalization.
Collapse
|
236
|
Toll-like receptors (TLRs) in innate immune defense against Staphylococcus aureus. Int J Artif Organs 2012; 34:799-810. [PMID: 22094559 DOI: 10.5301/ijao.5000030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Toll-like receptors (TLRs) are the most important class of innate pattern recognition receptors (PRRs) by which host immune and non-immune cells are able to recognize pathogen-associated molecular patterns (PAMPs). Most mammalian species have 10 to 15 types of TLRs. TLRs are believed to function as homo- or hetero-dimers. TLR2, which plays a crucial role in recognizing PAMPs from Staphylococcus aureus, forms heterodimers with TLR1 or TLR6 and each dimer has a different ligand specificity. Staphylococcal lipoproteins, Panton-Valentine toxin and Phenol Soluble Modulins have been identified as potent TLR2 ligands. Conversely, the ligand function attributed to peptidoglycan and LTA remains controversial. TLR2 uses a MyD88-dependent signaling pathway that results in NF-kB translocation into the nucleus and activation of the expression of pro-inflammatory cytokine genes. Recognition rouses both an inflammatory response, culminating in the phagocytosis of bacteria, and an adaptive immune response, with the presentation of resulting bacterial compounds to T cells. Here, recent advances on the recognition of S. aureus by TLRs are presented and discussed, as well as the new therapeutic opportunities deriving from this new knowledge.
Collapse
|
237
|
Horn M, Bertling A, Brodde MF, Müller A, Roth J, Van Aken H, Jurk K, Heilmann C, Peters G, Kehrel BE. Human neutrophil alpha-defensins induce formation of fibrinogen and thrombospondin-1 amyloid-like structures and activate platelets via glycoprotein IIb/IIIa. J Thromb Haemost 2012; 10:647-61. [PMID: 22268819 DOI: 10.1111/j.1538-7836.2012.04640.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human neutrophil α-defensins (HNPs) are important constituents of the innate immune system. Beyond their antimicrobial properties, HNPs also have pro-inflammatory features. While HNPs in plasma from healthy individuals are barely detectable, their level is strongly elevated in septic plasma and plasma from patients with acute coronary syndromes. OBJECTIVES As thrombosis and inflammation are intertwined processes and activation of human polymorphonuclear leukocytes (PMNL) and subsequent degranulation is associated with full activation of surrounding platelets, we studied the effect of HNPs on platelet function. METHODS The effect of HNPs on platelet activation parameters and apoptosis was investigated via aggregometry, flow cytometry, confocal microscopy and the ELISA technique. RESULTS It was found that HNPs activate platelets in pathophysiologically relevant doses, inducing fibrinogen and thrombospondin-1 binding, aggregation, granule secretion, sCD40L shedding, and procoagulant activity. HNPs bound directly to the platelet membrane, induced membrane pore formation, microparticle formation, mitochondrial membrane depolarization and caspase-3-activity. Confocal microscopy revealed the HNP-induced formation of polymeric fibrinogen and thrombospondin-1 amyloid-like structures, which bound microorganisms. Platelets adhered to these structures and formed aggregates. Blocking of glycoprotein IIb/IIIa (GPIIb/IIIa) markedly inhibited HNP-induced platelet activation. In addition, heparin, heparinoid, serpins and α(2)-macroglobulin, which all bind to HNPs, blocked HNP-1-induced platelet activation in contrast to direct thrombin inhibitors such as hirudin. CONCLUSIONS HNPs activate platelets and induce platelet apoptosis by formation of amyloid-like proteins. As these structures entrapped bacteria and fungi, they might reflect an additional function of HNPs in host defense. The described mechanism links again thrombosis and infection.
Collapse
Affiliation(s)
- M Horn
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 2012; 36:435-62. [DOI: 10.1111/j.1574-6976.2011.00301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/21/2011] [Indexed: 01/02/2023] Open
|
239
|
Kneidl J, Löffler B, Erat MC, Kalinka J, Peters G, Roth J, Barczyk K. Soluble CD163 promotes recognition, phagocytosis and killing of Staphylococcus aureus via binding of specific fibronectin peptides. Cell Microbiol 2012; 14:914-36. [PMID: 22309204 DOI: 10.1111/j.1462-5822.2012.01766.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD163 is a multi-ligand scavenger receptor exclusively expressed by monocytes and macrophages, which is released after their activation during sepsis (sCD163). The biological relevance of sCD163, however, is not yet clear. We now demonstrate that sCD163 exhibits direct antimicrobial effects by recognizing a specific subfragment ((6) F1(1) F2(2) F2(7) F1) of fibronectin (FN) bound to staphylococcal surface molecules. Moreover, contact with staphylococci promotes sCD163-shedding from monocyte surface via induction of metalloproteinases ADAM10 and ADAM17. sCD163 subsequently binds to Staphylococcus aureus via FN peptides and strongly amplifies phagocytosis as well as killing by monocytes and to a lesser extend by neutrophils. This mechanism exhibits additional paracrine effects because staphylococci additionally opsonized by sCD163 induce higher activation and more efficient killing activity of non-professional phagocytes like endothelial cells. Targeting pathogen-bound FN by sCD163 would be a very sophisticated strategy to attack S. aureus as any attempt of the pathogen to avoid this defence mechanism will automatically bring about loss of adherence to the host protein FN, which is a pivotal patho-mechanism of highly invasive staphylococcal strains. Thus, we report a novel function for sCD163 that is of particular importance for immune defence of the host against S. aureus infections.
Collapse
Affiliation(s)
- Jessica Kneidl
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
240
|
Payrastre B, Gaits-Iacovoni F, Sansonetti P, Tronchère H. Phosphoinositides and cellular pathogens. Subcell Biochem 2012; 59:363-388. [PMID: 22374097 DOI: 10.1007/978-94-007-3015-1_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositides are considered as highly dynamic players in the spatiotemporal organization of key signaling pathways, actin cytoskeleton rearrangements, establishment of cell polarity and intracellular vesicle trafficking. Their metabolism is accurately controlled and mutations in several phosphoinositide metabolizing enzymes take part in the development of human pathologies. Interestingly, evidence is accumulating that modulation of the phosphoinositide metabolism is critical for pathogenicity and virulence of many human pathogens. Given the importance of phosphoinositides, which link membrane and cytoskeleton dynamics to cell responses, it is not surprising that many invasive pathogens hijack their metabolism as part of their strategies to establish infection. In fact, according to their lifestyle, cellular pathogens use the phosphoinositide metabolism in order to trigger their uptake in nonphagocytic cells and/or modulate the maturation of the pathogen-containing vacuole to establish their replicative niche or escape in the cytosol and promote host cell survival. The last two decades have been marked by the discovery of different tactics used by cellular pathogens to modulate the phosphoinositide metabolism as part of their strategies to survive, proliferate and disseminate in a hostile environment.
Collapse
Affiliation(s)
- Bernard Payrastre
- Inserm, U1048, Université Toulouse 3, I2MC, Hôpital de Toulouse, BP 84225 Avenue Jean Poulhès, 31432, Toulouse Cedex 04, France,
| | | | | | | |
Collapse
|
241
|
Rosenstein R, Götz F. What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic? Curr Top Microbiol Immunol 2012; 358:33-89. [DOI: 10.1007/82_2012_286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
242
|
Nüsse O. Biochemistry of the phagosome: the challenge to study a transient organelle. ScientificWorldJournal 2011; 11:2364-81. [PMID: 22194668 PMCID: PMC3236389 DOI: 10.1100/2011/741046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Phagocytes are specialized cells of the immune system, designed to engulf and destroy harmful microorganisms inside the newly formed phagosome. The latter is an intracellular organelle that is transformed into a toxic environment within minutes and disappears once the pathogen is destroyed. Reactive oxygen species and reactive nitrogen species are produced inside the phagosome. Intracellular granules or lysosomes of the phagocyte fuse with the phagosome and liberate their destructive enzymes. This process of phagocytosis efficiently protects against most infections; however, some microorganisms avoid their destruction and cause severe damage. To understand such failure of phagosomal killing, we need to learn more about the actual destruction process in the phagosome. This paper summarizes methods to investigate the biochemistry of the phagosome and discusses some of their limitations. In accordance with the nature of the phagosome, the issue of localization and temporal dynamics is emphasized, and recent developments are highlighted.
Collapse
Affiliation(s)
- Oliver Nüsse
- Département de Biologie, Université Paris-Sud, Bâtiment 443, rue des Adeles, 91405 Orsay, France.
| |
Collapse
|
243
|
Concise Survey of Staphylococcus Aureus Virulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. Int J Artif Organs 2011; 34:771-80. [DOI: 10.5301/ijao.5000046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2011] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus is the leading cause of infection in orthopedic implants and of osteomyelitis consequent to it. Here we focus on the wide array of virulence factors that endow S. aureus with its abilities to colonize peri-prosthesis tissues and to attack and damage them. Following an infective strategy orchestrated by agr locus, Staphylococcus aureus first deploys virulence factors for adhesion to the prosthesis and peri-prosthesis tissues and then launches its attack by delivering destructive factors.
Collapse
|
244
|
Edwards AM, Massey RC, Clarke SR. Molecular mechanisms of Staphylococcus aureus nasopharyngeal colonization. Mol Oral Microbiol 2011; 27:1-10. [PMID: 22230461 DOI: 10.1111/j.2041-1014.2011.00628.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is responsible for a wide range of different infections ranging in severity from mild to fatal. However, it primarily exists as a commensal organism in a number of different anatomical sites including the nasopharynx. Although colonization itself is a harmless state, colonized individuals are at risk of endogenous infection when S. aureus enters otherwise sterile sites via wounds or indwelling medical devices. As such, studies of colonization may identify important targets for vaccines or other prophylactic approaches. Colonization is a dynamic process; S. aureus must attach to host surfaces, overcome immune components and compete with other commensal microbes. This occurs via a number of surface-attached and secreted proteins and other factors such as wall teichoic acid. In addition, colonizing S. aureus must constantly replicate to maintain its niche and exclude other strains. These myriad interactions provide a strong selective pressure for the maintenance or enhancement of mechanisms of adhesion, invasion and immune evasion. The evolutionary implications of this may explain why S. aureus is such a capable pathogen because many of the proteins involved in colonization have also been identified as virulence factors. This review describes the diverse molecular mechanisms used by S. aureus to colonize the host and discusses how the pressures that have selected for these may have led to its virulence.
Collapse
Affiliation(s)
- A M Edwards
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | | | | |
Collapse
|
245
|
Abstract
Persistent or difficult-to-treat Staphylococcus aureus infections in animals and humans may be related to small colony variants (SCVs) that can hide inside host cells and modulate host defenses. S. aureus SCVs have gained much attention in human medicine but have been underestimated and overlooked in veterinary medicine. Recently, an SCV isolated from a dairy cow with a history of chronic mastitis was shown to possess similar phenotypic and transcriptomic properties to those of human SCVs. SCVs form small, colorless, non-hemolytic colonies after 48 h, are only slowly coagulase positive, fail to ferment mannitol, and can revert to the parental phenotype. The phenotype of SCVs is mostly related to alterations in hemin and/or menadione biosynthesis or to thymidine deficiency. Transcriptomic analysis of SCVs shows up-regulation of genes involved in glycolytic and arginine-deiminase pathways, capsular biosynthesis; increased sigma B activity; and down-regulation of genes for α-hemolysin, coagulase and effector molecule RNA III of the global virulence regulator Agr. Similar results are reported at the protein level. SCVs are less virulent but successful persisters in infection models. SCVs persist longer and at higher numbers within non-phagocytes than do their parents. SCVs survive within spacious vacuoles up to 24 h within cultured bovine mammary epithelial cells, likely due to up-regulation of protective mechanisms that counteract the lethal acidic environment of the phagolysosome. Persistence of SCVs within host cells may explain failures in antimicrobial therapy and vaccinations.
Collapse
|
246
|
Seidl K, Bayer AS, McKinnell JA, Ellison S, Filler SG, Xiong YQ. In vitro endothelial cell damage is positively correlated with enhanced virulence and poor vancomycin responsiveness in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Cell Microbiol 2011; 13:1530-41. [PMID: 21777408 PMCID: PMC3173605 DOI: 10.1111/j.1462-5822.2011.01639.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of Staphylococcus aureus infective endocarditis (IE) is postulated to involve invasion and damage of endothelial cells (ECs). However, the precise relationships between S. aureus-EC interactions in vitro and IE virulence and treatment outcomes in vivo are poorly defined. Ten methicillin-resistant S. aureus (MRSA) clinical isolates previously tested for their virulence and vancomycin responsiveness in an experimental IE model were assessed in vitro for their haemolytic activity, protease production, and capacity to invade and damage ECs. There was a significant positive correlation between the in vitro EC damage caused by these MRSA strains and their virulence during experimental IE (in terms of bacterial densities in target tissues; P < 0.02). Importantly, higher EC damage was also significantly correlated with poor microbiological response to vancomycin in the IE model (P < 0.001). Interestingly, the extent of EC damage was unrelated to a strain's ability to invade ECs, haemolytic activity and protease production, or β-toxin gene transcription. Inactivation of the agr locus in two MRSA strains caused ∼20% less damage as compared with the corresponding parental strains, indicating that a functional agr is required for maximal EC damage induction. Thus, MRSA-induced EC damage in vitro is a unique virulence phenotype that is independent of many other prototypical MRSA virulence factors, and may be a key biomarker for predicting MRSA virulence potential and antibiotic outcomes during endovascular infections.
Collapse
Affiliation(s)
- Kati Seidl
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | | | | | | | | | | |
Collapse
|
247
|
Eisele NA, Anderson DM. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia. J Pathog 2011; 2011:249802. [PMID: 22567325 PMCID: PMC3335569 DOI: 10.4061/2011/249802] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023] Open
Abstract
Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.
Collapse
Affiliation(s)
- Nicholas A. Eisele
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- The Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
248
|
Bien J, Sokolova O, Bozko P. Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. J Pathog 2011; 2011:601905. [PMID: 22567334 PMCID: PMC3335658 DOI: 10.4061/2011/601905] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/23/2011] [Accepted: 07/15/2011] [Indexed: 12/04/2022] Open
Abstract
Airway epithelial cells play a major role in initiating inflammation in response to bacterial pathogens. S. aureus is an important pathogen associated with activation of diverse types of infection characterized by inflammation dominated by polymorphonuclear leukocytes. This bacterium frequently causes lung infection, which is attributed to virulence factors. Many of virulence determinants associated with S. aureus-mediated lung infection have been known for several years. In this paper, we discuss recent advances in our understanding of known virulence factors implicated in pneumonia. We anticipate that better understanding of novel functions of known virulence factors could open the way to regulate inflammatory reactions of the epithelium and to develop effective strategies to treat S. aureus-induced airway diseases.
Collapse
Affiliation(s)
- Justyna Bien
- Witold Stefanski Institute of Parasitology of the Polish Academy of Sciences, Twarda Street 51/55, 00-818 Warsaw, Poland
| | | | | |
Collapse
|
249
|
Szabados F, Marlinghaus L, Korte M, Neumann S, Kaase M, Gatermann SG. Fbl is not involved in the invasion of eukaryotic epithelial and endothelial cells by Staphylococcus lugdunensis. FEMS Microbiol Lett 2011; 324:48-55. [DOI: 10.1111/j.1574-6968.2011.02382.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/26/2022] Open
Affiliation(s)
- Florian Szabados
- Institute for Hygiene and Microbiology; Department of Medical Microbiology; Ruhr-University of Bochum; Bochum; Germany
| | - Lennart Marlinghaus
- Institute for Hygiene and Microbiology; Department of Medical Microbiology; Ruhr-University of Bochum; Bochum; Germany
| | - Miriam Korte
- Institute for Hygiene and Microbiology; Department of Medical Microbiology; Ruhr-University of Bochum; Bochum; Germany
| | - Sandra Neumann
- Institute for Hygiene and Microbiology; Department of Medical Microbiology; Ruhr-University of Bochum; Bochum; Germany
| | - Martin Kaase
- Institute for Hygiene and Microbiology; Department of Medical Microbiology; Ruhr-University of Bochum; Bochum; Germany
| | - Soeren G. Gatermann
- Institute for Hygiene and Microbiology; Department of Medical Microbiology; Ruhr-University of Bochum; Bochum; Germany
| |
Collapse
|
250
|
Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 2011; 7:e1002217. [PMID: 21909268 PMCID: PMC3164647 DOI: 10.1371/journal.ppat.1002217] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/08/2011] [Indexed: 01/20/2023] Open
Abstract
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13–22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress. Staphylococcus aureus is an important human pathogen that colonizes the nares and skin of both sick and healthy individuals and causes a variety of infections ranging from superficial skin to invasive infections. The ability of this bacterium to cause disease depends on many factors and is, in part, due to multi-functional cell surface structures. One such structure is lipoteichoic acid (LTA), which is crucial for bacterial growth. In this study we show that LTA is also important for growth of a clinically relevant community-acquired methicillin resistant S. aureus (CA-MRSA) strain and not only for laboratory strains as previously described. We set out to investigate if S. aureus can find a way to survive without LTA and identified strains that can grow and divide almost normally in its absence. Using a whole genome sequencing approach, we found that alterations in one gene, gdpP, allow these strains to grow in the absence of LTA. We show that this mutation causes an increase in the recently identified signaling molecule, c-di-AMP, within the cell. Therefore, with this study we provide information on one of the first functions of this novel secondary messenger, which is in helping bacteria to cope with extreme cell wall stress.
Collapse
Affiliation(s)
| | - James C. Abbott
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Heike Burhenne
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Angelika Gründling
- Section of Microbiology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|