201
|
Hitchings R, Kelly L. Predicting and Understanding the Human Microbiome's Impact on Pharmacology. Trends Pharmacol Sci 2019; 40:495-505. [PMID: 31171383 DOI: 10.1016/j.tips.2019.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Our bodies each possess a unique and dynamic collection of microbes and viruses, collectively the 'microbiome', with distinct metabolic capacities from our human cells. Unforeseen modification of drugs by the microbiome can drastically alter their clinical effectiveness, with the most dramatic cases leading to fatal drug interactions. Pharmaceuticals can be activated, deactivated, toxified, or release metabolites that alter the 'canonical' pharmacokinetics of the drug. Thus, predicting and characterizing microbe-drug interactions is necessary to develop and implement personalized drug administration protocols and, more broadly, to improve drug safety and efficacy. In this review, we focus on microbiome-driven alterations to drug pharmacokinetics and provide a research framework for pharmacologists interested in characterizing microbiome interactions with any drug of interest.
Collapse
Affiliation(s)
- Reese Hitchings
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, The Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA.
| |
Collapse
|
202
|
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019; 570:462-467. [PMID: 31158845 PMCID: PMC6597290 DOI: 10.1038/s41586-019-1291-3] [Citation(s) in RCA: 695] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
Individuals vary widely in their responses to medicinal drugs, which can be dangerous and expensive owing to treatment delays and adverse effects. Although increasing evidence implicates the gut microbiome in this variability, the molecular mechanisms involved remain largely unknown. Here we show, by measuring the ability of 76 human gut bacteria from diverse clades to metabolize 271 orally administered drugs, that many drugs are chemically modified by microorganisms. We combined high-throughput genetic analyses with mass spectrometry to systematically identify microbial gene products that metabolize drugs. These microbiome-encoded enzymes can directly and substantially affect intestinal and systemic drug metabolism in mice, and can explain the drug-metabolizing activities of human gut bacteria and communities on the basis of their genomic contents. These causal links between the gene content and metabolic activities of the microbiota connect interpersonal variability in microbiomes to interpersonal differences in drug metabolism, which has implications for medical therapy and drug development across multiple disease indications.
Collapse
Affiliation(s)
- Michael Zimmermann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Zimmermann-Kogadeeva
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Rebekka Wegmann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
203
|
Guthrie L, Kelly L. Bringing microbiome-drug interaction research into the clinic. EBioMedicine 2019; 44:708-715. [PMID: 31151933 PMCID: PMC6604038 DOI: 10.1016/j.ebiom.2019.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the scope and clinical relevance of gut microbiota metabolism of drugs is limited to relatively few biotransformations targeting a subset of therapeutics. Translating microbiome research into the clinic requires, in part, a mechanistic and predictive understanding of microbiome-drug interactions. This review provides an overview of microbiota chemistry that shapes drug efficacy and toxicity. We discuss experimental and computational approaches that attempt to bridge the gap between basic and clinical microbiome research. We highlight the current landscape of preclinical research focused on identifying microbiome-based biomarkers of patient drug response and we describe clinical trials investigating approaches to modulate the microbiome with the goal of improving drug efficacy and safety. We discuss approaches to aggregate clinical and experimental microbiome features into predictive models and review open questions and future directions toward utilizing the gut microbiome to improve drug safety and efficacy.
Collapse
Affiliation(s)
- Leah Guthrie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America.
| |
Collapse
|
204
|
Zhou Y, Zhang N, Arikawa AY, Chen C. Inhibitory Effects of Green Tea Polyphenols on Microbial Metabolism of Aromatic Amino Acids in Humans Revealed by Metabolomic Analysis. Metabolites 2019; 9:metabo9050096. [PMID: 31083533 PMCID: PMC6571926 DOI: 10.3390/metabo9050096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
The bioactivities and potential health benefits of green tea polyphenols (GTP) have been extensively investigated, but the metabolic impact of chronic GTP intake on humans is not well defined. In this study, fecal and urine samples from postmenopausal female subjects taking a GTP supplement or placebo for 12 months were compared by liquid chromatography-mass spectrometry-based metabolomic analysis. The GTP-derived and GTP-responsive metabolites were identified and characterized by structural elucidation and quantitative analysis of the metabolites contributing to the separation of control and treatment samples in the multivariate models. Major GTP and their direct sulfate and glucuronide metabolites were absent in feces and urine. In contrast, GTP-derived phenyl-γ-valerlactone and phenylvaleric acid metabolites were identified as the most abundant GTP-derived metabolites in feces and urine, suggesting extensive microbial biotransformation of GTP in humans. Interestingly, GTP decreased the levels of microbial metabolites of aromatic amino acids (AAA), including indoxyl sulfate, phenylacetylglutamine, and hippuric acid, in urine. However, it did not affect the levels of AAA, as well as other microbial metabolites, including short-chain fatty acids and secondary bile acids, in feces. 16S rRNA gene sequencing indicated that the fecal microbiome was not significantly affected by chronic consumption of GTP. Overall, microbial metabolism is responsible for the formation of GTP metabolites while GTP metabolism may inhibit the formation of AAA metabolites from microbial metabolism. Because these GTP-derived and GTP-responsive metabolites have diverse bioactivities, microbial metabolism of GTP and AAA may play important roles in the beneficial health effects of green tea consumption in humans.
Collapse
Affiliation(s)
- Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| | - Ningning Zhang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| | - Andrea Y Arikawa
- Department of Nutrition & Dietetics, University of North Florida, Jacksonville, FL 32224, USA.
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
205
|
Sharma A, Buschmann MM, Gilbert JA. Pharmacomicrobiomics: The Holy Grail to Variability in Drug Response? Clin Pharmacol Ther 2019; 106:317-328. [PMID: 30937887 DOI: 10.1002/cpt.1437] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
The human body, with 3.0 × 1013 cells and more than 3.8 × 1013 microorganisms, has nearly a one-to-one ratio of resident microbes to human cells. Initiatives like the Human Microbiome Project, American Gut, and Flemish Gut have identified associations between microbial taxa and human health. The study of interactions between microbiome and pharmaceutical agents, i.e., pharmacomicrobiomics, has revealed an instrumental role of the microbiome in modulating drug response that alters the therapeutic outcomes. In this review, we present our current comprehension of the relationship of the microbiome, host biology, and pharmaceutical agents such as cardiovascular drugs, analgesics, and chemotherapeutic agents to human disease and treatment outcomes. We also discuss the significance of studying diet-gene-drug interactions and further address the key challenges associated with pharmacomicrobiomics. Finally, we examine proposed models employing systems biology for the application of pharmacomicrobiomics and other -omics data, and provide approaches to elucidate microbiome-drug interactions to improve future translation to personalized medicine.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | | | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
206
|
Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019; 15:301-316. [PMID: 30728454 PMCID: PMC6619437 DOI: 10.1038/s41581-019-0111-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Uraemic syndrome (also known as uremic syndrome) in patients with advanced chronic kidney disease involves the accumulation in plasma of small-molecule uraemic solutes and uraemic toxins (also known as uremic toxins), dysfunction of multiple organs and dysbiosis of the gut microbiota. As such, uraemic syndrome can be viewed as a disease of perturbed inter-organ and inter-organism (host-microbiota) communication. Multiple biological pathways are affected, including those controlled by solute carrier (SLC) and ATP-binding cassette (ABC) transporters and drug-metabolizing enzymes, many of which are also involved in drug absorption, distribution, metabolism and elimination (ADME). The remote sensing and signalling hypothesis identifies SLC and ABC transporter-mediated communication between organs and/or between the host and gut microbiota as key to the homeostasis of metabolites, antioxidants, signalling molecules, microbiota-derived products and dietary components in body tissues and fluid compartments. Thus, this hypothesis provides a useful perspective on the pathobiology of uraemic syndrome. Pathways considered central to drug ADME might be particularly important for the body's attempts to restore homeostasis, including the correction of disturbances due to kidney injury and the accumulation of uraemic solutes and toxins. This Review discusses how the remote sensing and signalling hypothesis helps to provide a systems-level understanding of aspects of uraemia that could lead to novel approaches to its treatment.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Kevin T Bush
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
207
|
Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions. Pharmacol Rev 2019; 71:198-224. [PMID: 30890566 DOI: 10.1124/pr.118.015768] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The microbiome plays a key role in health and disease, and there has been considerable interest in therapeutic targeting of the microbiome as well as mining this rich resource in drug discovery efforts. However, a growing body of evidence suggests that the gut microbiota can itself influence the actions of a range of xenobiotics, in both beneficial and potentially harmful ways. Traditionally, clinical studies evaluating the pharmacokinetics of new drugs have mostly ignored the important direct and indirect effects of the gut microbiome on drug metabolism and efficacy. Despite some important observations from xenobiotic metabolism in general, there is only an incomplete understanding of the scope of influence of the microbiome specifically on drug metabolism and absorption, and how this might influence systemic concentrations of parent compounds and toxic metabolites. The significance of both microbial metabolism of xenobiotics and the impact of the gut microbiome on host hepatic enzyme systems is nonetheless gaining traction and presents a further challenge in drug discovery efforts, with implications for improving treatment outcomes or counteracting adverse drug reactions. Microbial factors must now be considered when determining drug pharmacokinetics and the impact that an evolving and dynamic microbiome could have in this regard. In this review, we aim to integrate the contribution of the gut microbiome in health and disease to xenobiotic metabolism focusing on therapeutic interventions, pharmacological drug action, and chemical biotransformations that collectively will have implications for the future practice of precision medicine.
Collapse
Affiliation(s)
- Gerard Clarke
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Brendan T Griffin
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| |
Collapse
|
208
|
Girard P, Sourdet S, Cantet C, de Souto Barreto P, Rolland Y. Acetaminophen Safety: Risk of Mortality and Cardiovascular Events in Nursing Home Residents, a Prospective Study. J Am Geriatr Soc 2019; 67:1240-1247. [PMID: 30912588 DOI: 10.1111/jgs.15861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acetaminophen is the most widely used analgesic today. A recent systematic review found increased adverse events and mortality at therapeutic dosage. Our aim was to challenge these results in a large sample of older adults living in nursing homes (NHs). DESIGN Prospective study using data from the Impact of Educational and Professional Supportive Interventions on Nursing Home Quality Indicators project (IQUARE), a multicenter, individually tailored, nonrandomized controlled trial in NHs across southwestern France. SETTING/PARTICIPANTS We studied data from 5429 participants living in 175 NHs (average age, 86.1 ± 8.1 years; 73.9% women). MEASUREMENTS All prescriptions obtained at baseline were analyzed by a pharmacist for acetaminophen use as stand-alone or associated. Myocardial infarction (MI) and strokes were reported from participants' medical records at 18-month follow-up. Dates of death were obtained. Data collection was done through an online questionnaire at baseline and at 18 months by NH staff. Analyses were realized in our total population and a population matched on propensity score of acetaminophen intake. Six models were run for each outcome. RESULTS A total of 2239 participants were taking, on average, 2352 ± 993 mg of acetaminophen daily. Results for mortality were: hazard ratio (HR) = 0.97 (95% confidence interval [CI] = 0.86-1.10). No associations between acetaminophen intake and the risk of mortality or MI were found. In one of our models, acetaminophen intake was associated with a significant increased risk of stroke in diabetic subjects (OR = 3.19; 95% CI = 1.25-8.18; P = .0157). [Correction added March 16, 2019, after first publication online. In the previous sentence, "HR" was mistakenly used instead of "OR".] CONCLUSION: Despite old age, polypharmacy, and polymorbidity, acetaminophen was found safe for most, but not all, of our NH study population. Pain management in NHs is a health priority, and acetaminophen remains a good therapeutic choice as a first-line analgesic. More studies are needed on older diabetic patients.
Collapse
Affiliation(s)
- Philippe Girard
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Sandrine Sourdet
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Christelle Cantet
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Yves Rolland
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
209
|
Nobs SP, Tuganbaev T, Elinav E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep 2019; 20:embr.201847129. [PMID: 30877136 DOI: 10.15252/embr.201847129] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Host-microbiome interactions constitute key determinants of host physiology, while their dysregulation is implicated in a wide range of human diseases. The microbiome undergoes diurnal variation in composition and function, and this in turn drives oscillations in host gene expression and functions. In this review, we discuss the newest developments in understanding circadian host-microbiome interplays, and how they may be relevant in health and disease contexts. We summarize the molecular mechanisms by which the microbiome influences host function in a diurnal manner, and inversely describe how the host orchestrates circadian rhythmicity of the microbiome. Furthermore, we highlight the future perspectives and challenges in studying this new and exciting facet of host-microbiome interactions. Finally, we illustrate how the elucidation of the microbiome chronobiology may pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Timur Tuganbaev
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
210
|
Lin L, Yan H, Chen J, Xie H, Peng L, Xie T, Zhao X, Wang S, Shan J. Application of metabolomics in viral pneumonia treatment with traditional Chinese medicine. Chin Med 2019; 14:8. [PMID: 30911327 PMCID: PMC6417174 DOI: 10.1186/s13020-019-0229-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Nowadays, traditional Chinese medicines (TCMs) have been reported to provide reliable therapies for viral pneumonia, but the therapeutic mechanism remains unknown. As a systemic approach, metabolomics provides an opportunity to clarify the action mechanism of TCMs, TCM syndromes or after TCM treatment. This review aims to provide the metabolomics evidence available on TCM-based therapeutic measures against viral pneumonia. Metabolomics has been gradually applied to the efficacy evaluation of TCMs in treatment of viral pneumonia and the metabolomics analysis exhibits a systemic metabolic shift in lipid, amino acids, and energy metabolism. Currently, most studies of TCM in treatment of viral pneumonia are untargeted metabolomics and further validations on targeted metabolomics should be carried out together with molecular biology technologies.
Collapse
Affiliation(s)
- Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jiabin Chen
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006 China
| | - Huihui Xie
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006 China
| | - Linxiu Peng
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
211
|
Yang M, Lao L. Emerging Applications of Metabolomics in Traditional Chinese Medicine Treating Hypertension: Biomarkers, Pathways and More. Front Pharmacol 2019; 10:158. [PMID: 30906260 PMCID: PMC6418033 DOI: 10.3389/fphar.2019.00158] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertension is a prevalent, complex, and polygenic cardiovascular disease, which is associated with increased mortality and morbidity. Across the world, traditional Chinese medicine (TCM) constituted by herbal medicine and non-pharmacological therapies is used to assist blood pressure management. Though widely accepted in daily practice, its mechanism remains largely unknown. Recent years saw a number of studies utilizing metabolomics technologies to elucidate the biological foundation of the antihypertensive effect of TCM. Metabolomics is a relatively "young" omics approach that has gained enormous attention recently in cardiovascular drug discovery and pharmacology studies of natural products. In this review, we described the use of metabolomics in deciphering TCM diagnostic codes for hypertension and in revealing molecular events that drive the antihypertensive effect. By corroborating the diagnostic rules, there's accumulating evidence showing that metabolic profile could be the signature of different syndromes/patterns of hypertension, which offers new perspectives for disease diagnosis and efficacy optimization. Moreover, TCM treatment significantly altered the metabolic perturbations associated with hypertension, which could be a crucial mechanism of the therapeutic effect of TCM. Not only significantly rebalances the dynamics of metabolic flux, TCM but also elicits metabolic network reorganization through restoring the functions of key metabolites, and metabolic pathways. The role of TCM in regulating metabolic perturbations will be informative to researchers seeking new leads for drug discovery. This review further envisioned the promises of employing metabolomics to explore network pharmacology, host-gut microbiota interactions and metabolic reprogramming in TCM, and possible herb-drug interactions in this field in future.
Collapse
Affiliation(s)
- Mingxiao Yang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lixing Lao
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
212
|
Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res 2019; 142:176-191. [PMID: 30818043 DOI: 10.1016/j.phrs.2019.02.024] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.
Collapse
|
213
|
Yeruva T, Lee CH. Regulation of Vaginal Microbiome by Nitric Oxide. Curr Pharm Biotechnol 2019; 20:17-31. [PMID: 30727888 DOI: 10.2174/1389201020666190207092850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
In this review, the composition and regulation of vaginal microbiome that displays an apparent microbial diversity and interacts with other microbiota in the body are presented. The role of nitric oxide (NO) in the regulation of vaginal microflora in which lactobacillus species typically dominate has been delineated from the perspective of maintaining gynecologic ecosystem and prevention of onset of bacteriostatic vaginosis (BV) and/or sexually transmitted diseases (STD) including HIV-1 transmission. The interactions between NO and vaginal microbiome and its influence on the levels of Lactobacillus, hormones and other components are described. The recent progress, such as NO drugs, probiotic Lactobacilli and Lactobacillus microbots, that can be explored to alleviate abnormality of vagina microbiome, is also discussed. An identification of Oral-GI-Vagina axis, as well as the relationship between NO and Lactobacillus regulation in the healthy or pathological status of vagina microbiome, surely offers the advanced drug delivery option against BV or STD including AIDS.
Collapse
Affiliation(s)
- Taj Yeruva
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| |
Collapse
|
214
|
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci 2019; 76:473-493. [PMID: 30317530 PMCID: PMC11105460 DOI: 10.1007/s00018-018-2943-4] [Citation(s) in RCA: 746] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Gut microbiota has evolved along with their hosts and is an integral part of the human body. Microbiota acquired at birth develops in parallel as the host develops and maintains its temporal stability and diversity through adulthood until death. Recent developments in genome sequencing technologies, bioinformatics and culturomics have enabled researchers to explore the microbiota and in particular their functions at more detailed level than before. The accumulated evidences suggest that though a part of the microbiota is conserved, the dynamic members vary along the gastrointestinal tract, from infants to elderly, primitive tribes to modern societies and in different health conditions. Though the gut microbiota is dynamic, it performs some basic functions in the immunological, metabolic, structural and neurological landscapes of the human body. Gut microbiota also exerts significant influence on both physical and mental health of an individual. An in-depth understanding of the functioning of gut microbiota has led to some very exciting developments in therapeutics, such as prebiotics, probiotics, drugs and faecal transplantation leading to improved health.
Collapse
Affiliation(s)
- Atanu Adak
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India.
| |
Collapse
|
215
|
Chen YY, Chen DQ, Chen L, Liu JR, Vaziri ND, Guo Y, Zhao YY. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 2019; 17:5. [PMID: 30602367 PMCID: PMC6317198 DOI: 10.1186/s12967-018-1756-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Dysbiosis represents changes in composition and structure of the gut microbiome community (microbiome), which may dictate the physiological phenotype (health or disease). Recent technological advances and efforts in metagenomic and metabolomic analyses have led to a dramatical growth in our understanding of microbiome, but still, the mechanisms underlying gut microbiome–host interactions in healthy or diseased state remain elusive and their elucidation is in infancy. Disruption of the normal gut microbiota may lead to intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation. Excessive uremic toxins are produced as a result of gut microbiota alteration, including indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide, all implicated in the variant processes of kidney diseases development. This review focuses on the pathogenic association between gut microbiota and kidney diseases (the gut–kidney axis), covering CKD, IgA nephropathy, nephrolithiasis, hypertension, acute kidney injury, hemodialysis and peritoneal dialysis in clinic. Targeted interventions including probiotic, prebiotic and symbiotic measures are discussed for their potential of re-establishing symbiosis, and more effective strategies for the treatment of kidney diseases patients are suggested. The novel insights into the dysbiosis of the gut microbiota in kidney diseases are helpful to develop novel therapeutic strategies for preventing or attenuating kidney diseases and complications.![]()
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Jing-Ru Liu
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, 87131, USA
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
216
|
Mittal R, Jhaveri VM, Kay SIS, Greer A, Sutherland KJ, McMurry HS, Lin N, Mittal J, Malhotra AK, Patel AP. Recent Advances in Understanding the Pathogenesis of Cardiovascular Diseases and Development of Treatment Modalities. Cardiovasc Hematol Disord Drug Targets 2019; 19:19-32. [PMID: 29737266 DOI: 10.2174/1871529x18666180508111353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Cardiovascular Diseases (CVDs) are a leading cause of morbidity and mortality worldwide. The underlying pathology for cardiovascular disease is largely atherosclerotic in nature and the steps include fatty streak formation, plaque progression and plaque rupture. While there is optimal drug therapy available for patients with CVD, there are also underlying drug delivery obstacles that must be addressed. Challenges in drug delivery warrant further studies for the development of novel and more efficacious medical therapies. An extensive understanding of the molecular mechanisms of disease in combination with current challenges in drug delivery serves as a platform for the development of novel drug therapeutic targets for CVD. The objective of this article is to review the pathogenesis of atherosclerosis, first-line medical treatment for CVD, and key obstacles in an efficient drug delivery.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Sae-In Samantha Kay
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida FL, United States
| | - Aubrey Greer
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Kyle J Sutherland
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Hannah S McMurry
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Nicole Lin
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Arul K Malhotra
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Amit P Patel
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida FL, United States
| |
Collapse
|
217
|
Everett JR. Pharmacometabonomics: The Prediction of Drug Effects Using Metabolic Profiling. Handb Exp Pharmacol 2019; 260:263-299. [PMID: 31823071 DOI: 10.1007/164_2019_316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabonomics, also known as metabolomics, is concerned with the study of metabolite profiles in humans, animals, plants and other systems in order to assess their health or other status and their responses to experimental interventions. Metabonomics is thus widely used in disease diagnosis and in understanding responses to therapies such as drug administration. Pharmacometabonomics, also known as pharmacometabolomics, is a related methodology but with a prognostic as opposed to diagnostic thrust. Pharmacometabonomics aims to predict drug effects including efficacy, safety, metabolism and pharmacokinetics, prior to drug administration, via an analysis of pre-dose metabolite profiles. This article will review the development of pharmacometabonomics as a new field of science that has much promise in helping to deliver more effective personalised medicine, a major goal of twenty-first century healthcare.
Collapse
Affiliation(s)
- Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Kent, UK.
| |
Collapse
|
218
|
Chavira A, Belda-Ferre P, Kosciolek T, Ali F, Dorrestein PC, Knight R. The Microbiome and Its Potential for Pharmacology. Handb Exp Pharmacol 2019; 260:301-326. [PMID: 31820171 DOI: 10.1007/164_2019_317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The human microbiota (the microscopic organisms that inhabit us) and microbiome (their genes) hold considerable potential for improving pharmacological practice. Recent advances in multi-"omics" techniques have dramatically improved our understanding of the constituents of the microbiome and their functions. The implications of this research for human health, including microbiome links to obesity, drug metabolism, neurological diseases, cancer, and many other health conditions, have sparked considerable interest in exploiting the microbiome for targeted therapeutics. Links between microbial pathways and disease states further highlight a rich potential for companion diagnostics and precision medicine approaches. For example, the success of fecal microbiota transplantation to treat Clostridium difficile infection has already started to redefine standard of care with a microbiome-directed therapy. In this review we briefly discuss the nature of human microbial ecosystems and with pathologies and biological processes linked to the microbiome. We then review emerging computational metagenomic, metabolomic, and wet lab techniques researchers are using today to learn about the roles host-microbial interactions have with respect to pharmacological purposes and vice versa. Finally, we describe how drugs affect the microbiome, how the microbiome can impact drug response in different people, and the potential of the microbiome itself as a source of new therapeutics.
Collapse
Affiliation(s)
- Aries Chavira
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Farhana Ali
- Division of Gastroenterology, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
219
|
Role of the Gut Microbiome in Autism Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:253-269. [PMID: 30747427 DOI: 10.1007/978-3-030-05542-4_13] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental or neuropsychiatric disorder with elusive etiology and obscure pathophysiology. Cognitive inabilities, impaired communication, repetitive behavior pattern, and restricted social interaction and communication lead to a debilitating situation in autism. The pattern of co-occurrence of medical comorbidities is most intriguing in autism, compared to any other neurodevelopmental disorders. They have an elevated comorbidity burden among which most frequently are seizures, psychiatric illness, and gastrointestinal disorders. The gut microbiota is believed to play a pivotal role in human health and disease through involvement in physiological homoeostasis, immunological development, glutathione metabolism, amino acid metabolism, etc., which in a reasonable way explain the role of gut-brain axis in autism. Branded as a neurodevelopmental disorder with psychiatric impairment and often misclassified as a mental disorder, many experts in the field think that a therapeutic solution to autism is unlikely to emerge. As the pathophysiology is still elusive, taking into account of the various symptoms that are concurrent in autism is important. Gastrointestinal problems that are seen associated with most of the autism cases suggest that it is not just a psychiatric disorder as many claim but have a physiological base, and alleviating the gastrointestinal problems could help alleviating the symptoms by bringing out the much needed overall improvement in the affected victims. A gut disorder akin to Crohn's disease is, sometimes, reported in autistic children, an extremely painful gastrointestinal disease which is named as autistic enterocolitis. This disturbed situation hypothesized to be initiated by dysbiosis or microbial imbalance could in turn perturb the coordination of microbiota-gut-brain axis which is important in human mental health as goes the popular dictum: "fix your gut, fix your brain."
Collapse
|
220
|
Beger RD. Interest is high in improving quality control for clinical metabolomics: setting the path forward for community harmonization of quality control standards. Metabolomics 2018; 15:1. [PMID: 30830427 DOI: 10.1007/s11306-018-1453-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022]
Abstract
Up to now, quality assurance (QA) and quality control (QC) in metabolomics are procedures that most labs did using their own in-house developed procedures and rules since there was no consensus or minimum requirement. Now there is a lot of enthusiasm for developing standardization of QA and QC procedures.
Collapse
Affiliation(s)
- Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
221
|
Zhan J, Liang Y, Liu D, Ma X, Li P, Liu C, Liu X, Wang P, Zhou Z. Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. MICROBIOME 2018; 6:224. [PMID: 30545405 PMCID: PMC6291969 DOI: 10.1186/s40168-018-0602-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/25/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Antibiotics are commonly used worldwide, and pesticide is a kind of xenobiotic to which humans are frequently exposed. The interactive impact of antibiotics on pesticides has rarely been studied. We aim to investigate the effects of antibiotics on the pesticide exposure risk and whether gut microbiota altered by antibiotics has an influence on pesticide bioavailability. Furthermore, we explored the mechanisms of gut microbiota affecting the fate of pesticides in the host. RESULTS The oral bioavailability of triazine herbicides significantly increased in the rats treated with ampicillin or antibiotic cocktails. The antibiotic-altered gut microbiota directly influenced the increased pesticide bioavailability through downregulating hepatic metabolic enzyme gene expression and upregulating intestinal absorption-related proteins. CONCLUSIONS Antibiotics could increase the pesticide bioavailability and thereby may increase the pesticide exposure risk. The antibiotic-altered gut microbiota that could alter the hepatic metabolic enzyme gene expression and intestinal absorption-related proteome was a critical cause of the increased bioavailability. This study revealed an undiscovered potential health impact of antibiotics and reminded people to consider the co-exposed xenobiotics when taking antibiotics.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
222
|
Abstract
Acute anterior uveitis (AAU) and the spondyloarthritis (SpA) subtypes ankylosing spondylitis, reactive arthritis and psoriatic arthritis are among the inflammatory diseases affected by the biology of the intestinal microbiome. In this Review, the relationship between AAU, SpA and the microbiome is discussed, with a focus on the major SpA risk gene HLA-B*27 and how it is associated with both intestinal tolerance and the loss of ocular immune privilege that can accompany AAU. We provide four potential mechanisms to account for how dysbiosis, barrier function and immune response contribute to the development of ocular inflammation and the pathogenesis of AAU. Finally, potential therapeutic avenues to target the microbiota for the clinical management of AAU and SpA are outlined.
Collapse
Affiliation(s)
- James T Rosenbaum
- Departments of Ophthalmology, Medicine and Cell Biology, Oregon Health and Science University, Portland, OR, USA
- Legacy Devers Eye Institute, Portland, OR, USA
| | - Mark Asquith
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
223
|
Schneeberger PHH, Coulibaly JT, Gueuning M, Moser W, Coburn B, Frey JE, Keiser J. Off-target effects of tribendimidine, tribendimidine plus ivermectin, tribendimidine plus oxantel-pamoate, and albendazole plus oxantel-pamoate on the human gut microbiota. Int J Parasitol Drugs Drug Resist 2018; 8:372-378. [PMID: 30007544 PMCID: PMC6068340 DOI: 10.1016/j.ijpddr.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022]
Abstract
Soil-transmitted helminths infect 1.5 billion people worldwide. Treatment with anthelminthics is the key intervention but interactions between anthelminthic agents and the gut microbiota have not yet been studied. In this study, the effects of four anthelminthic drugs and combinations (tribendimidine, tribendimidine plus ivermectin, tribendimidine plus oxantel-pamoate, and albendazole plus oxantel-pamoate) on the gut microbiota were assessed. From each hookworm infected adolescent, one stool sample was collected prior to treatment, 24 h post-treatment and 3 weeks post-treatment, and a total of 144 stool samples were analyzed. The gut bacterial composition was analyzed using 16S rRNA gene sequencing. Tribendimidine given alone or together with oxantel-pamoate, and the combination of albendazole and oxantel pamoate were not associated with any major changes in the taxonomic composition of the gut microbiota in this population, at both the short-term post-treatment (24 h) and long-term post-treatment (3 weeks) periods. A high abundance of the bacterial phylum Bacteroidetes was observed following administration of tribendimidine plus ivermectin 24 h after treatment, due predominantly to difference in abundance of the families Prevotellaceae and Candidatus homeothermaceae. This effect is transient and disappears three weeks after treatment. Higher abundance of Bacteroidetes predicts an increase in metabolic pathways involved in the synthesis of B vitamins. This study highlights a strong relationship between tribendimidine and ivermectin administration and the gut microbiota and additional studies assessing the functional aspects as well as potential health-associated outcomes of these interactions are required.
Collapse
Affiliation(s)
- Pierre H H Schneeberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Jean T Coulibaly
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Unité de Formation et de Recherche Biosciences, Université Felix Houphouët-Boigny, Abidjan, Cote d'Ivoire; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Cote d'Ivoire
| | - Morgan Gueuning
- Agroscope, Department of Method Development and Analytics, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland
| | - Wendelin Moser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Bryan Coburn
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada; Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Jürg E Frey
- Agroscope, Department of Method Development and Analytics, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
224
|
Discovering radical-dependent enzymes in the human gut microbiota. Curr Opin Chem Biol 2018; 47:86-93. [DOI: 10.1016/j.cbpa.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
|
225
|
Brial F, Le Lay A, Dumas ME, Gauguier D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci 2018; 75:3977-3990. [PMID: 30101405 PMCID: PMC6182343 DOI: 10.1007/s00018-018-2901-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022]
Abstract
Evidence from the literature keeps highlighting the impact of mutualistic bacterial communities of the gut microbiota on human health. The gut microbita is a complex ecosystem of symbiotic bacteria which contributes to mammalian host biology by processing, otherwise, indigestible nutrients, supplying essential metabolites, and contributing to modulate its immune system. Advances in sequencing technologies have enabled structural analysis of the human gut microbiota and allowed detection of changes in gut bacterial composition in several common diseases, including cardiometabolic disorders. Biological signals sent by the gut microbiota to the host, including microbial metabolites and pro-inflammatory molecules, mediate microbiome-host genome cross-talk. This rapidly expanding line of research can identify disease-causing and disease-predictive microbial metabolite biomarkers, which can be translated into novel biodiagnostic tests, dietary supplements, and nutritional interventions for personalized therapeutic developments in common diseases. Here, we review results from the most significant studies dealing with the association of products from the gut microbial metabolism with cardiometabolic disorders. We underline the importance of these postbiotic biomarkers in the diagnosis and treatment of human disorders.
Collapse
Affiliation(s)
- Francois Brial
- Sorbonne University, University Paris Descartes, INSERM UMR_S1138, Cordeliers Research Centre, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Aurélie Le Lay
- Sorbonne University, University Paris Descartes, INSERM UMR_S1138, Cordeliers Research Centre, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Dominique Gauguier
- Sorbonne University, University Paris Descartes, INSERM UMR_S1138, Cordeliers Research Centre, 15 rue de l'Ecole de Médecine, 75006, Paris, France.
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK.
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
226
|
Bisanz JE, Spanogiannopoulos P, Pieper LM, Bustion AE, Turnbaugh PJ. How to Determine the Role of the Microbiome in Drug Disposition. Drug Metab Dispos 2018; 46:1588-1595. [PMID: 30111623 PMCID: PMC7333656 DOI: 10.1124/dmd.118.083402] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
With a paradigm shift occurring in health care toward personalized and precision medicine, understanding the numerous environmental factors that impact drug disposition is of paramount importance. The highly diverse and variant nature of the human microbiome is now recognized as a factor driving interindividual variation in therapeutic outcomes. The purpose of this review is to provide a practical guide on methodology that can be applied to study the effects of microbes on the absorption, distribution, metabolism, and excretion of drugs. We also highlight recent examples of how these methods have been successfully applied to help build the basis for researching the intersection of the microbiome and pharmacology. Although in vitro and in vivo preclinical models are highlighted, these methods are also relevant in late-phase drug development or even as a part of routine after-market surveillance. These approaches will aid in filling major knowledge gaps for both current and upcoming therapeutics with the long-term goal of achieving a new type of knowledge-based medicine that integrates data on the host and the microbiome.
Collapse
Affiliation(s)
- Jordan E Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Annamarie E Bustion
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| |
Collapse
|
227
|
Aziz RK, Hegazy SM, Yasser R, Rizkallah MR, ElRakaiby MT. Drug pharmacomicrobiomics and toxicomicrobiomics: from scattered reports to systematic studies of drug-microbiome interactions. Expert Opin Drug Metab Toxicol 2018; 14:1043-1055. [PMID: 30269615 DOI: 10.1080/17425255.2018.1530216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Pharmacomicrobiomics and toxicomicrobiomics study how variations within the human microbiome (the combination of human-associated microbial communities and their genomes) affect drug disposition, action, and toxicity. These emerging fields, interconnecting microbiology, bioinformatics, systems pharmacology, and toxicology, complement pharmacogenomics and toxicogenomics, expanding the scope of precision medicine. Areas covered: This article reviews some of the most recently reported pharmacomicrobiomic and toxicomicrobiomic interactions. Examples include the impact of the human gut microbiota on cardiovascular drugs, natural products, and chemotherapeutic agents, including immune checkpoint inhibitors. Although the gut microbiota has been the most extensively studied, some key drug-microbiome interactions involve vaginal, intratumoral, and environmental bacteria, and are briefly discussed here. Additionally, computational resources, moving the field from cataloging to predicting interactions, are introduced. Expert opinion: The rapid pace of discovery triggered by the Human Microbiome Project is moving pharmacomicrobiomic research from scattered observations to systematic studies focusing on screening microbiome variants against different drug classes. Better representation of all human populations will improve such studies by avoiding sampling bias, and the integration of multiomic studies with designed experiments will allow establishing causation. In the near future, pharmacomicrobiomic testing is expected to be a key step in screening novel drugs and designing precision therapeutics.
Collapse
Affiliation(s)
- Ramy K Aziz
- a Department of Microbiology and Immunology, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Shaimaa M Hegazy
- b Undergraduate program, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Reem Yasser
- b Undergraduate program, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Mariam R Rizkallah
- c Department of Biometry and Data Management , Leibniz Institute for Prevention Research and Epidemiology - BIPS , Bremen , Germany
| | - Marwa T ElRakaiby
- a Department of Microbiology and Immunology, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
228
|
Mesnage R, Antoniou MN, Tsoukalas D, Goulielmos GN, Tsatsakis A. Gut microbiome metagenomics to understand how xenobiotics impact human health. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
229
|
Abstract
Gut microbiota, one of the determinants of pharmacokinetics, has long been underestimated. It is now generally accepted that the gut microbiota plays an important role in drug metabolism during enterohepatic circulation either before drug absorption or through various microbial enzymatic reactions in the gut. In addition, some drugs are metabolized by the intestinal microbiota to specific metabolites that cannot be formed in the liver. More importantly, metabolizing drugs through the gut microbiota prior to absorption can alter the systemic bioavailability of certain drugs. Therefore, understanding intestinal flora-mediated drug metabolism is critical to interpreting changes in drug pharmacokinetics. Here, we summarize the effects of gut microbiota on drug pharmacokinetics, and propose that the influence of intestinal flora on pharmacokinetics should be organically related to the therapeutic effects and side effects of drugs. More importantly, we could rationally perform the strategy of intestinal microflora-mediated metabolism to design drugs.
Collapse
Affiliation(s)
- Juanhong Zhang
- a School of Pharmacy, Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| | - Junmin Zhang
- a School of Pharmacy, Lanzhou University , Lanzhou , China
| | - Rong Wang
- a School of Pharmacy, Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| |
Collapse
|
230
|
Reile I, Eshuis N, Hermkens NKJ, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Tessari M. NMR detection in biofluid extracts at sub-μM concentrations via para-H2 induced hyperpolarization. Analyst 2018; 141:4001-5. [PMID: 27221513 DOI: 10.1039/c6an00804f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
NMR spectroscopy is one of the most powerful techniques to simultaneously obtain qualitative and quantitative information in chemical analysis. Despite its versatility, the applications of NMR in the study of biofluids are often limited by the insensitivity of the technique, further aggravated by the poor signal dispersion in the (1)H spectra. Recent advances in para-H2 induced hyperpolarization have proven to address both these limitations for specific classes of compounds. Herein, this approach is for the first time applied for quantitative determination in biofluid extracts. We demonstrate that a combination of solid phase extraction, para-hydrogen induced hyperpolarization and selective NMR detection quickly reveals a doping substance, nikethamide, at sub-μM concentrations in urine. We suggest that this method can be further optimized for the detection of different analytes in various biofluids, anticipating a wider application of hyperpolarized NMR in metabolomics and pharmacokinetics studies in the near future.
Collapse
Affiliation(s)
- I Reile
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - N Eshuis
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - N K J Hermkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - B J A van Weerdenburg
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - M C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - F P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - M Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
231
|
Balashova EE, Maslov DL, Lokhov PG. A Metabolomics Approach to Pharmacotherapy Personalization. J Pers Med 2018; 8:jpm8030028. [PMID: 30189667 PMCID: PMC6164342 DOI: 10.3390/jpm8030028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
The optimization of drug therapy according to the personal characteristics of patients is a perspective direction in modern medicine. One of the possible ways to achieve such personalization is through the application of "omics" technologies, including current, promising metabolomics methods. This review demonstrates that the analysis of pre-dose metabolite biofluid profiles allows clinicians to predict the effectiveness of a selected drug treatment for a given individual. In the review, it is also shown that the monitoring of post-dose metabolite profiles could allow clinicians to evaluate drug efficiency, the reaction of the host to the treatment, and the outcome of the therapy. A comparative description of pharmacotherapy personalization (pharmacogenomics, pharmacoproteomics, and therapeutic drug monitoring) and personalization based on the analysis of metabolite profiles for biofluids (pharmacometabolomics) is also provided.
Collapse
Affiliation(s)
- Elena E Balashova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10, Moscow 119121, Russia.
| | - Dmitry L Maslov
- Institute of Biomedical Chemistry, Pogodinskaya St. 10, Moscow 119121, Russia.
| | - Petr G Lokhov
- Institute of Biomedical Chemistry, Pogodinskaya St. 10, Moscow 119121, Russia.
| |
Collapse
|
232
|
Tindall AM, Petersen KS, Kris-Etherton PM. Dietary Patterns Affect the Gut Microbiome-The Link to Risk of Cardiometabolic Diseases. J Nutr 2018; 148:1402-1407. [PMID: 30184227 PMCID: PMC7263841 DOI: 10.1093/jn/nxy141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Clusters of bacterial species within the gut microenvironment, or gut enterotype, have been correlated with cardiometabolic disease risk. The metabolic products and metabolites that bacteria produce, such as short-chain fatty acids, secondary bile acids, and trimethylamine, may also affect the microbial community and disease risk. Diet has a direct impact on the gut microenvironment by providing substrates to and promoting the colonization of resident bacteria. To date, few dietary patterns have been evaluated for their effect on the gut microbiome, but the Mediterranean diet and Vegetarian diets have shown favorable effects for both the gut microbiome and cardiometabolic disease risk. This review examines the gut microbiome as a mediator between these dietary patterns and cardiometabolic disease risk.
Collapse
Affiliation(s)
- Alyssa M Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
233
|
Bao X, Wu J, Kim S, LoRusso P, Li J. Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients. J Clin Pharmacol 2018; 59:20-34. [PMID: 30052267 DOI: 10.1002/jcph.1275] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to identify early circulating metabolite changes implicated in the mechanism of action of irinotecan, a DNA topoisomerase I inhibitor, in cancer patients. A liquid chromatography-tandem mass spectrometry-based targeted metabolomic platform capable of measuring 254 endogenous metabolites was applied to profile circulating metabolites in plasma samples collected pre- and post-irinotecan treatment from 13 cancer patients. To gain further mechanistic insights, metabolic profiling was also performed for the culture medium of human primary hepatocytes (HepatoCells) and 2 cancer cell lines on exposure to SN-38 (an active metabolite of irinotecan). Intracellular reactive oxygen species (ROS) was detected by dihydroethidium assay. Irinotecan induced a global metabolic change in patient plasma, as represented by elevations of circulating purine/pyrimidine nucleobases, acylcarnitines, and specific amino acid metabolites. The plasma metabolic signature was well replicated in HepatoCells medium on SN-38 exposure, whereas in cancer cell medium SN-38 induced accumulation of pyrimidine/purine nucleosides and nucleobases while having no impact on acylcarnitines and amino acid metabolites. SN-38 induced ROS in HepatoCells, but not in cancer cells. Distinct metabolite signatures of SN-38 exposure in HepatoCells medium and cancer cell medium revealed different mechanisms of drug action on hepatocytes and cancer cells. Elevations in circulating purine/pyrimidine nucleobases may stem from nucleotide degradation following irinotecan-induced DNA double-strand breaks. Accumulations of circulating acylcarnitines and specific amino acid metabolites may reflect, at least in part, irinotecan-induced mitochondrial dysfunction and oxidative stress in the liver. The plasma metabolic signature of irinotecan exposure provides early insights into irinotecan mechanism of action in patients.
Collapse
Affiliation(s)
- Xun Bao
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jianmei Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patricia LoRusso
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
234
|
Walsh J, Griffin BT, Clarke G, Hyland NP. Drug-gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol 2018; 175:4415-4429. [PMID: 29782640 DOI: 10.1111/bph.14366] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
The fate and activity of drugs are frequently dictated not only by the host per se but also by the microorganisms present in the gastrointestinal tract. The gut microbiome is known to, both directly and indirectly, affect drug metabolism. More evidence now hints at the effects that drugs can have on the function and composition of the gut microbiome. Both microbiota-mediated alterations in drug metabolism and drug-mediated alterations in the gut microbiome can have beneficial or detrimental effects on the host. Greater insights into the mechanisms driving these reciprocal drug-gut microbiota interactions are needed to guide the development of microbiome-targeted dietary or pharmacological interventions, which may have the potential to enhance drug efficacy or reduce drug side effects. In this review, we explore the relationship between drugs and the gut microbiome, with a specific focus on potential mechanisms underpinning the drug-mediated alterations on the gut microbiome and the potential implications for psychoactive drugs. LINKED ARTICLES: This article is part of a themed section on When Pharmacology Meets the Microbiome: New Targets for Therapeutics? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.24/issuetoc.
Collapse
Affiliation(s)
- Jacinta Walsh
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niall P Hyland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
235
|
Ostrov BE, Amsterdam D. Immunomodulatory interplay of the microbiome and therapy of rheumatic diseases. Immunol Invest 2018; 46:769-792. [PMID: 29058546 DOI: 10.1080/08820139.2017.1373828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modulation of the immune system by microbes, especially from the gastrointestinal tract, is increasingly considered a key factor in the onset, course and outcome of rheumatic diseases. The interplay of the microbiome, along with genetic predisposition and environmental exposure, is thought to be an important trigger for rheumatic diseases. Improved identification of the relationship of disease-specific genetic alterations and rheumatic diseases has potential diagnostic and therapeutic applications. Treatment of rheumatic disorders is influenced by microbial actions but this interplay can be challenging due to variable and unpredictable responses to therapies. Expanded knowledge of the microbiome now allows clinicians to more precisely select ideal medication regimens and to predict response to and toxicity from drugs. Rheumatic diseases and associated therapies were among the earliest microbiome interactions investigated, yet it is notable that current research is focused on clinical and immunological associations but, in comparison, a limited number of studies regarding the microbiome's impact on treatment for rheumatic diseases have been published. In the coming years, further knowledge of immunomodulating interactions between the microbiome and the immune system will aid our understanding of autoimmunity and will be increasingly important in selection of therapeutic agents for patients with autoimmune and rheumatic diseases. In this review, recent literature regarding the bidirectional immunomodulatory effects of the microbiome with rheumatic diseases and current understanding and gaps regarding the drug-microbiome interface in the management of these disorders is presented.
Collapse
Affiliation(s)
- Barbara E Ostrov
- a Pediatrics and Medicine, Pediatric Rheumatology, Department of Pediatrics, Rheumatology, Department of Medicine , Penn State College of Medicine , Hershey , PA , USA
| | - Daniel Amsterdam
- b Microbiology and Immunology, Pathology and Medicine , Jacobs School of Medicine and Biomedical Sciences, Chief of Service, Laboratory Medicine, Erie County Medical Center , Buffalo , NY , USA
| |
Collapse
|
236
|
Athersuch TJ, Antoine DJ, Boobis AR, Coen M, Daly AK, Possamai L, Nicholson JK, Wilson ID. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: a perspective. Toxicol Res (Camb) 2018; 7:347-357. [PMID: 30090586 PMCID: PMC6062253 DOI: 10.1039/c7tx00340d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
After over 60 years of therapeutic use in the UK, paracetamol (acetaminophen, N-acetyl-p-aminophenol, APAP) remains the subject of considerable research into both its mode of action and toxicity. The pharmacological properties of APAP are the focus of some activity, with the role of the metabolite N-arachidonoylaminophenol (AM404) still a topic of debate. However, that the hepatotoxicity of APAP results from the production of the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI/NABQI) that can deplete glutathione, react with cellular macromolecules, and initiate cell death, is now beyond dispute. The disruption of cellular pathways that results from the production of NAPQI provides a source of potential biomarkers of the severity of the damage. Research in this area has provided new diagnostic markers such as the microRNA miR-122 as well as mechanistic biomarkers associated with apoptosis, mitochondrial dysfunction, inflammation and tissue regeneration. Additionally, biomarkers of, and systems biology models for, glutathione depletion have been developed. Furthermore, there have been significant advances in determining the role of both the innate immune system and genetic factors that might predispose individuals to APAP-mediated toxicity. This perspective highlights some of the progress in current APAP-related research.
Collapse
Affiliation(s)
- Toby J Athersuch
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Daniel J Antoine
- MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , EH16 4TJ , UK
| | - Alan R Boobis
- Department of Medicine , Imperial College London , London W12 0NN , UK
| | - Muireann Coen
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Ann K Daly
- Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne NE2 4HH , UK
| | - Lucia Possamai
- Department of Hepatology , St Mary's Hospital , Imperial College London , London W2 1NY , UK
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Ian D Wilson
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| |
Collapse
|
237
|
Chittim CL, Irwin SM, Balskus EP. Deciphering Human Gut Microbiota-Nutrient Interactions: A Role for Biochemistry. Biochemistry 2018; 57:2567-2577. [PMID: 29669199 DOI: 10.1021/acs.biochem.7b01277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human gut contains trillions of microorganisms that play a central role in many aspects of host biology, including the provision of key nutrients from the diet. However, our appreciation of how gut microbes and their extensive metabolic capabilities affect the nutritional status of the human host is in its infancy. In this Perspective, we highlight how recent efforts to elucidate the biochemical basis for gut microbial metabolism of dietary components are reshaping our view of these organisms' roles in host nutrition. Gaining a molecular understanding of gut microbe-nutrient interactions will enhance our knowledge of how diet affects host health and disease, ultimately enabling personalized nutrition and therapeutics.
Collapse
Affiliation(s)
- Carina L Chittim
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Stephania M Irwin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
238
|
Abstract
Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine.
Collapse
|
239
|
The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol Res 2018; 130:164-171. [DOI: 10.1016/j.phrs.2018.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/29/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022]
|
240
|
Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
241
|
Schneeberger PHH, Coulibaly JT, Panic G, Daubenberger C, Gueuning M, Frey JE, Keiser J. Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome. Parasit Vectors 2018. [PMID: 29530088 PMCID: PMC5848565 DOI: 10.1186/s13071-018-2739-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Schistosomiasis is a neglected tropical disease burdening millions of people. One drug, praziquantel, is currently used for treatment and control. Clinically relevant drug resistance has not yet been described, but there is considerable heterogeneity in treatment outcomes, ranging from cure to only moderate egg reduction rates. The objectives of this study are to investigate potential worm-induced dysbacteriosis of the gut microbiota and to assess whether a specific microbiome profile could influence praziquantel response. Methods Using V3 and V4 regions of 16S rRNA genes, we screened the gut microbiota of 34 Schistosoma mansoni infected and uninfected children from Côte d’Ivoire. From each infected child one pre-treatment, one 24-hour and one 21-day follow-up sample after administering 60 mg/kg praziquantel or placebo, were collected. Results Overall taxonomic profiling and diversity indicators were found to be close to a “healthy” gut structure in all children. Slight overall compositional changes were observed between S. mansoni-infected and non-infected children. Praziquantel treatment was not linked to a major shift in the gut taxonomic profiles, thus reinforcing the good safety profile of the drug by ruling out off-targets effects on the gut microbes.16S rRNA gene of the Fusobacteriales order was significantly more abundant in cured individuals, both at baseline and 24 hours post-treatment. A real-time qPCR confirmed the over-abundance of Fusobacterium spp. in cured children. Fusobacterium spp. abundance could also be correlated with treatment induced S. mansoni egg-reduction. Conclusions Our study suggests that neither a S. mansoni infection nor praziquantel administration triggers a significant effect on the microbial composition and that a higher abundance of Fusobacterium spp., before treatment, is associated with higher efficacy of praziquantel in the treatment of S. mansoni infections. Trial registration International Standard Randomised Controlled Trial, number ISRCTN15280205. Electronic supplementary material The online version of this article (10.1186/s13071-018-2739-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre H H Schneeberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jean T Coulibaly
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Unité de Formation et de Recherche Biosciences, Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Gordana Panic
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Morgan Gueuning
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
242
|
Wang F, Meng J, Zhang L, Johnson T, Chen C, Roy S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep 2018; 8:3596. [PMID: 29483538 PMCID: PMC5827657 DOI: 10.1038/s41598-018-21915-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/13/2018] [Indexed: 12/29/2022] Open
Abstract
Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious comorbidities, such as dependence, tolerance, immunosuppression and gastrointestinal disorders limit their long-term use. In the current study, a morphine-murine model was used to investigate the role of the gut microbiome and metabolome as a potential mechanism contributing to the negative consequences associated with opioid use. Results reveal a significant shift in the gut microbiome and metabolome within one day following morphine treatment compared to that observed after placebo. Morphine-induced gut microbial dysbiosis exhibited distinct characteristic signatures, including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance and significant impairment in bile acids and morphine-3-glucuronide/morphine biotransformation in the gut. Moreover, expansion of Enterococcus faecalis was strongly correlated with gut dysbiosis following morphine treatment, and alterations in deoxycholic acid (DCA) and phosphatidylethanolamines (PEs) were associated with opioid-induced metabolomic changes. Collectively, these results indicate that morphine induced distinct alterations in the gut microbiome and metabolome, contributing to negative consequences associated with opioid use. Therapeutics directed at maintaining microbiome homeostasis during opioid use may reduce the comorbidities associated with opioid use for pain management.
Collapse
Affiliation(s)
- Fuyuan Wang
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC 1365 Gortner Ave., St Paul, MN, 55108, USA
| | - Jingjing Meng
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33101, USA
| | - Li Zhang
- Department of Pharmacology, University of Minnesota, 515 Delaware St SE, Moos 11-204, Minneapolis, MN, 55455, USA
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 225 VMC 1365 Gortner Ave., St Paul, MN, 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St Paul, MN, 55108, USA
| | - Sabita Roy
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC 1365 Gortner Ave., St Paul, MN, 55108, USA. .,Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33101, USA. .,Department of Pharmacology, University of Minnesota, 515 Delaware St SE, Moos 11-204, Minneapolis, MN, 55455, USA.
| |
Collapse
|
243
|
Jiang L, Lee SC, Ng TC. Pharmacometabonomics Analysis Reveals Serum Formate and Acetate Potentially Associated with Varying Response to Gemcitabine-Carboplatin Chemotherapy in Metastatic Breast Cancer Patients. J Proteome Res 2018; 17:1248-1257. [DOI: 10.1021/acs.jproteome.7b00859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Limiao Jiang
- Department
of Epidemiology and Biostatistics, MOE Key Lab of Environment and
Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department
of Diagnostic Radiology, National University of Singapore, 5 Lower
Kent Ridge Road, Singapore 119074, Singapore
| | - Soo Chin Lee
- Department
of Haematology-Oncology, National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Cancer
Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Thian C. Ng
- Department
of Diagnostic Radiology, National University of Singapore, 5 Lower
Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
244
|
Kim JK, Choi MS, Jeong JJ, Lim SM, Kim IS, Yoo HH, Kim DH. Effect of Probiotics on Pharmacokinetics of Orally Administered Acetaminophen in Mice. Drug Metab Dispos 2018; 46:122-130. [PMID: 29212822 DOI: 10.1124/dmd.117.077222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/29/2017] [Indexed: 02/13/2025] Open
Abstract
Orally administered probiotics change gut microbiota composition and enzyme activities. Thus, coadministration of probiotics with drugs may lead to changes in the pharmacokinetic parameters of the drugs. In this study, we investigated the pharmacokinetics of acetaminophen in mice treated with probiotics. Oral administration of probiotics changed the gut microbiota composition in the mice. Of these probiotics, Lactobacillus reuteri K8 increased the numbers of clostridia, bifidobacteria, and enterococci, and Lactobacillus rhamnosus K9 decreased the number of bifidobacteria, determined by culturing in selective media. Next, we performed a pharmacokinetic study of acetaminophen in mice orally treated with K8 and K9 for 3 days. Treatment with K8 reduced the area under the curve (AUC) of orally administered acetaminophen to 68.4% compared with normal control mice, whereas K9 did not affect the AUC of acetaminophen. Oral administration to mice of K8, which degraded acetaminophen, increased the degradation of acetaminophen by gut microbiota, whereas K9 treatment did not affect it. Treatment with K8 increased the number of L. reuteri adhered in the upper small intestine, whereas the number of L. rhamnosus was not affected by treatment with K8 or K9. K8 increased the number of cyanobacteria, whereas K9 increased the number of deferribacteres. These results suggest that the intake of probiotics may make the absorption of orally administered drugs fluctuate through the disturbance of gut microbiota-mediated drug metabolism and that the subsequent impact on microbiota metabolism could result in altered systemic concentrations of the intact drug.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Min Sun Choi
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Jin-Ju Jeong
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Su-Min Lim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - In Sook Kim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Hye Hyun Yoo
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Dong-Hyun Kim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| |
Collapse
|
245
|
Kashyap PC, Quigley EMM. Therapeutic implications of the gastrointestinal microbiome. Curr Opin Pharmacol 2018; 38:90-96. [DOI: 10.1016/j.coph.2018.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
|
246
|
Abstract
The human gut microbiota makes key contributions to the metabolism of ingested compounds (xenobiotics), transforming hundreds of dietary components, industrial chemicals, and pharmaceuticals into metabolites with altered activities, toxicities, and lifetimes within the body. The chemistry of gut microbial xenobiotic metabolism is often distinct from that of host enzymes. Despite their important consequences for human biology, the gut microbes, genes, and enzymes involved in xenobiotic metabolism are poorly understood. Linking these microbial transformations to enzymes and elucidating their biological effects is undoubtedly challenging. However, recent studies demonstrate that integrating traditional and emerging technologies can enable progress toward this goal. Ultimately, a molecular understanding of gut microbial xenobiotic metabolism will guide personalized medicine and nutrition, inform toxicology risk assessment, and improve drug discovery and development.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Vayu Maini Rekdal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. .,Broad Institute, Cambridge, MA 02139, USA
| |
Collapse
|
247
|
Miolo G, Muraro E, Caruso D, Crivellari D, Ash A, Scalone S, Lombardi D, Rizzolio F, Giordano A, Corona G. Pharmacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer. Oncotarget 2018; 7:39809-39822. [PMID: 27223427 PMCID: PMC5129972 DOI: 10.18632/oncotarget.9489] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
Defining biomarkers that predict therapeutic effects and adverse events is a crucial mandate to guide patient selection for personalized cancer treatments. In the present study, we applied a pharmacometabolomics approach to identify biomarkers potentially associated with pathological complete response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer patients. Based on histological response the 34 patients enrolled in the study were subdivided into two groups: good responders (n = 15) and poor responders (n = 19). The pre-treatment serum targeted metabolomics profile of all patients were analyzed by liquid chromatography tandem mass spectrometry and the differences in the metabolomics profile between the two groups was investigated by multivariate partial least squares discrimination analysis. The most relevant metabolites that differentiate the two groups of patients were spermidine and tryptophan. The Good responders showed higher levels of spermidine and lower amounts of tryptophan compared with the poor responders (p < 0.001, q < 0.05). The serum level of these two metabolites identified patients who achieved a pathological complete response with a sensitivity of 90% [0.79–1.00] and a specificity of 0.87% [0.67–1.00]. These preliminary results support the role played by the individual patients' metabolism in determining the response to cancer treatments and may be a useful tool to select patients that are more likely to benefit from the trastuzumab-paclitaxel treatment.
Collapse
Affiliation(s)
- Gianmaria Miolo
- Department of Medical Oncology, IRCCS-National Cancer Institute, Aviano, Italy
| | - Elena Muraro
- Department of Translational Research, IRCCS-National Cancer Institute, Aviano, Italy
| | - Donatella Caruso
- Department of Pharmacological and Bimolecular Science, University of Milan, Milan, Italy
| | - Diana Crivellari
- Department of Medical Oncology, IRCCS-National Cancer Institute, Aviano, Italy
| | - Anthony Ash
- Department of Biological Chemistry, Norwich Research Park, Norwich, United Kingdom
| | - Simona Scalone
- Department of Medical Oncology, IRCCS-National Cancer Institute, Aviano, Italy
| | - Davide Lombardi
- Department of Medical Oncology, IRCCS-National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Department of Translational Research, IRCCS-National Cancer Institute, Aviano, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Giuseppe Corona
- Department of Translational Research, IRCCS-National Cancer Institute, Aviano, Italy
| |
Collapse
|
248
|
Yip LY, Aw CC, Lee SH, Hong YS, Ku HC, Xu WH, Chan JMX, Cheong EJY, Chng KR, Ng AHQ, Nagarajan N, Mahendran R, Lee YK, Browne ER, Chan ECY. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 2018. [PMID: 28646502 DOI: 10.1002/hep.29327] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. CONCLUSION This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295).
Collapse
Affiliation(s)
- Lian Yee Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- Metabolomics, Bioprocessing Technology Institute, Singapore, Singapore
| | | | - Sze Han Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yi Shuen Hong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Han Chen Ku
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Winston Hecheng Xu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jessalyn Mei Xuan Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kern Rei Chng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Amanda Hui Qi Ng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan Kun Lee
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
249
|
Peisl BYL, Schymanski EL, Wilmes P. Dark matter in host-microbiome metabolomics: Tackling the unknowns-A review. Anal Chim Acta 2017; 1037:13-27. [PMID: 30292286 DOI: 10.1016/j.aca.2017.12.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
The "dark matter" in metabolomics (unknowns) represents an exciting frontier with significant potential for discovery in relation to biochemistry, yet it also presents one of the largest challenges to overcome. This focussed review takes a close look at the current state-of-the-art and future challenges in tackling the unknowns with specific focus on the human gut microbiome and host-microbe interactions. Metabolomics, like metabolism itself, is a very dynamic discipline, with many workflows and methods under development, both in terms of chemical analysis and post-analysis data processing. Here, we look at developments in the mutli-omic analyses and the use of mass spectrometry to investigate the exchange of metabolites between the host and the microbiome as well as the environment within the microbiome. A case study using HuMiX, a microfluidics-based human-microbial co-culture system that enables the co-culture of human and microbial cells under controlled conditions, is used to highlight opportunities and current limitations. Common definitions, approaches, databases and elucidation techniques from both the environmental and metabolomics fields are covered, with perspectives on how to merge these, as the boundaries blur between the fields. While reflecting on the number of unknowns remaining to be conquered in typical complex samples measured with mass spectrometry (often orders of magnitude above the "knowns"), we provide an outlook on future perspectives and challenges in elucidating the relevant "dark matter".
Collapse
Affiliation(s)
- B Y Loulou Peisl
- Environmental Cheminformatics Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; Eco-Systems Biology Group, LCSB, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Emma L Schymanski
- Environmental Cheminformatics Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Paul Wilmes
- Eco-Systems Biology Group, LCSB, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
250
|
Guillaume D, Moussu C, de Geoffroy F, Chesneau D, Keller M. Olfactory stimulation or inhibition of sexual behavior of stallions in non-breeding season. Physiol Behav 2017; 186:1-9. [PMID: 29287623 DOI: 10.1016/j.physbeh.2017.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 11/18/2022]
Abstract
Stallions show decreased sexual responses and activities during short days in winter. To evaluate the importance of sexual olfactory communication in horses, we tested whether sexual responses could be stimulated through various sexual olfactory stimulations in winter. To this end, we presented stallions with various olfactory stimulations (urine from mares at different stages of the reproductive cycle, urine from stallions or geldings, or chemically defined synthetic odorant) during the non-breeding season and measured their behavioral responses through (1) a test of olfactory investigation (olfactory investigation and flehmen behavior) and (2) a test of sexual activity in the context of semen collection for artificial insemination. It appears that the duration of olfactory investigation and flehmen behavior is longer after presentation of urine (stallion, gelding, anestrous, diestrous and estrous mare) than after presentation of water or synthetic odorant. By contrast, geldings showed reduced flehmen behavior that did not differ from that after water presentation. It is of interest that during the mounting test, mare estrous urine was associated with significantly reduced latency to ejaculation when spread in the nostril of the stallion, compared to anestrous mare urine or water. Anestrous mare urine seems to even inhibit stallion sexual motivation as measured through a longer latency to reach mounting and ejaculation. It appears therefore that during the season of sexual rest, stallion sexual motivation can be stimulated by mare estrous urine and inhibited by mare anestrous urine. These results also suggest that the physiological state of the mare influence the content of urinary chemosignals.
Collapse
Affiliation(s)
- Daniel Guillaume
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, Tours, France; IFCE, Nouzilly, France.
| | - Chantal Moussu
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, Tours, France; IFCE, Nouzilly, France
| | | | - Didier Chesneau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, Tours, France; IFCE, Nouzilly, France
| | - Matthieu Keller
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, Tours, France; IFCE, Nouzilly, France
| |
Collapse
|