201
|
|
202
|
Lippow SM, Moon TS, Basu S, Yoon SH, Li X, Chapman BA, Robison K, Lipovšek D, Prather KLJ. Engineering enzyme specificity using computational design of a defined-sequence library. ACTA ACUST UNITED AC 2011; 17:1306-15. [PMID: 21168766 DOI: 10.1016/j.chembiol.2010.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023]
Abstract
Engineered biosynthetic pathways have the potential to produce high-value molecules from inexpensive feedstocks, but a key limitation is engineering enzymes with high activity and specificity for new reactions. Here, we developed a method for combining structure-based computational protein design with library-based enzyme screening, in which inter-residue correlations favored by the design are encoded into a defined-sequence library. We validated this approach by engineering a glucose 6-oxidase enzyme for use in a proposed pathway to convert D-glucose into D-glucaric acid. The most active variant, identified after only one round of diversification and screening of only 10,000 wells, is approximately 400-fold more active on glucose than is the wild-type enzyme. We anticipate that this strategy will be broadly applicable to the discovery of new enzymes for engineered biological pathways.
Collapse
Affiliation(s)
- Shaun M Lippow
- Codon Devices, Inc., 99 Erie Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Kumar RR, Prasad S. Metabolic engineering of bacteria. Indian J Microbiol 2011; 51:403-9. [PMID: 22754024 DOI: 10.1007/s12088-011-0172-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/16/2011] [Indexed: 11/27/2022] Open
Abstract
Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future.
Collapse
Affiliation(s)
- Ravi R Kumar
- Department of Biotechnology, Shree M. & N. Virani Science College, Rajkot, 360005 India
| | | |
Collapse
|
204
|
Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 2011; 29:346-51. [DOI: 10.1038/nbt.1789] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/26/2011] [Indexed: 11/08/2022]
|
205
|
Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 2011; 77:2727-33. [PMID: 21378054 DOI: 10.1128/aem.02454-10] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Producing biofuels directly from cellulose, known as consolidated bioprocessing, is believed to reduce costs substantially compared to a process in which cellulose degradation and fermentation to fuel are accomplished in separate steps. Here we present a metabolic engineering example for the development of a Clostridium cellulolyticum strain for isobutanol synthesis directly from cellulose. This strategy exploits the host's natural cellulolytic activity and the amino acid biosynthesis pathway and diverts its 2-keto acid intermediates toward alcohol synthesis. Specifically, we have demonstrated the first production of isobutanol to approximately 660 mg/liter from crystalline cellulose by using this microorganism.
Collapse
|
206
|
Chen T, Wang J, Yang R, Li J, Lin M, Lin Z. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS One 2011; 6:e16228. [PMID: 21267412 PMCID: PMC3022760 DOI: 10.1371/journal.pone.0016228] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/09/2010] [Indexed: 01/28/2023] Open
Abstract
Background The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli. Methodology/Principal Findings To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein. Conclusions To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or in combination with other global methods, such as global transcriptional machinery engineering (gTME) for strain improvements.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jianqing Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Rong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jicong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Min Lin
- Key Laboratory of Crop Biotechnology, Ministry of Agriculture, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZL); (ML)
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- * E-mail: (ZL); (ML)
| |
Collapse
|
207
|
Whitaker WR, Dueber JE. Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding. Methods Enzymol 2011; 497:447-68. [DOI: 10.1016/b978-0-12-385075-1.00019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
208
|
Ji XJ, Huang H, Nie ZK, Qu L, Xu Q, Tsao GT. Fuels and chemicals from hemicellulose sugars. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 128:199-224. [PMID: 22249365 DOI: 10.1007/10_2011_124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Industrial processes of lignocellulosic material have made use of only the hexose component of the cellulose fraction. Pentoses and some minor hexoses present in the hemicellulose fraction, which may represent as much as 40% of lignocellulosic biomass, have in most cases been wasted. The lack of good methods for utilization of hemicellulose sugars is a key obstacle hindering the development of lignocellulose-based ethanol and other biofuels. In this chapter, we focus on the utilization of hemicellulose sugars, the structure of hemicellulose and its hydrolysis, and the biochemistry and process technology involved in their conversion to valuable fuels and chemicals.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Rd., Nanjing, 210009, China
| | | | | | | | | | | |
Collapse
|
209
|
|
210
|
Tan Y, Lafontaine Rivera JG, Contador CA, Asenjo JA, Liao JC. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab Eng 2011; 13:60-75. [DOI: 10.1016/j.ymben.2010.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/29/2022]
|
211
|
|
212
|
Zhang X, Wang X, Shanmugam KT, Ingram LO. L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 2011; 77:427-34. [PMID: 21097588 PMCID: PMC3020529 DOI: 10.1128/aem.01971-10] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirect carbon flow into malate even in the presence of fumarase. Further deletions were needed to inactivate malic enzymes (typically gluconeogenic) and prevent conversion to pyruvate. However, deletion of these genes (sfcA and maeB) resulted in the unexpected accumulation of D-lactate despite the prior deletion of mgsA and ldhA and the absence of apparent lactate dehydrogenase activity. Although the metabolic source of this D-lactate was not identified, lactate accumulation was increased by supplementation with pyruvate and decreased by the deletion of either pyruvate kinase gene (pykA or pykF) to reduce the supply of pyruvate. Many of the gene deletions adversely affected growth and cell yield in minimal medium under anaerobic conditions, and volumetric rates of malate production remained low. The final strain (XZ658) produced 163 mM malate, with a yield of 1.0 mol (mol glucose(-1)), half of the theoretical maximum. Using a two-stage process (aerobic cell growth and anaerobic malate production), this engineered strain produced 253 mM malate (34 g liter(-1)) within 72 h, with a higher yield (1.42 mol mol(-1)) and productivity (0.47 g liter(-1) h(-1)). This malate yield and productivity are equal to or better than those of other known biocatalysts.
Collapse
Affiliation(s)
- X. Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - X. Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - K. T. Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - L. O. Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
213
|
Zhang H, Jiang T. Synthetic circuits, devices and modules. Protein Cell 2010; 1:974-8. [PMID: 21153514 DOI: 10.1007/s13238-010-0133-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 12/19/2022] Open
Abstract
The aim of synthetic biology is to design artificial biological systems for novel applications. From an engineering perspective, construction of biological systems of defined functionality in a hierarchical way is fundamental to this emerging field. Here, we highlight some current advances on design of several basic building blocks in synthetic biology including the artificial gene control elements, synthetic circuits and their assemblies into devices and modules. Such engineered basic building blocks largely expand the synthetic toolbox and contribute to our understanding of the underlying design principles of living cells.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
214
|
Mainguet SE, Liao JC. Bioengineering of microorganisms for C3 to C5 alcohols production. Biotechnol J 2010; 5:1297-308. [DOI: 10.1002/biot.201000276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
215
|
Affiliation(s)
- Tiangang Liu
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
216
|
Fritz BR, Timmerman LE, Daringer NM, Leonard JN, Jewett MC. Biology by design: from top to bottom and back. J Biomed Biotechnol 2010; 2010:232016. [PMID: 21052559 PMCID: PMC2971569 DOI: 10.1155/2010/232016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology is a nascent technical discipline that seeks to enable the design and construction of novel biological systems to meet pressing societal needs. However, engineering biology still requires much trial and error because we lack effective approaches for connecting basic "parts" into higher-order networks that behave as predicted. Developing strategies for improving the performance and sophistication of our designs is informed by two overarching perspectives: "bottom-up" and "top-down" considerations. Using this framework, we describe a conceptual model for developing novel biological systems that function and interact with existing biological components in a predictable fashion. We discuss this model in the context of three topical areas: biochemical transformations, cellular devices and therapeutics, and approaches that expand the chemistry of life. Ten years after the construction of synthetic biology's first devices, the drive to look beyond what does exist to what can exist is ushering in an era of biology by design.
Collapse
Affiliation(s)
- Brian R. Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Laura E. Timmerman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Nichole M. Daringer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
217
|
Lu X. A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 2010; 28:742-6. [DOI: 10.1016/j.biotechadv.2010.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/13/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
218
|
Chen Z, Wilmanns M, Zeng AP. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol 2010; 28:534-42. [PMID: 20727604 DOI: 10.1016/j.tibtech.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The future of industrial biotechnology requires efficient development of highly productive and robust strains of microorganisms. Present praxis of strain development cannot adequately fulfill this requirement, primarily owing to the inability to control reactions precisely at a molecular level, or to predict reliably the behavior of cells upon perturbation. Recent developments in two areas of biology are changing the situation rapidly: structural biology has revealed details about enzymes and associated bioreactions at an atomic level; and synthetic biology has provided tools to design and assemble precisely controllable modules for re-programming cellular metabolic circuitry. However, because of different emphases, to date, these two areas have developed separately. A linkage between them is desirable to harness their concerted potential. We therefore propose structural synthetic biotechnology as a new field in biotechnology, specifically for application to the development of industrial microbial strains.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | | | | |
Collapse
|
219
|
Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA. Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. MICROBIOLOGY-SGM 2010; 156:3814-3829. [PMID: 20705658 DOI: 10.1099/mic.0.041327-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Patagonian fungal endophyte NRRL 50072 is reported to produce a variety of medium-chain and highly branched volatile organic compounds (VOCs) that have been highlighted for their potential as fuel alternatives and are collectively termed myco-diesel. To assess the novelty of this observation, we determined the extent to which ten closely related Ascocoryne strains from commercial culture collections possess similar VOC production capability. DNA sequencing established a high genetic similarity between NRRL 50072 and each Ascocoryne isolate, consistent with its reassignment as Ascocoryne sarcoides. The Ascocoryne strains did not produce highly branched medium-chain-length alkanes, and efforts to reproduce the branched alkane production of NRRL 50072 were unsuccessful. However, we confirmed the production of 30 other products and expanded the list of VOCs for NRRL 50072 and members of the genus Ascocoryne. VOCs detected from the cultures consisted of short- and medium-chain alkenes, ketones, esters and alcohols and several sesquiterpenes. Ascocoryne strains NRRL 50072 and CBS 309.71 produced a more diverse range of volatiles than the other isolates tested. CBS 309.71 also showed enhanced production compared with other strains when grown on cellulose agar. Collectively, the members of the genus Ascocoryne demonstrated production of over 100 individual compounds, with a third of the short- and medium-chain compounds also produced when cultures were grown on a cellulose substrate. This comparative production analysis could facilitate future studies to identify and manipulate the biosynthetic machinery responsible for production of individual VOCs, including several that have a potential application as biofuels.
Collapse
Affiliation(s)
- Meghan A Griffin
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT 06511, USA
| | - Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT 06511, USA
| | - Tara A Gianoulis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University Boston, MA 02115, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT 06511, USA
| |
Collapse
|
220
|
Synthetic biology guides biofuel production. J Biomed Biotechnol 2010; 2010. [PMID: 20827393 PMCID: PMC2935196 DOI: 10.1155/2010/541698] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 07/05/2010] [Indexed: 01/26/2023] Open
Abstract
The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.
Collapse
|
221
|
Protein engineering for bioenergy and biomass-based chemicals. Curr Opin Struct Biol 2010; 20:527-32. [DOI: 10.1016/j.sbi.2010.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
222
|
Barnard D, Casanueva A, Tuffin M, Cowan D. Extremophiles in biofuel synthesis. ENVIRONMENTAL TECHNOLOGY 2010; 31:871-888. [PMID: 20662378 DOI: 10.1080/09593331003710236] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The current global energy situation has demonstrated an urgent need for the development of alternative fuel sources to the continually diminishing fossil fuel reserves. Much research to address this issue focuses on the development of financially viable technologies for the production of biofuels. The current market for biofuels, defined as fuel products obtained from organic substrates, is dominated by bioethanol, biodiesel, biobutanol and biogas, relying on the use of substrates such as sugars, starch and oil crops, agricultural and animal wastes, and lignocellulosic biomass. This conversion from biomass to biofuel through microbial catalysis has gained much momentum as biotechnology has evolved to its current status. Extremophiles are a robust group of organisms producing stable enzymes, which are often capable of tolerating changes in environmental conditions such as pH and temperature. The potential application of such organisms and their enzymes in biotechnology is enormous, and a particular application is in biofuel production. In this review an overview of the different biofuels is given, covering those already produced commercially as well as those under development. The past and present trends in biofuel production are discussed, and future prospects for the industry are highlighted. The focus is on the current and future application of extremophilic organisms and enzymes in technologies to develop and improve the biotechnological production of biofuels.
Collapse
Affiliation(s)
- Desire Barnard
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa
| | | | | | | |
Collapse
|
223
|
Abstract
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.
Collapse
Affiliation(s)
- John Blazeck
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| | | |
Collapse
|
224
|
Ryu W, Bai SJ, Park JS, Huang Z, Moseley J, Fabian T, Fasching RJ, Grossman AR, Prinz FB. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. NANO LETTERS 2010; 10:1137-1143. [PMID: 20201533 DOI: 10.1021/nl903141j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides. From a living algal cell, Chlamydomonas reinhardtii, photosynthetic electrons (1.2 pA at 6000 mA/m(2)) were directly extracted without a mediator electron carrier by inserting a nanoelectrode into the algal chloroplast and applying an overvoltage. This result may represent an initial step in generating "high efficiency" bioelectricity by directly harvesting high energy photosynthetic electrons.
Collapse
Affiliation(s)
- WonHyoung Ryu
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010; 2010:761042. [PMID: 20414363 PMCID: PMC2857869 DOI: 10.1155/2010/761042] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.
Collapse
|
226
|
Connor MR, Cann AF, Liao JC. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 2010; 86:1155-64. [PMID: 20072783 PMCID: PMC2844964 DOI: 10.1007/s00253-009-2401-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 12/02/2022]
Abstract
Interest in producing biofuels from renewable sources has escalated due to energy and environmental concerns. Recently, the production of higher chain alcohols from 2-keto acid pathways has shown significant progress. In this paper, we demonstrate a mutagenesis approach in developing a strain of Escherichia coli for the production of 3-methyl-1-butanol by leveraging selective pressure toward L-leucine biosynthesis and screening for increased alcohol production. Random mutagenesis and selection with 4-aza-D,L-leucine, a structural analogue to L-leucine, resulted in the development of a new strain of E. coli able to produce 4.4 g/L of 3-methyl-1-butanol. Investigation of the host's sensitivity to 3-methyl-1-butanol directed development of a two-phase fermentation process in which titers reached 9.5 g/L of 3-methyl-1-butanol with a yield of 0.11 g/g glucose after 60 h.
Collapse
Affiliation(s)
- Michael R. Connor
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 USA
| | - Anthony F. Cann
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 USA
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
227
|
Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc Natl Acad Sci U S A 2010; 107:6234-9. [PMID: 20332210 DOI: 10.1073/pnas.0912903107] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dramatic increase in healthcare cost has become a significant burden to the world. Many patients are denied the accessibility of medication because of the high price of drugs. Total biosynthesis of chiral drug intermediates is an environmentally friendly approach that helps provide more affordable pharmaceuticals. Here we have expanded the natural metabolic capability to biosynthesize a nonnatural amino acid L-homoalanine, which is a chiral precursor of levetiracetam, brivaracetam, and ethambutol. We developed a selection strategy and altered the substrate specificity of ammonium-assimilating enzyme glutamate dehydrogenase. The specificity constant k(cat)/K(m) of the best mutant towards 2-ketobutyrate is 50-fold higher than that towards the natural substrate 2-ketoglutarate. Compared to transaminase IlvE and NADH-dependent valine dehydrogenases, the evolved glutamate dehydrogenase increased the conversion yield of 2-ketobutyrate to L-homoalanine by over 300% in aerobic condition. As a result of overexpressing the mutant glutamate dehydrogenase and Bacillus subtilis threonine dehydratase in a modified threonine-hyperproducing Escherichia coli strain (ATCC98082, DeltarhtA), 5.4 g/L L-homoalanine was produced from 30 g/L glucose (0.18 g/g glucose yield, 26% of the theoretical maximum). This work opens the possibility of total biosynthesis of other nonnatural chiral compounds that could be useful pharmaceutical intermediates.
Collapse
|
228
|
Na D, Kim TY, Lee SY. Construction and optimization of synthetic pathways in metabolic engineering. Curr Opin Microbiol 2010; 13:363-70. [PMID: 20219419 DOI: 10.1016/j.mib.2010.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
Abstract
Metabolic engineering has enabled us to develop strains suitable for their use as microbial factories of chemicals and materials from renewable sources. It has recently become more powerful with the advanced in synthetic biology, which is allowing us to create novel and fine-controlled metabolic and regulatory circuits maximizing metabolic fluxes to the desired products in the strain being developed. This enables us to engineer host microorganisms to enhance their innate metabolic capabilities or to gain new capabilities in the production of target compounds. Here we review recently constructed synthetic pathways that have been successfully applied for producing non-innate chemicals and also discuss recent approaches developed to increase the efficiency of synthetic pathways for achieving higher productivities of desired bioproducts.
Collapse
Affiliation(s)
- Dokyun Na
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
229
|
Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 2010; 86:419-34. [DOI: 10.1007/s00253-010-2446-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/06/2023]
|
230
|
Abstract
Maximizing the production of a desired small molecule is one of the primary goals in metabolic engineering. Recent advances in the nascent field of synthetic biology have increased the predictability of small-molecule production in engineered cells growing under constant conditions. The next frontier is to create synthetic pathways that adapt to changing environments.
Collapse
Affiliation(s)
- William J Holtz
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
231
|
Huisman FH, Hunter MF, Devenish SR, Gerrard JA, Parker EJ. The C-terminal regulatory domain is required for catalysis by Neisseria meningitidis α-isopropylmalate synthase. Biochem Biophys Res Commun 2010; 393:168-73. [DOI: 10.1016/j.bbrc.2010.01.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 11/28/2022]
|
232
|
|
233
|
Cann AF, Liao JC. Pentanol isomer synthesis in engineered microorganisms. Appl Microbiol Biotechnol 2010; 85:893-9. [PMID: 19859707 PMCID: PMC2804790 DOI: 10.1007/s00253-009-2262-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 01/05/2023]
Abstract
Pentanol isomers such as 2-methyl-1-butanol and 3-methyl-1-butanol are a useful class of chemicals with a potential application as biofuels. They are found as natural by-products of microbial fermentations from amino acid substrates. However, the production titer and yield of the natural processes are too low to be considered for practical applications. Through metabolic engineering, microbial strains for the production of these isomers have been developed, as well as that for 1-pentanol and pentenol. Although the current production levels are still too low for immediate industrial applications, the approach holds significant promise for major breakthroughs in production efficiency.
Collapse
Affiliation(s)
- Anthony F. Cann
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 USA
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
234
|
Toward engineering synthetic microbial metabolism. J Biomed Biotechnol 2009; 2010:459760. [PMID: 20037734 PMCID: PMC2796345 DOI: 10.1155/2010/459760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
Collapse
|
235
|
|
236
|
Dougherty MJ, Arnold FH. Directed evolution: new parts and optimized function. Curr Opin Biotechnol 2009; 20:486-91. [PMID: 19720520 DOI: 10.1016/j.copbio.2009.08.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Constructing novel biological systems that function in a robust and predictable manner requires better methods for discovering new functional molecules and for optimizing their assembly in novel biological contexts. By enabling functional diversification and optimization in the absence of detailed mechanistic understanding, directed evolution is a powerful complement to 'rational' engineering approaches. Aided by clever selection schemes, directed evolution has generated new parts for genetic circuits, cell-cell communication systems, and non-natural metabolic pathways in bacteria.
Collapse
Affiliation(s)
- Michael J Dougherty
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
237
|
Wen F, Nair NU, Zhao H. Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 2009; 20:412-9. [PMID: 19660930 DOI: 10.1016/j.copbio.2009.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performance of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field.
Collapse
Affiliation(s)
- Fei Wen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
238
|
Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009; 11:262-73. [DOI: 10.1016/j.ymben.2009.05.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
239
|
New microbial fuels: a biotech perspective. Curr Opin Microbiol 2009; 12:274-81. [DOI: 10.1016/j.mib.2009.04.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/09/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|
240
|
Connor MR, Liao JC. Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 2009; 20:307-15. [DOI: 10.1016/j.copbio.2009.04.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/16/2022]
|
241
|
Martin CH, Nielsen DR, Solomon KV, Prather KLJ. Synthetic metabolism: engineering biology at the protein and pathway scales. ACTA ACUST UNITED AC 2009; 16:277-86. [PMID: 19318209 DOI: 10.1016/j.chembiol.2009.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
Abstract
Biocatalysis has become a powerful tool for the synthesis of high-value compounds, particularly so in the case of highly functionalized and/or stereoactive products. Nature has supplied thousands of enzymes and assembled them into numerous metabolic pathways. Although these native pathways can be use to produce natural bioproducts, there are many valuable and useful compounds that have no known natural biochemical route. Consequently, there is a need for both unnatural metabolic pathways and novel enzymatic activities upon which these pathways can be built. Here, we review the theoretical and experimental strategies for engineering synthetic metabolic pathways at the protein and pathway scales, and highlight the challenges that this subfield of synthetic biology currently faces.
Collapse
Affiliation(s)
- Collin H Martin
- Department of Chemical Engineering, Synthetic Biology Engineering Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
242
|
Expanding the repertoire of biofuel alternatives through metabolic pathway evolution. Proc Natl Acad Sci U S A 2009; 106:965-6. [PMID: 19164544 DOI: 10.1073/pnas.0811893106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|