201
|
Prasad A, Porter DF, Kroll-Conner PL, Mohanty I, Ryan AR, Crittenden SL, Wickens M, Kimble J. The PUF binding landscape in metazoan germ cells. RNA (NEW YORK, N.Y.) 2016; 22:1026-43. [PMID: 27165521 PMCID: PMC4911911 DOI: 10.1261/rna.055871.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/14/2016] [Indexed: 05/09/2023]
Abstract
PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their "binding landscape"). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF-RNA interactions. FBF-1 and FBF-2 can bind sites in the 5'UTR, coding region, or 3'UTR, but have a strong bias for the 3' end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2.
Collapse
Affiliation(s)
- Aman Prasad
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Douglas F Porter
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Peggy L Kroll-Conner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ipsita Mohanty
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anne R Ryan
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sarah L Crittenden
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Judith Kimble
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
202
|
Jovelin R, Krizus A, Taghizada B, Gray JC, Phillips PC, Claycomb JM, Cutter AD. Comparative genomic analysis of upstream miRNA regulatory motifs in Caenorhabditis. RNA (NEW YORK, N.Y.) 2016; 22:968-978. [PMID: 27140965 PMCID: PMC4911920 DOI: 10.1261/rna.055392.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Aldis Krizus
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Bakhtiyar Taghizada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Oregon 97403, USA
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
203
|
Raynes R, Juarez C, Pomatto LCD, Sieburth D, Davies KJA. Aging and SKN-1-dependent Loss of 20S Proteasome Adaptation to Oxidative Stress in C. elegans. J Gerontol A Biol Sci Med Sci 2016; 72:143-151. [PMID: 27341854 DOI: 10.1093/gerona/glw093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/03/2016] [Indexed: 01/01/2023] Open
Abstract
Aging is marked by a collapse of protein homeostasis and deterioration of adaptive stress responses that often lead to disease. During aging, the induction of stress responses decline along with protein quality control. Here, we have shown that the ability to mount an adaptive response by pretreatment with minor oxidative stress is abrogated in aged Caenorhabditis elegans We have identified a defect in SKN-1 signaling sensitivity during aging and have also found an aging-related increase in basal proteasome expression and in vitro activity, however, adaptation of the 20S proteasome in response to stress is lost in old animals. Interestingly, increased activation of SKN-1 promotes stress resistance, but is unable to rescue declining adaptation during aging. Our data demonstrate that the aging-dependent decline in SKN-1 signaling negatively impacts adaptation of the 20S proteasome in response to acute oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Derek Sieburth
- Zilkha Neurogenetic Institute, Keck School of Medicine, and
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology, .,Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| |
Collapse
|
204
|
Chi C, Ronai D, Than MT, Walker CJ, Sewell AK, Han M. Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in C. elegans. Genes Dev 2016; 30:307-20. [PMID: 26833730 PMCID: PMC4743060 DOI: 10.1101/gad.275107.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, Chi et al. researched the link between known nutrient-sensing systems and reproductive programs. Using a model system in C. elegans, they show that a Notch signaling pathway senses the level of uridine/thymidine and controls germline proliferation, delineating a previously unknown nucleotide-sensing mechanism for controlling reproductivity. Animals alter their reproductive programs to accommodate changes in nutrient availability, yet the connections between known nutrient-sensing systems and reproductive programs are underexplored, and whether there is a mechanism that senses nucleotide levels to coordinate germline proliferation is unknown. We established a model system in which nucleotide metabolism is perturbed in both the nematode Caenorhabditis elegans (cytidine deaminases) and its food (Escherichia coli); when fed food with a low uridine/thymidine (U/T) level, germline proliferation is arrested. We provide evidence that this impact of U/T level on the germline is critically mediated by GLP-1/Notch and MPK-1/MAPK, known to regulate germline mitotic proliferation. This germline defect is suppressed by hyperactivation of glp-1 or disruption of genes downstream from glp-1 to promote meiosis but not by activation of the IIS or TORC1 pathways. Moreover, GLP-1 expression is post-transcriptionally modulated by U/T levels. Our results reveal a previously unknown nucleotide-sensing mechanism for controlling reproductivity.
Collapse
Affiliation(s)
- Congwu Chi
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Diana Ronai
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Minh T Than
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Cierra J Walker
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Aileen K Sewell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Min Han
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
205
|
Gallotta I, Mazzarella N, Donato A, Esposito A, Chaplin JC, Castro S, Zampi G, Battaglia GS, Hilliard MA, Bazzicalupo P, Di Schiavi E. Neuron-specific knock-down of SMN1 causes neuron degeneration and death through an apoptotic mechanism. Hum Mol Genet 2016; 25:2564-2577. [PMID: 27260405 PMCID: PMC5181630 DOI: 10.1093/hmg/ddw119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
Spinal muscular atrophy is a devastating disease that is characterized by degeneration and death of a specific subclass of motor neurons in the anterior horn of the spinal cord. Although the gene responsible, survival motor neuron 1 (SMN1), was identified 20 years ago, it has proven difficult to investigate its effects in vivo. Consequently, a number of key questions regarding the molecular and cellular functions of this molecule have remained unanswered. We developed a Caenorhabditis elegans model of smn-1 loss-of-function using a neuron-specific RNA interference strategy to knock-down smn-1 selectively in a subclass of motor neurons. The transgenic animals presented a cell-autonomous, age-dependent degeneration of motor neurons detected as locomotory defects and the disappearance of presynaptic and cytoplasmic fluorescent markers in targeted neurons. This degeneration led to neuronal death as revealed by positive reactivity to genetic and chemical cell-death markers. We show that genes of the classical apoptosis pathway are involved in the smn-1-mediated neuronal death, and that this phenotype can be rescued by the expression of human SMN1, indicating a functional conservation between the two orthologs. Finally, we determined that Plastin3/plst-1 genetically interacts with smn-1 to prevent degeneration, and that treatment with valproic acid is able to rescue the degenerative phenotype. These results provide novel insights into the cellular and molecular mechanisms that lead to the loss of motor neurons when SMN1 function is reduced.
Collapse
Affiliation(s)
- Ivan Gallotta
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Nadia Mazzarella
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Alessandra Donato
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alessandro Esposito
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Justin C Chaplin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Silvana Castro
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Giuseppina Zampi
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | | | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paolo Bazzicalupo
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Elia Di Schiavi
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy .,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
206
|
McGaughran A, Rödelsperger C, Grimm DG, Meyer JM, Moreno E, Morgan K, Leaver M, Serobyan V, Rakitsch B, Borgwardt KM, Sommer RJ. Genomic Profiles of Diversification and Genotype–Phenotype Association in Island Nematode Lineages. Mol Biol Evol 2016; 33:2257-72. [DOI: 10.1093/molbev/msw093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
207
|
Chen F, Zhou Y, Qi YB, Khivansara V, Li H, Chun SY, Kim JK, Fu XD, Jin Y. Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes Dev 2016; 29:2377-90. [PMID: 26588990 PMCID: PMC4691892 DOI: 10.1101/gad.266650.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chen et al. find that loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II C-terminal domain (CTD), dampens transcription termination at a strong intronic poly(A) site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. This work reveals a mechanism by which regulation of CTD phosphorylation controls coding region alternative polyadenylation in the nervous system. Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yingchuan B Qi
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Vishal Khivansara
- Life Sciences Institute, Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Sang Young Chun
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John K Kim
- Life Sciences Institute, Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
208
|
Casey JP, Brennan K, Scheidel N, McGettigan P, Lavin PT, Carter S, Ennis S, Dorkins H, Ghali N, Blacque OE, Mc Gee MM, Murphy H, Lynch SA. Recessive NEK9 mutation causes a lethal skeletal dysplasia with evidence of cell cycle and ciliary defects. Hum Mol Genet 2016; 25:1824-35. [PMID: 26908619 DOI: 10.1093/hmg/ddw054] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/15/2016] [Indexed: 01/05/2023] Open
Abstract
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. Whilst >450 skeletal dysplasias have been reported, 30% are genetically uncharacterized. We report two Irish Traveller families with a previously undescribed lethal skeletal dysplasia characterized by fetal akinesia, shortening of all long bones, multiple contractures, rib anomalies, thoracic dysplasia, pulmonary hypoplasia and protruding abdomen. Single nucleotide polymorphism homozygosity mapping and whole exome sequencing identified a novel homozygous stop-gain mutation in NEK9 (c.1489C>T; p.Arg497*) as the cause of this disorder. NEK9 encodes a never in mitosis gene A-related kinase involved in regulating spindle organization, chromosome alignment, cytokinesis and cell cycle progression. This is the first disorder to be associated with NEK9 in humans. Analysis of NEK9 protein expression and localization in patient fibroblasts showed complete loss of full-length NEK9 (107 kDa). Functional characterization of patient fibroblasts showed a significant reduction in cell proliferation and a delay in cell cycle progression. We also provide evidence to support possible ciliary associations for NEK9. Firstly, patient fibroblasts displayed a significant reduction in cilia number and length. Secondly, we show that the NEK9 orthologue in Caenorhabditis elegans, nekl-1, is almost exclusively expressed in a subset of ciliated cells, a strong indicator of cilia-related functions. In summary, we report the clinical and molecular characterization of a lethal skeletal dysplasia caused by NEK9 mutation and suggest that this disorder may represent a novel ciliopathy.
Collapse
Affiliation(s)
- Jillian P Casey
- Clinical Genetics, Children's University Hospital, Temple Street, Dublin 1, Ireland, UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences,
| | - Kieran Brennan
- UCD School of Biomolecular & Biomedical Science, Conway Institute
| | - Noemie Scheidel
- UCD School of Biomolecular & Biomedical Science, Conway Institute
| | - Paul McGettigan
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul T Lavin
- UCD School of Biomolecular & Biomedical Science, Conway Institute
| | - Stephen Carter
- UCD School of Biomolecular & Biomedical Science, Conway Institute
| | - Sean Ennis
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences
| | - Huw Dorkins
- North West Thames Regional Genetics Service, Northwick Park Hospital, London North West Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK, Leicestershire Genetics Service, Leicester Royal Infirmary, Leicester LE1 5WW, UK, St Peter's College, University of Oxford, Oxford OX1 2DL, UK and
| | - Neeti Ghali
- North West Thames Regional Genetics Service, Northwick Park Hospital, London North West Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
| | - Oliver E Blacque
- UCD School of Biomolecular & Biomedical Science, Conway Institute
| | | | - Helen Murphy
- Manchester Academic Health Science Centre, Genetic Medicine-University of Manchester, St Mary's Hospital, Manchester, UK
| | - Sally Ann Lynch
- Clinical Genetics, Children's University Hospital, Temple Street, Dublin 1, Ireland, UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences
| |
Collapse
|
209
|
Caito SW, Aschner M. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in Caenorhabditis Elegans. Toxicol Sci 2016; 151:139-49. [PMID: 26865665 DOI: 10.1093/toxsci/kfw030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methylmercury (MeHg) is a neurotoxic contaminant of our fish supply that has been linked to dopaminergic (DAergic) dysfunction that characterizes Parkinson's disease. We have previously shown that MeHg causes both morphological and behavioral changes in the Caenorhabditis elegans DAergic neurons that are associated with oxidative stress. We were therefore interested in whether the redox sensitive cofactor nicotinamide adenine dinucleotide (NAD(+)) may be affected by MeHg and whether supplementation of NAD( + )may prevent MeHg-induced toxicities. Worms treated with MeHg showed depletion in cellular NAD( + )levels, which was prevented by NAD( + )supplementation prior to MeHg treatment. NAD( + )supplementation also prevented DAergic neurodegeneration and deficits in DAergic-dependent behavior upon MeHg exposure. In a mutant worm line that cannot synthesize NAD( + )from nicotinamide, MeHg lethality and DAergic behavioral deficits were more sensitive to MeHg than wildtype worms, demonstrating the importance of NAD( + )in MeHg toxicity. In wildtype worms, NAD( + )supplementation provided protection from MeHg-induced oxidative stress and mitochondrial dysfunction. These data show the importance of NAD( + )levels in the response to MeHg exposure. NAD( + )supplementation may be beneficial for MeHg-induced toxicities and preventing cellular damage involved in Parkinson's disease.
Collapse
Affiliation(s)
- Samuel W Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
210
|
Hizanidis J, Kouvaris NE, Gorka ZL, Díaz-Guilera A, Antonopoulos CG. Chimera-like States in Modular Neural Networks. Sci Rep 2016; 6:19845. [PMID: 26796971 PMCID: PMC4726386 DOI: 10.1038/srep19845] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ρ, we also employ other measures of coherence, such as the chimera-like χ and metastability λ indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks.
Collapse
Affiliation(s)
- Johanne Hizanidis
- Crete Center for Quantum Complexity and Nanotechnology, Physics Department, University of Crete, 71003 Heraklion, Greece
- National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Nikos E. Kouvaris
- Department of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Zamora-López Gorka
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Albert Díaz-Guilera
- Department of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Chris G. Antonopoulos
- Department of Mathematical Sciences, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, UK
| |
Collapse
|
211
|
Abstract
Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. Nematode–bacterium associations are major research subjects. Complementing genetic studies with ecological ones is necessary to boost our understanding of how microbial symbioses evolved and how they impact the environment.
Collapse
Affiliation(s)
- Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
212
|
Vázquez-Manrique RP, Farina F, Cambon K, Dolores Sequedo M, Parker AJ, Millán JM, Weiss A, Déglon N, Neri C. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease. Hum Mol Genet 2015; 25:1043-58. [PMID: 26681807 PMCID: PMC4764188 DOI: 10.1093/hmg/ddv513] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD.
Collapse
Affiliation(s)
- Rafael P Vázquez-Manrique
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France, Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France, Molecular, Cellular and Genomic Biomedicine Research Group, Health Research Institute-La Fe and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain,
| | - Francesca Farina
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France, Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Karine Cambon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - María Dolores Sequedo
- Molecular, Cellular and Genomic Biomedicine Research Group, Health Research Institute-La Fe and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alex J Parker
- CRCHUM, Montréal, Canada, Department de Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - José María Millán
- Molecular, Cellular and Genomic Biomedicine Research Group, Health Research Institute-La Fe and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Andreas Weiss
- Evotec AG, Manfred Eigen Campus, Hamburg, Germany and
| | - Nicole Déglon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Christian Neri
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France, Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France,
| |
Collapse
|
213
|
Coleman BD, Marivin A, Parag-Sharma K, DiGiacomo V, Kim S, Pepper JS, Casler J, Nguyen LT, Koelle MR, Garcia-Marcos M. Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation. Mol Biol Evol 2015; 33:820-37. [PMID: 26659249 PMCID: PMC4760084 DOI: 10.1093/molbev/msv336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA–G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans.
Collapse
Affiliation(s)
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine
| | | | | | - Seongseop Kim
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine
| | - Judy S Pepper
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine
| | - Jason Casler
- Department of Biochemistry, Boston University School of Medicine
| | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine
| | | |
Collapse
|
214
|
Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, Done J, Down T, Gao S, Grove C, Harris TW, Kishore R, Lee R, Lomax J, Li Y, Muller HM, Nakamura C, Nuin P, Paulini M, Raciti D, Schindelman G, Stanley E, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Wright A, Yook K, Berriman M, Kersey P, Schedl T, Stein L, Sternberg PW. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 2015; 44:D774-80. [PMID: 26578572 PMCID: PMC4702863 DOI: 10.1093/nar/gkv1217] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research.
Collapse
Affiliation(s)
- Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bruce J Bolt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Scott Cain
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Juancarlos Chan
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wen J Chen
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul Davis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Done
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Down
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sibyl Gao
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Christian Grove
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Todd W Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Ranjana Kishore
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Raymond Lee
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jane Lomax
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yuling Li
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hans-Michael Muller
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cecilia Nakamura
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paulo Nuin
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniela Raciti
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gary Schindelman
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eleanor Stanley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mary Ann Tuli
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kimberly Van Auken
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Wang
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaodong Wang
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gary Williams
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Adam Wright
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Karen Yook
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lincoln Stein
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Paul W Sternberg
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
215
|
Ouellette MH, Martin E, Lacoste-Caron G, Hamiche K, Jenna S. Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans. J Mol Cell Biol 2015; 8:313-27. [PMID: 26578656 DOI: 10.1093/jmcb/mjv062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022] Open
Abstract
Collective epithelial cell migration requires the maintenance of cell-cell junctions while enabling the generation of actin-rich protrusions at the leading edge of migrating cells. Ventral enclosure of Caenorhabditis elegans embryos depends on the collective migration of anterior-positioned leading hypodermal cells towards the ventral midline where they form new junctions with their contralateral neighbours. In this study, we characterized the zygotic function of RGA-7/SPV-1, a CDC-42/Cdc42 and RHO-1/RhoA-specific Rho GTPase-activating protein, which controls the formation of actin-rich protrusions at the leading edge of leading hypodermal cells and the formation of new junctions between contralateral cells. We show that RGA-7 controls these processes in an antagonistic manner with the CDC-42's effector WSP-1/N-WASP and the CDC-42-binding proteins TOCA-1/2/TOCA1. RGA-7 is recruited to spatially distinct locations at junctions between adjacent leading cells, where it promotes the accumulation of clusters of activated CDC-42. It also inhibits the spreading of these clusters towards the leading edge of the junctions and regulates their accumulation and distribution at new junctions formed between contralateral leading cells. Our study suggests that RGA-7 controls collective migration and junction formation between epithelial cells by spatially restricting active CDC-42 within cell-cell junctions.
Collapse
Affiliation(s)
- Marie-Hélène Ouellette
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Emmanuel Martin
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Germain Lacoste-Caron
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Karim Hamiche
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sarah Jenna
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
216
|
Chang HC, Huang YT, Chen CS, Chen YW, Huang YT, Su JC, Teng LJ, Shiau CW, Chiu HC. In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. J Antimicrob Chemother 2015; 71:449-59. [PMID: 26553845 DOI: 10.1093/jac/dkv367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The emergence of MRSA strains resistant to most antibiotics is a serious threat to public health. Based on our discovery that the tyrosine kinase inhibitor sorafenib exhibits inhibitory activity against Staphylococcus species, the objective of this study is to exploit this unique antibacterial activity of sorafenib to develop novel antibacterial agents against MRSA. METHODS A sorafenib-based focused compound library was synthesized by substituting the pyridinyl and phenyl groups with different functional groups. The resulting sorafenib derivatives were screened for growth-suppressive activities against Staphylococcus aureus and Staphylococcus epidermidis following CLSI guidelines and for cytotoxicity towards human cells using MTT cell viability assays. Compounds with high selectivity for bacterial inhibition over cytotoxicity were further evaluated by time-kill assay and Caenorhabditis elegans and mice survival assays to evaluate their efficacy in vitro and in vivo. RESULTS The screening of sorafenib derivatives led to the identification of compound SC5005 as a lead compound with high potency in killing different clinical strains of MRSA with an MIC90 of 0.5 mg/L and with low cytotoxicity, as demonstrated by IC50-to-MIC ratios of up to 40. In addition, SC5005 showed a significant protective effect in MSSA- or MRSA-infected C. elegans. Intraperitoneal administration of SC5005 at 10 mg/kg significantly improved the survival of MRSA-infected C57BL/6 mice. CONCLUSIONS In light of its high potency in suppressing MRSA in both in vitro and in vivo models, SC5005 represents a potential lead agent for continued preclinical development as a therapeutic intervention against MRSA.
Collapse
Affiliation(s)
- Han-Chu Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Wei Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Tsung Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jung-Chen Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Lee-Jeng Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
217
|
Zhang H, Artiles KL, Fire AZ. Functional relevance of "seed" and "non-seed" sequences in microRNA-mediated promotion of C. elegans developmental progression. RNA (NEW YORK, N.Y.) 2015; 21:1980-1992. [PMID: 26385508 PMCID: PMC4604436 DOI: 10.1261/rna.053793.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity.
Collapse
Affiliation(s)
- Huibin Zhang
- Stanford University School of Medicine, Stanford, California 94305, USA
| | - Karen L Artiles
- Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrew Z Fire
- Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
218
|
Vandamme J, Sidoli S, Mariani L, Friis C, Christensen J, Helin K, Jensen ON, Salcini AE. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9694-710. [PMID: 26476455 PMCID: PMC4787770 DOI: 10.1093/nar/gkv1063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23) is extensively modified by methylation and that tri-methylated H3K9 (H3K9me3) is exclusively detected on histone tails with di-methylated H3K23 (H3K23me2). Chromatin immunoprecipitation approaches revealed a positive correlation between H3K23me2 and repressive marks. By immunofluorescence analyses, H3K23me2 appears differentially regulated in germ and somatic cells, in part by the action of the histone demethylase JMJD-1.2. H3K23me2 is enriched in heterochromatic regions, localizing in H3K9me3 and heterochromatin protein like-1 (HPL-1)-positive foci. Biochemical analyses indicated that HPL-1 binds to H3K23me2 and interacts with a conserved CoREST repressive complex. Thus, our study suggests that H3K23me2 defines repressive domains and contributes to organizing the genome in distinct heterochromatic regions during embryogenesis.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Carsten Friis
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jesper Christensen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
219
|
Asthana J, Yadav D, Pant A, Yadav AK, Gupta MM, Pandey R. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2015; 71:1160-8. [PMID: 26433219 DOI: 10.1093/gerona/glv173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/15/2015] [Indexed: 11/12/2022] Open
Abstract
The advancements in the field of gerontology have unraveled the signaling pathways that regulate life span, suggesting that it might be feasible to modulate aging. To this end, we isolated a novel phytomolecule Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside (ARX) from Premna integrifolia and evaluated its antiaging effects in Caenorhabditis elegans The spectral data analysis revealed the occurrence of a new compound ARX. Out of the three tested pharmacological doses of ARX, viz. 5, 25, and 50 µM, the 25-µM dose was able to extend life span in C. elegans by more than 39%. The present study suggests that ARX affects bacterial metabolism, which in turn leads to dietary restriction (DR)-like effects in the worms. The effect of ARX on worms with mutations (mev-1, eat-2, sir-2.1, skn-1, daf-16, and hsf-1) indicates that ARX-mediated life-span extension involves mechanisms associated with DR and maintenance of cellular redox homeostasis. This study is the first time report on longevity-promoting activity of ARX in C. elegans mediated by stress and DR-regulating genes. This novel phytomolecule can contribute in designing therapeutics for managing aging and age-related diseases.
Collapse
Affiliation(s)
| | - Deepti Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - A K Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - M M Gupta
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology and
| |
Collapse
|
220
|
Chung G, Rose AM, Petalcorin MIR, Martin JS, Kessler Z, Sanchez-Pulido L, Ponting CP, Yanowitz JL, Boulton SJ. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes Dev 2015; 29:1969-79. [PMID: 26385965 PMCID: PMC4579353 DOI: 10.1101/gad.266056.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023]
Abstract
The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation.
Collapse
Affiliation(s)
- George Chung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark I R Petalcorin
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| | - Julie S Martin
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| | - Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Luis Sanchez-Pulido
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Chris P Ponting
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Simon J Boulton
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| |
Collapse
|
221
|
Teixeira-Castro A, Jalles A, Esteves S, Kang S, da Silva Santos L, Silva-Fernandes A, Neto MF, Brielmann RM, Bessa C, Duarte-Silva S, Miranda A, Oliveira S, Neves-Carvalho A, Bessa J, Summavielle T, Silverman RB, Oliveira P, Morimoto RI, Maciel P. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain 2015; 138:3221-37. [PMID: 26373603 DOI: 10.1093/brain/awv262] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Abstract
Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease.
Collapse
Affiliation(s)
- Andreia Teixeira-Castro
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA 4 Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Ana Jalles
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia Esteves
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Soosung Kang
- 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA 5 Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA 6 Chemistry of Life Processes Institute and Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, USA
| | - Liliana da Silva Santos
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Anabela Silva-Fernandes
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário F Neto
- 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA 4 Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Renée M Brielmann
- 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA 4 Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Carlos Bessa
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Duarte-Silva
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Miranda
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphanie Oliveira
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Neves-Carvalho
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Bessa
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Teresa Summavielle
- 7 IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Richard B Silverman
- 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA 5 Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA 6 Chemistry of Life Processes Institute and Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, USA
| | - Pedro Oliveira
- 8 ICBAS-Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Richard I Morimoto
- 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA 4 Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Patrícia Maciel
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal 2 ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
222
|
Brouilly N, Lecroisey C, Martin E, Pierson L, Mariol MC, Qadota H, Labouesse M, Streichenberger N, Mounier N, Gieseler K. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process. Hum Mol Genet 2015; 24:6428-45. [PMID: 26358775 DOI: 10.1093/hmg/ddv353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.
Collapse
Affiliation(s)
- Nicolas Brouilly
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Claire Lecroisey
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Edwige Martin
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Laura Pierson
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Marie-Christine Mariol
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Hiroshi Qadota
- Department of Pathology, Emory University, 615 Michael Street, Whitehead 165, Atlanta, GA 30322, USA
| | - Michel Labouesse
- Intitut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 964, 1 rue Laurent Fries, BP 10142, 67404 Illkirch CEDEX, France and
| | | | - Nicole Mounier
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Kathrin Gieseler
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France,
| |
Collapse
|
223
|
Do Brain Networks Evolve by Maximizing Their Information Flow Capacity? PLoS Comput Biol 2015; 11:e1004372. [PMID: 26317592 PMCID: PMC4552863 DOI: 10.1371/journal.pcbi.1004372] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
We propose a working hypothesis supported by numerical simulations that brain networks evolve based on the principle of the maximization of their internal information flow capacity. We find that synchronous behavior and capacity of information flow of the evolved networks reproduce well the same behaviors observed in the brain dynamical networks of Caenorhabditis elegans and humans, networks of Hindmarsh-Rose neurons with graphs given by these brain networks. We make a strong case to verify our hypothesis by showing that the neural networks with the closest graph distance to the brain networks of Caenorhabditis elegans and humans are the Hindmarsh-Rose neural networks evolved with coupling strengths that maximize information flow capacity. Surprisingly, we find that global neural synchronization levels decrease during brain evolution, reflecting on an underlying global no Hebbian-like evolution process, which is driven by no Hebbian-like learning behaviors for some of the clusters during evolution, and Hebbian-like learning rules for clusters where neurons increase their synchronization.
Collapse
|
224
|
Subasic D, Brümmer A, Wu Y, Pinto SM, Imig J, Keller M, Jovanovic M, Lightfoot HL, Nasso S, Goetze S, Brunner E, Hall J, Aebersold R, Zavolan M, Hengartner MO. Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans. Genome Res 2015; 25:1680-91. [PMID: 26232411 PMCID: PMC4617964 DOI: 10.1101/gr.183160.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the Caenorhabditis elegans miR-58 miRNA family, composed primarily of the four highly abundant members miR-58.1, miR-80, miR-81, and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. We found that miR-58 family members repress largely overlapping sets of targets in a predominantly additive fashion. Progressive deletions of miR-58 family members lead to cumulative up-regulation of target protein and RNA levels. Phenotypic defects could only be observed in the family quadruple mutant, which also showed the strongest change in target protein levels. Interestingly, although the seed sequences of miR-80 and miR-58.1 differ in a single nucleotide, predicted canonical miR-80 targets were efficiently up-regulated in the mir-58.1 single mutant, indicating functional redundancy of distinct members of this miRNA family. At the aggregate level, target binding leads mainly to mRNA degradation, although we also observed some degree of translational inhibition, particularly in the single miR-58 family mutants. These results provide a framework for understanding how miRNA family members interact to regulate target mRNAs.
Collapse
Affiliation(s)
- Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - Yibo Wu
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sérgio Morgado Pinto
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4099-002 Porto, Portugal
| | - Jochen Imig
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Martin Keller
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Marko Jovanovic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Helen Louise Lightfoot
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sara Nasso
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sandra Goetze
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Erich Brunner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
225
|
Edison AS, Clendinen CS, Ajredini R, Beecher C, Ponce FV, Stupp GS. Metabolomics and Natural-Products Strategies to Study Chemical Ecology in Nematodes. Integr Comp Biol 2015; 55:478-85. [PMID: 26141866 PMCID: PMC4543130 DOI: 10.1093/icb/icv077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review provides an overview of two complementary approaches to identify biologically active compounds for studies in chemical ecology. The first is activity-guided fractionation and the second is metabolomics, particularly focusing on a new liquid chromatography–mass spectrometry-based method called isotopic ratio outlier analysis. To illustrate examples using these approaches, we review recent experiments using Caenorhabditis elegans and related free-living nematodes.
Collapse
Affiliation(s)
- Arthur S Edison
- *Department of Biochemistry and Molecular Biology and Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL 32610-0245, USA;
| | - Chaevien S Clendinen
- *Department of Biochemistry and Molecular Biology and Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL 32610-0245, USA
| | - Ramadan Ajredini
- *Department of Biochemistry and Molecular Biology and Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL 32610-0245, USA
| | - Chris Beecher
- *Department of Biochemistry and Molecular Biology and Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL 32610-0245, USA; IROA Technologies, Ann Arbor, MI, USA
| | - Francesca V Ponce
- *Department of Biochemistry and Molecular Biology and Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL 32610-0245, USA
| | - Gregory S Stupp
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
226
|
Safka Brozkova D, Deconinck T, Griffin LB, Ferbert A, Haberlova J, Mazanec R, Lassuthova P, Roth C, Pilunthanakul T, Rautenstrauss B, Janecke AR, Zavadakova P, Chrast R, Rivolta C, Zuchner S, Antonellis A, Beg AA, De Jonghe P, Senderek J, Seeman P, Baets J. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies. Brain 2015; 138:2161-72. [PMID: 26072516 DOI: 10.1093/brain/awv158] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022] Open
Abstract
Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease.
Collapse
Affiliation(s)
- Dana Safka Brozkova
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Tine Deconinck
- 2 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium 3 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium
| | - Laurie Beth Griffin
- 4 Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI-48109, USA 5 Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Andreas Ferbert
- 6 Department of Neurology, Klinikum Kassel, Kassel 34125, Germany
| | - Jana Haberlova
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Radim Mazanec
- 7 Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Petra Lassuthova
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Christian Roth
- 6 Department of Neurology, Klinikum Kassel, Kassel 34125, Germany
| | - Thanita Pilunthanakul
- 8 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Bernd Rautenstrauss
- 9 Medizinisch Genetisches Zentrum, Munich 80335, Germany 10 Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Andreas R Janecke
- 11 Division of Human Genetics and Department of Pediatrics I, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Petra Zavadakova
- 12 Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Roman Chrast
- 12 Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Carlo Rivolta
- 12 Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Stephan Zuchner
- 13 Dr John T McDonald Foundation Department of Human Genetics, John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL-33136, USA
| | - Anthony Antonellis
- 4 Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI-48109, USA 14 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI-48109, USA 15 Department of Neurology, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Asim A Beg
- 8 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Peter De Jonghe
- 2 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium 3 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 16 Department of Neurology, Antwerp University Hospital, Antwerpen 2610, Belgium
| | - Jan Senderek
- 10 Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Pavel Seeman
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Jonathan Baets
- 2 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium 3 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 16 Department of Neurology, Antwerp University Hospital, Antwerpen 2610, Belgium
| |
Collapse
|
227
|
Zhu Y, Liu TW, Madden Z, Yuzwa SA, Murray K, Cecioni S, Zachara N, Vocadlo DJ. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol Cell Biol 2015; 8:2-16. [PMID: 26031751 DOI: 10.1093/jmcb/mjv033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
O-glycosylation of the nuclear pore complex (NPC) by O-linked N-acetylglucosamine (O-GlcNAc) is conserved within metazoans. Many nucleoporins (Nups) comprising the NPC are constitutively O-GlcNAcylated, but the functional role of this modification remains enigmatic. We show that loss of O-GlcNAc, induced by either inhibition of O-GlcNAc transferase (OGT) or deletion of the gene encoding OGT, leads to decreased cellular levels of a number of natively O-GlcNAcylated Nups. Loss of O-GlcNAc enables increased ubiquitination of these Nups and their increased proteasomal degradation. The decreased half-life of these deglycosylated Nups manifests in their gradual loss from the NPC and a downstream malfunction of the nuclear pore selective permeability barrier in both dividing and post-mitotic cells. These findings define a critical role of O-GlcNAc modification of the NPC in maintaining its composition and the function of the selectivity filter. The results implicate NPC glycosylation as a regulator of NPC function and reveal the role of conserved glycosylation of the NPC among metazoans.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ta-Wei Liu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Zarina Madden
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kelsey Murray
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Natasha Zachara
- Department of Biological Chemistry, Johns Hopkins University Medical School, Baltimore, MD 21205, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
228
|
Pu M, Ni Z, Wang M, Wang X, Wood JG, Helfand SL, Yu H, Lee SS. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev 2015; 29:718-31. [PMID: 25838541 PMCID: PMC4387714 DOI: 10.1101/gad.254144.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pu et al. profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old C. elegans. Genes with dramatic expression change during aging are marked with low or undetectable levels of H3K36me3 in their gene bodies. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging is also observed in Drosophila melanogaster. Inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span. Functional data indicate that specific histone modification enzymes can be key to longevity in Caenorhabditis elegans, but the molecular basis of how chromatin structure modulates longevity is not well understood. In this study, we profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old Caenorhabditis elegans. We revealed a new role of H3K36me3 in maintaining gene expression stability through aging with important consequences on longevity. We found that genes with dramatic expression change during aging are marked with low or even undetectable levels of H3K36me3 in their gene bodies irrespective of their corresponding mRNA abundance. Interestingly, 3′ untranslated region (UTR) length strongly correlates with H3K36me3 levels and age-dependent mRNA expression stability. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging was also observed in Drosophila melanogaster, suggesting a conserved mechanism for H3K36me3 in suppressing age-dependent mRNA expression change. Importantly, inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span, suggesting a causative role of the H3K36me3 marking in modulating age-dependent gene expression stability and longevity.
Collapse
Affiliation(s)
- Mintie Pu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Zhuoyu Ni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Minghui Wang
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850, USA
| | - Xiujuan Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; Department of Biostatistics and Computational Biology, Weill Institute, Cornell University, Ithaca, New York 14850, USA
| | - Jason G Wood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Haiyuan Yu
- Department of Biostatistics and Computational Biology, Weill Institute, Cornell University, Ithaca, New York 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
229
|
Gamerdinger M, Hanebuth MA, Frickey T, Deuerling E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 2015; 348:201-7. [PMID: 25859040 DOI: 10.1126/science.aaa5335] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sorting of proteins to the appropriate compartment is one of the most fundamental cellular processes. We found that in the model organism Caenorhabditis elegans, correct cotranslational endoplasmic reticulum (ER) transport required the suppressor activity of the nascent polypeptide-associated complex (NAC). NAC did not affect the accurate targeting of ribosomes to ER translocons mediated by the signal recognition particle (SRP) pathway but inhibited additional unspecific contacts between ribosomes and translocons by blocking their autonomous binding affinity. NAC depletion shortened the life span of Caenorhabditis elegans, caused global mistargeting of translating ribosomes to the ER, and provoked incorrect import of mitochondrial proteins into the ER lumen, resulting in a strong impairment of protein homeostasis in both compartments. Thus, the antagonistic targeting activity of NAC is important in vivo to preserve the robustness and specificity of cellular protein-sorting routes.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Marie Anne Hanebuth
- Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, Applied Bioinformatics Laboratory, University of Konstanz, 78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
230
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
Affiliation(s)
- Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France Departments of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| |
Collapse
|
231
|
Zhao HQ, Zhang P, Gao H, He X, Dou Y, Huang AY, Liu XM, Ye AY, Dong MQ, Wei L. Profiling the RNA editomes of wild-type C. elegans and ADAR mutants. Genome Res 2015; 25:66-75. [PMID: 25373143 PMCID: PMC4317174 DOI: 10.1101/gr.176107.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
RNA editing increases transcriptome diversity through post-transcriptional modifications of RNA. Adenosine deaminases that act on RNA (ADARs) catalyze the adenosine-to-inosine (A-to-I) conversion, the most common type of RNA editing in higher eukaryotes. Caenorhabditis elegans has two ADARs, ADR-1 and ADR-2, but their functions remain unclear. Here, we profiled the RNA editomes of C. elegans at different developmental stages of wild-type and ADAR mutants. We developed a new computational pipeline with a "bisulfite-seq-mapping-like" step and achieved a threefold increase in identification sensitivity. A total of 99.5% of the 47,660 A-to-I editing sites were found in clusters. Of the 3080 editing clusters, 65.7% overlapped with DNA transposons in noncoding regions and 73.7% could form hairpin structures. The numbers of editing sites and clusters were highest at the L1 and embryonic stages. The editing frequency of a cluster positively correlated with the number of editing sites within it. Intriguingly, for 80% of the clusters with 10 or more editing sites, almost all expressed transcripts were edited. Deletion of adr-1 reduced the editing frequency but not the number of editing clusters, whereas deletion of adr-2 nearly abolished RNA editing, indicating a modulating role of ADR-1 and an essential role of ADR-2 in A-to-I editing. Quantitative proteomics analysis showed that adr-2 mutant worms altered the abundance of proteins involved in aging and lifespan regulation. Consistent with this finding, we observed that worms lacking RNA editing were short-lived. Taken together, our results reveal a sophisticated landscape of RNA editing and distinct modes of action of different ADARs.
Collapse
Affiliation(s)
- Han-Qing Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Pan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hua Gao
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiandong He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yanmei Dou
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - August Y Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Ming Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Adam Y Ye
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China;
| | - Liping Wei
- National Institute of Biological Sciences, Beijing 102206, China; Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
232
|
Garrigues JM, Sidoli S, Garcia BA, Strome S. Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Res 2014; 25:76-88. [PMID: 25467431 PMCID: PMC4317175 DOI: 10.1101/gr.180489.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Formation of heterochromatin serves a critical role in organizing the genome and regulating gene expression. In most organisms, heterochromatin flanks centromeres and telomeres. To identify heterochromatic regions in the heavily studied model C. elegans, which possesses holocentric chromosomes with dispersed centromeres, we analyzed the genome-wide distribution of the heterochromatin protein 1 (HP1) ortholog HPL-2 and compared its distribution to other features commonly associated with heterochromatin. HPL-2 binding highly correlates with histone H3 mono- and dimethylated at lysine 9 (H3K9me1 and H3K9me2) and forms broad domains on autosomal arms. Although HPL-2, like other HP1 orthologs, binds H3K9me peptides in vitro, the distribution of HPL-2 in vivo appears relatively normal in mutant embryos that lack H3K9me, demonstrating that the chromosomal distribution of HPL-2 can be achieved in an H3K9me-independent manner. Consistent with HPL-2 serving roles independent of H3K9me, hpl-2 mutant worms display more severe defects than mutant worms lacking H3K9me. HPL-2 binding is enriched for repetitive sequences, and on chromosome arms is anticorrelated with centromeres. At the genic level, HPL-2 preferentially associates with well-expressed genes, and loss of HPL-2 results in up-regulation of some binding targets and down-regulation of others. Our work defines heterochromatin in an important model organism and uncovers both shared and distinctive properties of heterochromatin relative to other systems.
Collapse
Affiliation(s)
- Jacob M Garrigues
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
233
|
Zuryn S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, Jarriault S. Transdifferentiation. Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 2014; 345:826-9. [PMID: 25124442 DOI: 10.1126/science.1255885] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.
Collapse
Affiliation(s)
- Steven Zuryn
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Arnaud Ahier
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Manuela Portoso
- Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France
| | - Esther Redhouse White
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Marie-Charlotte Morin
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Raphaël Margueron
- Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France.
| |
Collapse
|
234
|
Ohno H, Kato S, Naito Y, Kunitomo H, Tomioka M, Iino Y. Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans. Science 2014; 345:313-7. [DOI: 10.1126/science.1250709] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
235
|
Meier B, Cooke SL, Weiss J, Bailly AP, Alexandrov LB, Marshall J, Raine K, Maddison M, Anderson E, Stratton MR, Gartner A, Campbell PJ. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 2014; 24:1624-36. [PMID: 25030888 PMCID: PMC4199376 DOI: 10.1101/gr.175547.114] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susanna L Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Joerg Weiss
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Aymeric P Bailly
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom; CRBM/CNRS UMR5237, University of Montpellier, Montpellier 34293, France
| | - Ludmil B Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - John Marshall
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Mark Maddison
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Elizabeth Anderson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
236
|
Daubner GM, Brümmer A, Tocchini C, Gerhardy S, Ciosk R, Zavolan M, Allain FHT. Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1. Nucleic Acids Res 2014; 42:8092-105. [PMID: 24838563 PMCID: PMC4081071 DOI: 10.1093/nar/gku445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.
Collapse
Affiliation(s)
- Gerrit M Daubner
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Cristina Tocchini
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Stefan Gerhardy
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
237
|
Otero L, Romanelli-Cedrez L, Turanov AA, Gladyshev VN, Miranda-Vizuete A, Salinas G. Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. RNA (NEW YORK, N.Y.) 2014; 20:1023-1034. [PMID: 24817701 PMCID: PMC4114682 DOI: 10.1261/rna.043877.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Selenocysteine (Sec) is encoded by an UGA codon with the help of a SECIS element present in selenoprotein mRNAs. SECIS-binding protein (SBP2/SCBP-2) mediates Sec insertion, but the roles of its domains and the impact of its deficiency on Sec insertion are not fully understood. We used Caenorhabditis elegans to examine SBP2 function since it possesses a single selenoprotein, thioredoxin reductase-1 (TRXR-1). All SBP2 described so far have an RNA-binding domain (RBD) and a Sec-incorporation domain (SID). Surprisingly, C. elegans SBP2 lacks SID and consists only of an RBD. An sbp2 deletion mutant strain ablated Sec incorporation demonstrating SBP2 essentiality for Sec incorporation. Further in silico analyses of nematode genomes revealed conservation of SBP2 lacking SID and maintenance of Sec incorporation linked to TRXR-1. Remarkably, parasitic plant nematodes lost the ability to incorporate Sec, but retained SecP43, a gene associated with Sec incorporation. Interestingly, both selenophosphate synthetase (SPS) genes are absent in plant parasitic nematodes, while only Cys-containing SPS2 is present in Sec-incorporating nematodes. Our results indicate that C. elegans and the nematode lineage provide key insights into Sec incorporation and the evolution of Sec utilization trait, selenoproteomes, selenoproteins, and Sec residues. Finally, our study provides evidence of noncanonical translation initiation in C. elegans, not previously known for this well-established animal model.
Collapse
Affiliation(s)
- Lucía Otero
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Laura Romanelli-Cedrez
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Anton A. Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
238
|
Chen RAJ, Stempor P, Down TA, Zeiser E, Feuer SK, Ahringer J. Extreme HOT regions are CpG-dense promoters in C. elegans and humans. Genome Res 2014; 24:1138-46. [PMID: 24653213 PMCID: PMC4079969 DOI: 10.1101/gr.161992.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/26/2013] [Indexed: 12/20/2022]
Abstract
Most vertebrate promoters lie in unmethylated CpG-dense islands, whereas methylation of the more sparsely distributed CpGs in the remainder of the genome is thought to contribute to transcriptional repression. Nonmethylated CG dinucleotides are recognized by CXXC finger protein 1 (CXXC1, also known as CFP1), which recruits SETD1A (also known as Set1) methyltransferase for trimethylation of histone H3 lysine 4, an active promoter mark. Genomic regions enriched for CpGs are thought to be either absent or irrelevant in invertebrates that lack DNA methylation, such as C. elegans; however, a CXXC1 ortholog (CFP-1) is present. Here we demonstrate that C. elegans CFP-1 targets promoters with high CpG density, and these promoters are marked by high levels of H3K4me3. Furthermore, as for mammalian promoters, high CpG content is associated with nucleosome depletion irrespective of transcriptional activity. We further show that highly occupied target (HOT) regions identified by the binding of a large number of transcription factors are CpG-rich promoters in C. elegans and human genomes, suggesting that the unusually high factor association at HOT regions may be a consequence of CpG-linked chromatin accessibility. Our results indicate that nonmethylated CpG-dense sequence is a conserved genomic signal that promotes an open chromatin state, targeting by a CXXC1 ortholog, and H3K4me3 modification in both C. elegans and human genomes.
Collapse
Affiliation(s)
- Ron A.-J. Chen
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| | - Thomas A. Down
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| | - Eva Zeiser
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| | - Sky K. Feuer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom
| |
Collapse
|
239
|
Roerink SF, van Schendel R, Tijsterman M. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res 2014; 24:954-62. [PMID: 24614976 PMCID: PMC4032859 DOI: 10.1101/gr.170431.113] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/04/2014] [Indexed: 11/24/2022]
Abstract
DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.
Collapse
Affiliation(s)
| | | | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
240
|
Padilla PA, Garcia AM, Ladage ML, Toni LS. Caenorhabditis elegans: An Old Genetic Model Can Learn New Epigenetic Tricks. Integr Comp Biol 2014; 54:52-60. [DOI: 10.1093/icb/icu039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
241
|
Weick EM, Sarkies P, Silva N, Chen RA, Moss SMM, Cording AC, Ahringer J, Martinez-Perez E, Miska EA. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 2014; 28:783-96. [PMID: 24696457 PMCID: PMC4015492 DOI: 10.1101/gad.238105.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Piwi-interacting RNAs (piRNA) are small regulatory RNAs with essential roles in maintaining genome integrity in animals and protists. Most Caenorhabditis elegans piRNAs are transcribed from two genomic clusters that likely contain thousands of individual transcription units; however, their biogenesis is not understood. Here we identify and characterize prde-1 (piRNA silencing-defective) as the first essential C. elegans piRNA biogenesis gene. Analysis of prde-1 provides the first direct evidence that piRNA precursors are 28- to 29-nucleotide (nt) RNAs initiating 2 nt upstream of mature piRNAs. PRDE-1 is a nuclear germline-expressed protein that localizes to chromosome IV. PRDE-1 is required specifically for the production of piRNA precursors from genomic loci containing an 8-nt upstream motif, the Ruby motif. The expression of a second class of motif-independent piRNAs is unaffected in prde-1 mutants. We exploited this finding to determine the targets of the motif-independent class of piRNAs. Together, our data provide new insights into both the biogenesis and function of piRNAs in gene regulation.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Wellcome Trust Cancer Research UK Gurdon Institute, Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
González-Aguilera C, Palladino F, Askjaer P. C. elegans epigenetic regulation in development and aging. Brief Funct Genomics 2014; 13:223-34. [PMID: 24326118 PMCID: PMC4031453 DOI: 10.1093/bfgp/elt048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The precise developmental map of the Caenorhabditis elegans cell lineage, as well as a complete genome sequence and feasibility of genetic manipulation make this nematode species highly attractive to study the role of epigenetics during development. Genetic dissection of phenotypical traits, such as formation of egg-laying organs or starvation-resistant dauer larvae, has illustrated how chromatin modifiers may regulate specific cell-fate decisions and behavioral programs. Moreover, the transparent body of C. elegans facilitates non-invasive microscopy to study tissue-specific accumulation of heterochromatin at the nuclear periphery. We also review here recent findings on how small RNA molecules contribute to epigenetic control of gene expression that can be propagated for several generations and eventually determine longevity.
Collapse
|
243
|
Taniguchi G, Uozumi T, Kiriyama K, Kamizaki T, Hirotsu T. Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations. Sci Signal 2014; 7:ra39. [PMID: 24782565 DOI: 10.1126/scisignal.2005136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Olfactory systems sense and respond to various odorants. Olfactory receptors, which in most organisms are G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors, directly bind volatile or soluble odorants. Compared to the genomes of mammals, the genome of the nematode Caenorhabditis elegans contains more putative olfactory receptor genes, suggesting that in nematodes there may be combinatorial complexity to the receptor-odor relationship. We used RNA interference (RNAi) screening to identify nematode olfactory receptors necessary for the response to specific odorants. This screening identified 194 candidate olfactory receptor genes linked to 11 odorants. Additionally, we identified SRI-14 as being involved in sensing high concentrations of diacetyl. Rescue and neuron-specific RNAi experiments demonstrated that SRI-14 functioned in ASH neurons, specific chemosensory neurons, resulting in avoidance responses. Calcium imaging revealed that ASH neurons responded to high diacetyl concentrations only, whereas another class of chemosensory neurons, AWA neurons, reacted to both low and high concentrations. Loss of SRI-14 function hampered ASH responses to high diacetyl concentrations, whereas loss of ODR-10 function reduced AWA responses to low odorant concentrations. Chemosensory neurons ectopically expressing SRI-14 responded to a high concentration of diacetyl. Thus, nematodes have concentration-dependent odor-sensing mechanisms that are segregated at the olfactory receptor and sensory neuron levels.
Collapse
Affiliation(s)
- Gun Taniguchi
- 1Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
244
|
Goh WSS, Seah JWE, Harrison EJ, Chen C, Hammell CM, Hannon GJ. A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis. Genes Dev 2014; 28:797-807. [PMID: 24696458 PMCID: PMC4015493 DOI: 10.1101/gad.235622.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
Abstract
In animals, piRNAs and their associated Piwi proteins guard germ cell genomes against mobile genetic elements via an RNAi-like mechanism. In Caenorhabditis elegans, 21U-RNAs comprise the piRNA class, and these collaborate with 22G RNAs via unclear mechanisms to discriminate self from nonself and selectively and heritably silence the latter. Recent work indicates that 21U-RNAs are post-transcriptional processing products of individual transcription units that produce ∼ 26-nucleotide capped precursors. However, nothing is known of how the expression of precursors is controlled or how primary transcripts give rise to mature small RNAs. We conducted a genome-wide RNAi screen to identify components of the 21U biogenesis machinery. Screening by direct, quantitative PCR (qPCR)-based measurements of mature 21U-RNA levels, we identified 22 genes important for 21U-RNA production, termed TOFUs (Twenty-One-u Fouled Ups). We also identified seven genes that normally repress 21U production. By measuring mature 21U-RNA and precursor levels for the seven strongest hits from the screen, we assigned factors to discrete stages of 21U-RNA production. Our work identifies for the first time factors separately required for the transcription of 21U precursors and the processing of these precursors into mature 21U-RNAs, thereby providing a resource for studying the biogenesis of this important small RNA class.
Collapse
Affiliation(s)
- Wee-Siong Sho Goh
- Watson School of Biological Sciences
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jun Wen Eugene Seah
- Watson School of Biological Sciences
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Emily J. Harrison
- Watson School of Biological Sciences
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Caifu Chen
- Genetic Applications R&D, Life Technologies Corporation, Foster City, California 94404, USA
| | | | - Gregory J. Hannon
- Watson School of Biological Sciences
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
245
|
Maruyama T, Araki T, Kawarazaki Y, Naguro I, Heynen S, Aza-Blanc P, Ronai Z, Matsuzawa A, Ichijo H. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci Signal 2014; 7:ra8. [PMID: 24448648 DOI: 10.1126/scisignal.2004822] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5) mediates reactive oxygen species (ROS)-induced cell death. When activated by ROS, ASK1 ultimately becomes ubiquitinated and degraded by the proteasome, a process that is antagonized by the ubiquitin-specific protease USP9X. Using a functional siRNA (small interfering RNA) screen in HeLa cells, we identified Roquin-2 (also called RC3H2) as an E3 ubiquitin ligase required for ROS-induced ubiquitination and degradation of ASK1. In cells treated with H2O2, knockdown of Roquin-2 promoted sustained activation of ASK1 and the downstream stress-responsive kinases JNK (c-Jun amino-terminal kinase) and p38 MAPK (mitogen-activated protein kinase), and led to cell death. The nematode Caenorhabditis elegans produces ROS as a defense mechanism in response to bacterial infection. In C. elegans, mutation of the gene encoding the Roquin-2 ortholog RLE-1 promoted accumulation of the activated form of the ASK1 ortholog NSY-1 and conferred resistance to infection by the bacteria Pseudomonas aeruginosa. Thus, these data suggest that degradation of ASK1 mediated by Roquin-2 is an evolutionarily conserved mechanism required for the appropriate regulation of stress responses, including pathogen resistance and cell death.
Collapse
Affiliation(s)
- Takeshi Maruyama
- 1Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, Done J, Grove C, Howe K, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Ozersky P, Paulini M, Raciti D, Schindelman G, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Wong JD, Yook K, Schedl T, Hodgkin J, Berriman M, Kersey P, Spieth J, Stein L, Sternberg PW. WormBase 2014: new views of curated biology. Nucleic Acids Res 2013; 42:D789-93. [PMID: 24194605 PMCID: PMC3965043 DOI: 10.1093/nar/gkt1063] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.
Collapse
Affiliation(s)
- Todd W Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada, Genome Sequencing Center, Washington University, School of Medicine, St Louis, MO 63108, USA, Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Department of Genetics Campus, Washington University School of Medicine, St. Louis, MO 63110, USA, Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Pedersen ME, Snieckute G, Kagias K, Nehammer C, Multhaupt HAB, Couchman JR, Pocock R. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science 2013; 341:1404-8. [PMID: 24052309 DOI: 10.1126/science.1242528] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.
Collapse
Affiliation(s)
- Mikael Egebjerg Pedersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
248
|
Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-Related Protein 8 and CED-8 Promote Phosphatidylserine Exposure in Apoptotic Cells. Science 2013; 341:403-6. [DOI: 10.1126/science.1236758] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
249
|
Nagy S, Wright C, Tramm N, Labello N, Burov S, Biron D. A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by G(αs) signaling. eLife 2013; 2:e00782. [PMID: 23840929 PMCID: PMC3699835 DOI: 10.7554/elife.00782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/28/2013] [Indexed: 11/25/2022] Open
Abstract
Despite their simplicity, longitudinal studies of invertebrate models are rare. We thus sought to characterize behavioral trends of Caenorhabditis elegans, from the mid fourth larval stage through the mid young adult stage. We found that, outside of lethargus, animals exhibited abrupt switching between two distinct behavioral states: active wakefulness and quiet wakefulness. The durations of epochs of active wakefulness exhibited non-Poisson statistics. Increased Gαs signaling stabilized the active wakefulness state before, during and after lethargus. In contrast, decreased Gαs signaling, decreased neuropeptide release, or decreased CREB activity destabilized active wakefulness outside of, but not during, lethargus. Taken together, our findings support a model in which protein kinase A (PKA) stabilizes active wakefulness, at least in part through two of its downstream targets: neuropeptide release and CREB. However, during lethargus, when active wakefulness is strongly suppressed, the native role of PKA signaling in modulating locomotion and quiescence may be minor. DOI:http://dx.doi.org/10.7554/eLife.00782.001 The roundworm C. elegans is a key model organism in neuroscience. It has a simple nervous system, made up of just 302 neurons, and was the first multicellular organism to have its genome fully sequenced. The lifecycle of C. elegans begins with an embryonic stage, followed by four larval stages and then adulthood, and worms can progress through this cycle in only three days. However, relatively little is known about how the behaviour of the worms varies across these distinct developmental phases. The body wall of C. elegans contains pairs of muscles that extend along its length, and when waves of muscle contraction travel along its body, the worm undergoes a sinusoidal pattern of movement. A signalling cascade involving a molecule called protein kinase A is thought to help control these movements, and upregulation of this cascade has been shown to increase locomotion. Now, Nagy et al. have analysed the movement of C. elegans during these different stages of development. This involved developing an image processing tool that can analyze the position and posture of a worm’s body in each of three million (or more) images per day. Using this tool, which is called PyCelegans, Nagy et al. identified two behavioral macro-states in one of the larval forms of C. elegans: these states, which can persist for hours, are referred to as active wakefulness and quiet wakefulness. During periods of active wakefulness, the worms spent most (but not all) of their time moving forwards; during quiet wakefulness, they remained largely still. The worms switched abruptly between these two states, and the transition seemed to be regulated by PKA signaling. By using PyCelegans to compare locomotion in worms with mutations in genes encoding various components of this pathway, Nagy et al. showed that mutants with increased PKA activity spent more time in a state of active wakefulness, while the opposite was true for worms with mutations that reduced PKA activity. In addition to providing new insights into the control of locomotion in C. elegans, this study has provided a new open-source PyCelegans suite of tools, which are available to be extended and adapted by other researchers for new uses. DOI:http://dx.doi.org/10.7554/eLife.00782.002
Collapse
Affiliation(s)
- Stanislav Nagy
- Institute for Biophysical Dynamics, University of Chicago , Chicago , United States
| | | | | | | | | | | |
Collapse
|
250
|
Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling. Proc Natl Acad Sci U S A 2013; 110:11940-5. [PMID: 23818641 DOI: 10.1073/pnas.1310468110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.
Collapse
|