201
|
Rodríguez-Decuadro S, Barraco-Vega M, Dans PD, Pandolfi V, Benko-Iseppon AM, Cecchetto G. Antimicrobial and structural insights of a new snakin-like peptide isolated from Peltophorum dubium (Fabaceae). Amino Acids 2018; 50:1245-1259. [PMID: 29948342 DOI: 10.1007/s00726-018-2598-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 02/02/2023]
Abstract
Snakins are antimicrobial peptides (AMPs) found, so far, exclusively in plants, and known to be important in the defense against a wide range of pathogens. Like other plant AMPs, they contain several positively charged amino acids, and an even number of cysteine residues forming disulfide bridges which are considered important for their usual function. Despite its importance, studies on snakin tertiary structure and mode of action are still scarce. In this study, a new snakin-like gene was isolated from the native plant Peltophorum dubium, and its expression was verified in seedlings and adult leaves. The deduced peptide (PdSN1) shows 84% sequence identity with potato snakin-1 mature peptide, with the 12 cysteines characteristic from this peptide family at the GASA domain. The mature PdSN1 coding sequence was successfully expressed in Escherichia coli. The purified recombinant peptide inhibits the growth of important plant and human pathogens, like the economically relevant potato pathogen Streptomyces scabies and the opportunistic fungi Candida albicans and Aspergillus niger. Finally, homology and ab initio modeling techniques coupled to extensive molecular dynamics simulations were used to gain insight on the 3D structure of PdSN1, which exhibited a helix-turn-helix motif conserved in both native and recombinant peptides. We found this motif to be strongly coded in the sequence of PdSN1, as it is stable under different patterns of disulfide bonds connectivity, and even when the 12 cysteines are considered in their reduced form, explaining the previous experimental evidences.
Collapse
Affiliation(s)
- Susana Rodríguez-Decuadro
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 780, 12900, Montevideo, Uruguay
| | - Mariana Barraco-Vega
- Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, 11800, Montevideo, Uruguay
| | - Pablo D Dans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Centro de Biociências, Av. Prof. Moraes Rego, 1235, Recife, PE, CEP 50.670-420, Brazil
| | - Ana Maria Benko-Iseppon
- Universidade Federal de Pernambuco, Centro de Biociências, Av. Prof. Moraes Rego, 1235, Recife, PE, CEP 50.670-420, Brazil
| | - Gianna Cecchetto
- Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, 11800, Montevideo, Uruguay. .,Instituto de Química Biológica, Facultad de Ciencias, Facultad de Química, Universidad de la República, General Flores 2124, 11800, Montevideo, Uruguay.
| |
Collapse
|
202
|
Gao F, Gupta KM, Yuan S, Jiang J. Decomposition of CH 4 hydrate: effects of temperature and salt from molecular simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1478090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Fengfeng Gao
- Department of Chemical Engineering, Zibo Vocational Institute, Zibo, People’s Republic of China
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, People’s Republic of China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Krishna M. Gupta
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, People’s Republic of China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
203
|
Cota R, Ottosson N, Bakker HJ, Woutersen S. Evidence for Reduced Hydrogen-Bond Cooperativity in Ionic Solvation Shells from Isotope-Dependent Dielectric Relaxation. PHYSICAL REVIEW LETTERS 2018; 120:216001. [PMID: 29883173 DOI: 10.1103/physrevlett.120.216001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/08/2018] [Indexed: 06/08/2023]
Abstract
We find that the reduction in dielectric response (depolarization) of water caused by solvated ions is different for H_{2}O and D_{2}O. This isotope dependence allows us to reliably determine the kinetic contribution to the depolarization, which is found to be significantly smaller than predicted by existing theory. The discrepancy can be explained from a reduced hydrogen-bond cooperativity in the solvation shell: we obtain quantitative agreement between theory and experiment by reducing the Kirkwood correlation factor of the solvating water from 2.7 (the bulk value) to ∼1.6 for NaCl and ∼1 (corresponding to completely uncorrelated motion of water molecules) for CsCl.
Collapse
Affiliation(s)
- Roberto Cota
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | | | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
204
|
Ho TA, Greathouse JA, Lee AS, Criscenti LJ. Enhanced Ion Adsorption on Mineral Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5926-5934. [PMID: 29746135 DOI: 10.1021/acs.langmuir.8b00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Classical molecular dynamics simulation was used to study the adsorption of Na+, Ca2+, Ba2+, and Cl- ions on gibbsite edge (1 0 0), basal (0 0 1), and nanoparticle (NP) surfaces. The gibbsite NP consists of both basal and edge surfaces. Simulation results indicate that Na+ and Cl- ions adsorb on both (1 0 0) and (0 0 1) surfaces as inner-sphere species (i.e., no water molecules between an ion and the surface). Outer-sphere Cl- ions (i.e., one water molecule between an ion and the surface) were also found on these surfaces. On the (1 0 0) edge, Ca2+ ions adsorb as inner-sphere and outer-sphere complexes, whereas on the (0 0 1) surface, outer-sphere Ca2+ ions are the dominant species. Ba2+ ions were found as inner-sphere and outer-sphere complexes on both surfaces. Calculated ion surface coverages indicate that, for all ions, surface coverages are always higher on the basal surface compared to those on the edge surface. More importantly, surface coverages for cations on the gibbsite NP are always higher than those calculated for the (1 0 0) and (0 0 1) surfaces. This enhanced ion adsorption behavior for the NP is due to the significant number of inner-sphere cations found at NP corners. Outer-sphere cations do not contribute to the enhanced surface coverage. In addition, there is no ion adsorption enhancement observed for the Cl- ion. Our work provides a molecular-scale understanding of the relative significance of ion adsorption onto gibbsite basal versus edge surfaces and demonstrates the corner effect on ion adsorption on NPs.
Collapse
Affiliation(s)
- Tuan A Ho
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Jeffery A Greathouse
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Andrew S Lee
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Louise J Criscenti
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
205
|
Viennet T, Wördehoff MM, Uluca B, Poojari C, Shaykhalishahi H, Willbold D, Strodel B, Heise H, Buell AK, Hoyer W, Etzkorn M. Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane-binding modes to amyloid fibril formation. Commun Biol 2018; 1:44. [PMID: 30271927 PMCID: PMC6123806 DOI: 10.1038/s42003-018-0049-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/24/2023] Open
Abstract
The protein α-Synuclein (αS) is linked to Parkinson’s disease through its abnormal aggregation, which is thought to involve cytosolic and membrane-bound forms of αS. Following previous studies using micelles and vesicles, we present a comprehensive study of αS interaction with phospholipid bilayer nanodiscs. Using a combination of NMR-spectroscopic, biophysical, and computational methods, we structurally and kinetically characterize αS interaction with different membrane discs in a quantitative and site-resolved way. We obtain global and residue-specific αS membrane affinities, and determine modulations of αS membrane binding due to αS acetylation, membrane plasticity, lipid charge density, and accessible membrane surface area, as well as the consequences of the different binding modes for αS amyloid fibril formation. Our results establish a structural and kinetic link between the observed dissimilar binding modes and either aggregation-inhibiting properties, largely unperturbed aggregation, or accelerated aggregation due to membrane-assisted fibril nucleation. Thibault Viennet and colleagues gain structural insight into amyloid fibril formation from their innovative use of lipid bilayer nanodiscs. This study connects α-Synuclein membrane binding modes to its aggregation properties, furthering our understanding of the cause of neurodegerative diseases.
Collapse
Affiliation(s)
- Thibault Viennet
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Michael M Wördehoff
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Boran Uluca
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Chetan Poojari
- Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.,Department of Physics, Tampere University of Technology, Korkeakoulunkatu 10, 33720, Tampere, Finland.,Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, 00560, Helsinki, Finland
| | - Hamed Shaykhalishahi
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Birgit Strodel
- Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Henrike Heise
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Alexander K Buell
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Manuel Etzkorn
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany. .,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.
| |
Collapse
|
206
|
Melcr J, Martinez-Seara H, Nencini R, Kolafa J, Jungwirth P, Ollila OHS. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J Phys Chem B 2018; 122:4546-4557. [DOI: 10.1021/acs.jpcb.7b12510] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
207
|
Borah S, Kumar PP. First-Principle Molecular Dynamics Investigation of Waterborne As-V Species. J Phys Chem B 2018; 122:3153-3162. [DOI: 10.1021/acs.jpcb.7b12482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangkha Borah
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - P. Padma Kumar
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
208
|
Hajilar S, Shafei B. Atomic-scale investigation of physical adsorption of water molecules and aggressive ions to ettringite's surfaces. J Colloid Interface Sci 2018; 513:104-116. [PMID: 29132102 DOI: 10.1016/j.jcis.2017.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 11/15/2022]
Abstract
The strength and durability of cementitious composite materials are adversely affected by the ingress of water molecules and aggressive ions into their intrinsic meso- and nano-pore spaces. Among various phases of hydrated cement paste (HCP), aluminum-rich phases play an important role in controlling the diffusivity of aqueous solutions, which can contain aggressive ions. To this date, however, there has been no systematic study to understand the adsorption mechanisms and chloride binding capacity of the aluminum-rich phases of HCP. This research gap has been the motivation of the current study to investigate the physical adsorption characteristics of ettringite as the main aluminum-rich phase of HCP and the primary hydrated product of calcium sulfoaluminate cement. Through a set of Molecular Dynamics simulations supported by macro-scale experimental tests, a fundamental insight into the molecular origins of the diffusion of water molecules, as well as sodium and chloride ions, in contact with ettringite is provided. As the primary objective of this study is to evaluate the transport properties at and near solution/solid interfaces, the molecular adsorption mechanisms are characterized for inner- and outer-sphere distances from the solid substrate. With an in-depth understanding of the structure and dynamics of water molecules and aggressive ions in contact with ettringite's surfaces, the outcome of this study provides reliable measures of physical adsorption, binding capacity, and self-diffusion coefficient, which can be further employed to introduce strategies to avoid the degradation of a wide variety of cementitious materials exposed to harsh environmental conditions.
Collapse
Affiliation(s)
- Shahin Hajilar
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066, United States.
| | - Behrouz Shafei
- Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066, United States.
| |
Collapse
|
209
|
The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci Rep 2018; 38:BSR20171666. [PMID: 29298880 PMCID: PMC5803496 DOI: 10.1042/bsr20171666] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/06/2023] Open
Abstract
The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the 'Warburg effect'. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis. Here, we report the structure of HK2 in complex with glucose and glucose-6-phosphate (G6P). Structural and biochemical characterization of the mitochondrial conformation reveals higher conformational stability and slow protein unfolding rate (ku) compared with the cytosolic conformation. Despite the active site similarity of all human hexokinases, the N-domain of HK2 is catalytically active but not in hexokinase 1 and 3. Helix-α13 that protrudes out of the N-domain to link it to the C-domain of HK2 is found to be important in maintaining the catalytic activity of the N-half. In addition, the N-domain of HK2 regulates the stability of the whole enzyme in contrast with the C-domain. Glucose binding enhanced the stability of the wild-type (WT) enzyme and the single mutant D657A of the C-domain, but it did not increase the stability of the D209A mutant of the N-domain. The interaction of HK2 with the mitochondria through its N-half is proposed to facilitate higher stability on the mitochondria. The identification of structural and biochemical differences between HK2 and other human hexokinase isozymes could potentially be used in the development of new anticancer therapies.
Collapse
|
210
|
Duboué-Dijon E, Delcroix P, Martinez-Seara H, Hladílková J, Coufal P, Křížek T, Jungwirth P. Binding of Divalent Cations to Insulin: Capillary Electrophoresis and Molecular Simulations. J Phys Chem B 2018; 122:5640-5648. [PMID: 29360367 DOI: 10.1021/acs.jpcb.7b12097] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, we characterize the binding of divalent cations to insulin in aqueous salt solutions by means of capillary electrophoresis and molecular dynamics simulations. The results show a strong pH dependence. At low pH, at which all the carboxylate groups are protonated and the protein has an overall positive charge, all the cations exhibit only weak and rather unspecific interactions with insulin. In contrast, at close to neutral pH, when all the carboxylate groups are deprotonated and negatively charged, the charge-neutralizing effect of magnesium, calcium, and zinc, in particular, on the electrophoretic mobility of insulin is significant. This is also reflected in the results of molecular dynamics simulations showing accumulation of cations at the protein surface, which becomes smaller in magnitude upon effective inclusion of electronic polarization via charge rescaling.
Collapse
Affiliation(s)
- Elise Duboué-Dijon
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , 160 00 Prague , Czech Republic
| | - Pauline Delcroix
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , 160 00 Prague , Czech Republic.,J. Heyrovský Institute of Physical Chemistry , Czech Academy of Sciences , v.v.i, Dolejškova 2155/3 , 182 23 Prague 8 , Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , 160 00 Prague , Czech Republic
| | - Jana Hladílková
- Division of Theoretical Chemistry , Lund University , POB 124, SE-22100 Lund , Sweden
| | - Pavel Coufal
- Department of Analytical Chemistry , Faculty of Science, Charles University in Prague , Albertov 2030 , 12840 Prague 2 , Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry , Faculty of Science, Charles University in Prague , Albertov 2030 , 12840 Prague 2 , Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , 160 00 Prague , Czech Republic
| |
Collapse
|
211
|
Ortiz-Medina J, Inukai S, Araki T, Morelos-Gomez A, Cruz-Silva R, Takeuchi K, Noguchi T, Kawaguchi T, Terrones M, Endo M. Robust water desalination membranes against degradation using high loads of carbon nanotubes. Sci Rep 2018; 8:2748. [PMID: 29426871 PMCID: PMC5807517 DOI: 10.1038/s41598-018-21192-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/31/2018] [Indexed: 11/09/2022] Open
Abstract
Chlorine resistant reverse osmosis (RO) membranes were fabricated using a multi-walled carbon nanotube-polyamide (MWCNT-PA) nanocomposite. The separation performance of these membranes after chlorine exposure (4800 ppm·h) remained unchanged (99.9%) but was drastically reduced to 82% in the absence of MWCNT. It was observed that the surface roughness of the membranes changed significantly by adding MWCNT. Moreover, membranes containing MWCNT fractions above 12.5 wt.% clearly improved degradation resistance against chlorine exposure, with an increase in water flux while maintaining salt rejection performance. Molecular dynamics and quantum chemical calculations were performed in order to understand the high chemical stability of the MWCNT-PA nanocomposite membranes, and revealed that high activation energies are required for the chlorination of PA. The results presented here confirm the unique potential of carbon nanomaterials embedded in polymeric composite membranes for efficient RO water desalination technologies.
Collapse
Affiliation(s)
- J Ortiz-Medina
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan.
| | - S Inukai
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan
| | - T Araki
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan.,Division of Computational Science and Technology, Research Organization for Information Science and Technology, Tokyo, 140-0001, Japan
| | - A Morelos-Gomez
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan
| | - R Cruz-Silva
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan.,Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan
| | - K Takeuchi
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan.,Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan
| | - T Noguchi
- Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan
| | - T Kawaguchi
- Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan
| | - M Terrones
- Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan.,Department of Physics, Department of Chemistry, Department of Materials Science and Engineering & Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - M Endo
- Global Aqua Innovation Center, Shinshu University, Nagano, 380-8553, Japan. .,Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan.
| |
Collapse
|
212
|
Vatamanu J, Borodin O, Bedrov D. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields. J Chem Theory Comput 2018; 14:768-783. [DOI: 10.1021/acs.jctc.7b01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jenel Vatamanu
- Department
of Materials Science and Engineering, University of Utah, 122 South Central
Campus Dr., Salt Lake City, Utah 84112, United States
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Oleg Borodin
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Dmitry Bedrov
- Department
of Materials Science and Engineering, University of Utah, 122 South Central
Campus Dr., Salt Lake City, Utah 84112, United States
| |
Collapse
|
213
|
Di Lecce S, Bresme F. Thermal Polarization of Water Influences the Thermoelectric Response of Aqueous Solutions. J Phys Chem B 2018; 122:1662-1668. [PMID: 29293343 DOI: 10.1021/acs.jpcb.7b10960] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aqueous solutions under thermal gradients feature thermodiffusion (Ludwig-Soret) and thermoelectric (Seebeck) effects, whereby the thermal fields build concentration and charge density gradients. Recently, it has been shown that thermal gradients induce polarization fields in water. We use non-equilibrium molecular simulations to quantify the thermoelectric Seebeck coefficient of alkali halide aqueous solutions. We examine the dependence of the coefficient on temperature and salt concentration and show that the thermal polarization of water plays a key role in determining the magnitude of the thermoelectric behavior of the solution.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| | - Fernando Bresme
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
214
|
Yao Y, Kanai Y. Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ωB97X-V Exchange–Correlation Functionals. J Chem Theory Comput 2018; 14:884-893. [DOI: 10.1021/acs.jctc.7b00846] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
215
|
Lanaro G, Patey GN. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution. J Chem Phys 2018; 148:024507. [DOI: 10.1063/1.5001521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- G. Lanaro
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - G. N. Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
216
|
The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. Sci Rep 2018; 8:352. [PMID: 29321556 PMCID: PMC5762912 DOI: 10.1038/s41598-017-18633-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 11/11/2022] Open
Abstract
In this study, classical molecular dynamic simulations have been used to examine the molecular properties of the water-alkane interface at various NaCl salt concentrations (up to 3.0 mol/kg). A variety of different force field combinations have been compared against experimental surface/interfacial tension values for the water-vapour, decane-vapour and water-decane interfaces. Six different force fields for water (SPC, SPC/E, TIP3P, TIP3Pcharmm, TIP4P & TIP4P2005), and three further force fields for alkane (TraPPE-UA, CGenFF & OPLS) have been compared to experimental data. CGenFF, OPLS-AA and TraPPE-UA all accurately reproduce the interfacial properties of decane. The TIP4P2005 (four-point) water model is shown to be the most accurate water model for predicting the interfacial properties of water. The SPC/E water model is the best three-point parameterisation of water for this purpose. The CGenFF and TraPPE parameterisations of oil accurately reproduce the interfacial tension with water using either the TIP4P2005 or SPC/E water model. The salinity dependence on surface/interfacial tension is accurately captured using the Smith & Dang parameterisation of NaCl. We observe that the Smith & Dang model slightly overestimates the surface/interfacial tensions at higher salinities (>1.5 mol/kg). This is ascribed to an overestimation of the ion exclusion at the interface.
Collapse
|
217
|
Leonard AN, Simmonett AC, Pickard FC, Huang J, Venable RM, Klauda JB, Brooks BR, Pastor RW. Comparison of Additive and Polarizable Models with Explicit Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations. J Chem Theory Comput 2018; 14:948-958. [PMID: 29268012 DOI: 10.1021/acs.jctc.7b00948] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long-range Lennard-Jones (LJ) interactions have a significant impact on the structural and thermodynamic properties of nonpolar systems. While several methods have been introduced for the treatment of long-range LJ interactions in molecular dynamics (MD) simulations, increased accuracy and extended applicability is required for anisotropic systems such as lipid bilayers. The recently refined Lennard-Jones particle-mesh Ewald (LJ-PME) method extends the particle-mesh Ewald (PME) method to long-range LJ interactions and is suitable for use with anisotropic systems. Implementation of LJ-PME with the CHARMM36 (C36) additive and CHARMM Drude polarizable force fields improves agreement with experiment for density, isothermal compressibility, surface tension, viscosity, translational diffusion, and 13C T1 relaxation times of pure alkanes. Trends in the temperature dependence of the density and isothermal compressibility of hexadecane are also improved. While the C36 additive force field with LJ-PME remains a useful model for liquid alkanes, the Drude polarizable force field with LJ-PME is more accurate for nearly all quantities considered. LJ-PME is also preferable to the isotropic long-range correction for hexadecane because the molecular order extends to nearly 20 Å, well beyond the usual 10-12 Å cutoffs used in most simulations.
Collapse
Affiliation(s)
- Alison N Leonard
- Biophysics Program, University of Maryland , College Park, Maryland 20742, United States
| | - Andrew C Simmonett
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Frank C Pickard
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jing Huang
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States.,Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jeffery B Klauda
- Biophysics Program, University of Maryland , College Park, Maryland 20742, United States.,Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
218
|
Anomalous electrokinetics at hydrophobic surfaces: Effects of ion specificity and interfacial water structure. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
219
|
Effects of low salinity water on calcite/brine interface: A molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
220
|
Prior C, Danilāne L, Oganesyan VS. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies. Phys Chem Chem Phys 2018; 20:13461-13472. [DOI: 10.1039/c7cp08625c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prediction of motional EPR spectra of spin labelled DNA structures from fully atomistic MD simulations.
Collapse
Affiliation(s)
- C. Prior
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - L. Danilāne
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | |
Collapse
|
221
|
Corbella M, Voityuk AA, Curutchet C. How abasic sites impact hole transfer dynamics in GC-rich DNA sequences. Phys Chem Chem Phys 2018; 20:23123-23131. [DOI: 10.1039/c8cp03572e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hole transfer dynamics through GC-rich DNA duplexes containing abasic sites is strongly modulated by the nature of the unpaired nucleobase.
Collapse
Affiliation(s)
- Marina Corbella
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC-UB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Alexander A. Voityuk
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
- 08010 Barcelona
- Spain
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC-UB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
222
|
Ho TA, Ilgen A. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2. J Phys Chem B 2017; 121:11485-11491. [PMID: 29072910 DOI: 10.1021/acs.jpcb.7b09215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO2 salting-out effect. Our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.
Collapse
Affiliation(s)
- Tuan Anh Ho
- Geochemistry Department, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | - Anastasia Ilgen
- Geochemistry Department, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| |
Collapse
|
223
|
Štěpán J, Kabelka I, Koča J, Kulhánek P. Behavior of BsoBI endonuclease in the presence and absence of DNA. J Mol Model 2017; 24:22. [PMID: 29264670 DOI: 10.1007/s00894-017-3557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
BsoBI is a type II restriction endonuclease belonging to the EcoRI family. There is only one previously published X-ray structure for this endonuclease: it shows a homodimer of BsoBI completely encircling DNA in a tunnel. In this work, molecular dynamics simulations were employed to elucidate possible ways in which DNA is loaded into this complex prior to its cleavage. We found that the dimer does not open spontaneously when DNA is removed from the complex on the timescale of our simulations (~ 0.5 μs). A biased simulation had to be used to facilitate the opening, which revealed a possible way for the two catalytic domains to separate. The α-helices connecting the catalytic and helical domains were found to act as a hinge during the separation. In addition, we found that the opening of the BsoBI dimer was influenced by the type of counterions present in the environment. A reference simulation of the BsoBI/DNA complex further showed spontaneous reorganization of the active sites due to the binding of solvent ions, which led to an active-site structure consistent with other experimental structures of type II restriction endonucleases determined in the presence of metal ions.
Collapse
Affiliation(s)
- Jakub Štěpán
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jaroslav Koča
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
224
|
Sutthibutpong T, Noy A, Harris S. Atomistic Molecular Dynamics Simulations of DNA Minicircle Topoisomers: A Practical Guide to Setup, Performance, and Analysis. Methods Mol Biol 2017; 1431:195-219. [PMID: 27283311 DOI: 10.1007/978-1-4939-3631-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While DNA supercoiling is ubiquitous in vivo, the structure of supercoiled DNA is more challenging to study experimentally than simple linear sequences because the DNA must have a closed topology in order to sustain superhelical stress. DNA minicircles, which are closed circular double-stranded DNA sequences typically containing between 60 and 500 base pairs, have proven to be useful biochemical tools for the study of supercoiled DNA mechanics. We present detailed protocols for constructing models of DNA minicircles in silico, for performing atomistic molecular dynamics (MD) simulations of supercoiled minicircle DNA, and for analyzing the results of the calculations. These simulations are computationally challenging due to the large system sizes. However, improvements in parallel computing software and hardware promise access to improve conformational sampling and simulation timescales. Given the concurrent improvements in the resolution of experimental techniques such as atomic force microscopy (AFM) and cryo-electron microscopy, the study of DNA minicircles will provide a more complete understanding of both the structure and the mechanics of supercoiled DNA.
Collapse
Affiliation(s)
- Thana Sutthibutpong
- Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand.
| | - Agnes Noy
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah Harris
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
225
|
Kan Z, Zheng D, Ma J. Self-aggregation of trehalose in the mixed solvents of 1,3-dimethylimidazolium ionic liquid and water. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zigui Kan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
- School of Sciences, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Dong Zheng
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
226
|
Riera M, Mardirossian N, Bajaj P, Götz AW, Paesani F. Toward chemical accuracy in the description of ion–water interactions through many-body representations. Alkali-water dimer potential energy surfaces. J Chem Phys 2017; 147:161715. [DOI: 10.1063/1.4993213] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Narbe Mardirossian
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Pushp Bajaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
227
|
Yang Y, Narayanan Nair AK, Sun S. Molecular Dynamics Simulation Study of Carbon Dioxide, Methane, and Their Mixture in the Presence of Brine. J Phys Chem B 2017; 121:9688-9698. [DOI: 10.1021/acs.jpcb.7b08118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division
(PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division
(PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division
(PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| |
Collapse
|
228
|
Benavides AL, Portillo MA, Chamorro VC, Espinosa JR, Abascal JLF, Vega C. A potential model for sodium chloride solutions based on the TIP4P/2005 water model. J Chem Phys 2017; 147:104501. [DOI: 10.1063/1.5001190] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. L. Benavides
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, CP 37150 León, Mexico
| | - M. A. Portillo
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - V. C. Chamorro
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. R. Espinosa
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. L. F. Abascal
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C. Vega
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
229
|
A comparison of classical interatomic potentials applied to highly concentrated aqueous lithium chloride solutions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
230
|
Dans PD, Ivani I, Hospital A, Portella G, González C, Orozco M. How accurate are accurate force-fields for B-DNA? Nucleic Acids Res 2017; 45:4217-4230. [PMID: 28088759 PMCID: PMC5397185 DOI: 10.1093/nar/gkw1355] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022] Open
Abstract
Last generation of force-fields are raising expectations on the quality of molecular dynamics (MD) simulations of DNA, as well as to the belief that theoretical models can substitute experimental ones in several cases. However these claims are based on limited benchmarks, where MD simulations have shown the ability to reproduce already existing ‘experimental models’, which in turn, have an unclear accuracy to represent DNA conformation in solution. In this work we explore the ability of different force-fields to predict the structure of two new B-DNA dodecamers, determined herein by means of 1H nuclear magnetic resonance (NMR). The study allowed us to check directly for experimental NMR observables on duplexes previously not solved, and also to assess the reliability of ‘experimental structures’. We observed that technical details in the annealing procedures can induce non-negligible local changes in the final structures. We also found that while not all theoretical simulations are equally reliable, those obtained using last generation of AMBER force-fields (BSC1 and BSC0OL15) show predictive power in the multi-microsecond timescale and can be safely used to reproduce global structure of DNA duplexes and fine sequence-dependent details.
Collapse
Affiliation(s)
- Pablo D Dans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Joint BSC-IRB Program in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ivan Ivani
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Joint BSC-IRB Program in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Joint BSC-IRB Program in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Joint BSC-IRB Program in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain.,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Carlos González
- Instituto Química Física Rocasolano. Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Joint BSC-IRB Program in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain.,Department of Biochemistry and Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
231
|
Affiliation(s)
- Santanu Roy
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Marcel D. Baer
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Gregory K. Schenter
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| |
Collapse
|
232
|
Havrila M, Stadlbauer P, Islam B, Otyepka M, Šponer J. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J Chem Theory Comput 2017; 13:3911-3926. [PMID: 28657760 DOI: 10.1021/acs.jctc.7b00257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG]4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG]4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na+ ions move inside the GQs in a concerted manner, while larger relocations of the K+ ions are typically separated. We suggest that the Joung-Cheatham SPC/E K+ parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
233
|
Gong Z, Sun H. A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions. J Chem Inf Model 2017; 57:1599-1608. [DOI: 10.1021/acs.jcim.7b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zheng Gong
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huai Sun
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
234
|
Affiliation(s)
- Yoshiteru Yonetani
- Quantum Beam Science Research Directorate, National Institute for Quantum and Radiological Science and Technology (QST), Tokai-mura, Ibaraki, Japan
| |
Collapse
|
235
|
Xu X, Ran Q, Haag R, Ballauff M, Dzubiella J. Charged Dendrimers Revisited: Effective Charge and Surface Potential of Dendritic Polyglycerol Sulfate. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao Xu
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Qidi Ran
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Joachim Dzubiella
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| |
Collapse
|
236
|
Simulation study of influence of component polarizability on the properties of the electric double layer of an ionic micelle. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
237
|
Prasad S, Chakravarty C. Solvation of LiCl in model liquids with high to low hydrogen bond strengths. J Chem Phys 2017. [DOI: 10.1063/1.4982828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
238
|
Bhadauria R, Aluru NR. Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction. J Chem Phys 2017. [DOI: 10.1063/1.4982731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ravi Bhadauria
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - N. R. Aluru
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
239
|
Farafonov VS, Lebed AV. Developing and Validating a Set of All-Atom Potential Models for Sodium Dodecyl Sulfate. J Chem Theory Comput 2017; 13:2742-2750. [DOI: 10.1021/acs.jctc.7b00181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir S. Farafonov
- Department of Physical Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv 61022, Ukraine
| | - Alexander V. Lebed
- Department of Physical Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv 61022, Ukraine
| |
Collapse
|
240
|
Gdalya H, Nachliel E, Gutman M, Einav Y, Tsfadia Y. The Translocation of Na +Ion Inside Human Thrombin Accounts for the Activation of the Enzyme. Isr J Chem 2017. [DOI: 10.1002/ijch.201600128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hagit Gdalya
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| | - Esther Nachliel
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| | - Menachem Gutman
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| | - Yulia Einav
- Bioengineering Department; Faculty of Engineering, HIT; Israel
| | - Yossi Tsfadia
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| |
Collapse
|
241
|
Kan Z, Zhu Q, Yang L, Huang Z, Jin B, Ma J. Polarization Effects on the Cellulose Dissolution in Ionic Liquids: Molecular Dynamics Simulations with Polarization Model and Integrated Tempering Enhanced Sampling Method. J Phys Chem B 2017; 121:4319-4332. [DOI: 10.1021/acs.jpcb.6b12647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zigui Kan
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
- School
of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qiang Zhu
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Lijiang Yang
- Institute
of Theoretical and Computational Chemistry, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zhixiong Huang
- Research
Institute of Superconductor Electronics (RISE), School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Biaobing Jin
- Research
Institute of Superconductor Electronics (RISE), School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Ma
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
242
|
Kobayashi K, Liang Y, Murata S, Matsuoka T, Takahashi S, Nishi N, Sakka T. Ion Distribution and Hydration Structure in the Stern Layer on Muscovite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3892-3899. [PMID: 28355074 DOI: 10.1021/acs.langmuir.7b00436] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Based on molecular dynamics simulations of eight ions (Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+) on muscovite mica surfaces in water, we demonstrate that experimental data on the muscovite mica surface can be rationalized through a unified picture of adsorption structures including the hydration structure, cation heights from the muscovite surface, and state stability. These simulations enable us to categorize the inner-sphere surface complex into two different species: an inner-sphere surface complex in a ditrigonal cavity (IS1) and that on top of Al (IS2). By considering the presence of the two inner-sphere surface complexes, the experimental finding that the heights of adsorbed cations from the muscovite surface are proportional to the ionic radius for K+ and Cs+ but inversely proportional to the ionic radius for Ca2+ and Ba2+ was explained. We find that Na+, Ca2+, Sr2+, and Ba2+ can form both IS1 and IS2; K+, Rb+, and Cs+ can form only IS1; and Mg2+ can form only IS2. It is suggested that the formation of IS1 and IS2 is governed by the charge density of the ions. Among the eight ions, we also find that the hydration structure for the outer-sphere surface complexes of divalent cations differs from that of the monovalent cations by one adsorbed water molecule (i.e., a water molecule located in a ditrigonal cavity).
Collapse
Affiliation(s)
- Kazuya Kobayashi
- Department of Energy and Hydrocarbon Chemistry, Kyoto University , Kyoto 615-8510, Japan
- Environment and Resource System Engineering, Kyoto University , Kyoto 615-8540, Japan
| | - Yunfeng Liang
- Environment and Resource System Engineering, Kyoto University , Kyoto 615-8540, Japan
- Center for Engineering, Research into Artifacts (RACE), The University of Tokyo , Kashiwa, Chiba 277-8568, Japan
| | - Sumihiko Murata
- Environment and Resource System Engineering, Kyoto University , Kyoto 615-8540, Japan
| | - Toshifumi Matsuoka
- Environment and Resource System Engineering, Kyoto University , Kyoto 615-8540, Japan
- Fukada Geological Institute , Tokyo 113-0021, Japan
| | - Satoru Takahashi
- Japan Oil, Gas and Metals National Corporation (JOGMEC) , Chiba, Chiba 261-0025, Japan
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Kyoto University , Kyoto 615-8510, Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Kyoto University , Kyoto 615-8510, Japan
| |
Collapse
|
243
|
Pabit SA, Katz AM, Tolokh IS, Drozdetski A, Baker N, Onufriev AV, Pollack L. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations. J Chem Phys 2017; 144:205102. [PMID: 27250330 DOI: 10.1063/1.4950814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.
Collapse
Affiliation(s)
- Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Igor S Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | - Nathan Baker
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
244
|
Di Lecce S, Albrecht T, Bresme F. A computational approach to calculate the heat of transport of aqueous solutions. Sci Rep 2017; 7:44833. [PMID: 28322266 PMCID: PMC5359663 DOI: 10.1038/srep44833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl− ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Imperial College London, SW7 2AZ, United Kingdom
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, SW7 2AZ, United Kingdom
| | - Fernando Bresme
- Department of Chemistry, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
245
|
Bui T, Phan A, Monteiro D, Lan Q, Ceglio M, Acosta E, Krishnamurthy P, Striolo A. Evidence of Structure-Performance Relation for Surfactants Used as Antiagglomerants for Hydrate Management. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2263-2274. [PMID: 28110536 DOI: 10.1021/acs.langmuir.6b04334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Molecular dynamics simulations were employed to study the structure of molecularly thin films of antiagglomerants adsorbed at the interface between sII methane hydrates and a liquid hydrocarbon. The liquid hydrocarbon was composed of dissolved methane and higher-molecular-weight alkane such as n-hexane, n-octane, and n-dodecane. The antiagglomerants considered were surface-active compounds with three hydrophobic tails and a complex hydrophilic head that contains both amide and tertiary ammonium cation groups. The length of the hydrophobic tails and the surface density of the compounds were changed systematically. The results were analyzed in terms of the preferential orientation of the antiagglomerants, density distributions of various molecular compounds, and other molecular-level properties. At low surface densities, the hydrophobic tails do not show preferred orientation, irrespectively of the tail length. At sufficiently high surface densities, our simulations show pronounced differences in the structure of the interfacial film depending on the molecular features and on the type of hydrocarbons present in the system. Some antiagglomerants are found to pack densely at the interface and exclude methane from the interfacial region. Under these conditions, the antiagglomerant film resembles a frozen interface. The hydrophobic tails of the antiagglomerants that show this feature has a length comparable to that of the n-dodecane in the liquid phase. It is possible that the structured interfacial layer is in part responsible for determining the performance of antiagglomerants in flow-assurance applications. The simulation results are compared against experimental data obtained with the rocking cell apparatus. It was found that the antiagglomerants for which our simulations suggest evidence of a frozen interface at sufficiently high surface densities are those that show better performance in rocking cell experiments.
Collapse
Affiliation(s)
- Tai Bui
- Department of Chemical Engineering, University College London , WC1 E7JE London, U.K
| | - Anh Phan
- Department of Chemical Engineering, University College London , WC1 E7JE London, U.K
| | | | - Qiang Lan
- Halliburton , Houston, Texas 77032, United States
| | - Mark Ceglio
- Halliburton , Houston, Texas 77032, United States
| | - Erick Acosta
- Halliburton , Houston, Texas 77032, United States
| | | | - Alberto Striolo
- Department of Chemical Engineering, University College London , WC1 E7JE London, U.K
| |
Collapse
|
246
|
Zhao Q, Burns SE. Molecular simulation of electrokinetics of montmorillonite surface coated with hexadecyltrimethylammonium cations. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
247
|
Lammers LN, Bourg IC, Okumura M, Kolluri K, Sposito G, Machida M. Molecular dynamics simulations of cesium adsorption on illite nanoparticles. J Colloid Interface Sci 2017; 490:608-620. [DOI: 10.1016/j.jcis.2016.11.084] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
248
|
Galib M, Baer MD, Skinner LB, Mundy CJ, Huthwelker T, Schenter GK, Benmore CJ, Govind N, Fulton JL. Revisiting the hydration structure of aqueous Na+. J Chem Phys 2017; 146:084504. [DOI: 10.1063/1.4975608] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- M. Galib
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - M. D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - L. B. Skinner
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C. J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - T. Huthwelker
- Swiss Light Source, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - G. K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - C. J. Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - N. Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - J. L. Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
249
|
Shi Y, Beck T. Deconstructing Free Energies in the Law of Matching Water Affinities. J Phys Chem B 2017; 121:2189-2201. [DOI: 10.1021/acs.jpcb.7b00104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Shi
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
250
|
Benavides A, Portillo M, Abascal J, Vega C. Estimating the solubility of 1:1 electrolyte aqueous solutions: the chemical potential difference rule. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1288939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- A.L. Benavides
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Guanajuato, Mexico
| | - M.A. Portillo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J.L.F. Abascal
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C. Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|